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STABILITY OF NOOR ITERATIONS WITH ERRORS FOR
GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEMS

ZEQING LIU AND JEONG SHEOK UME AND SHIN MIN KANG

Abstract. In this paper, we introduce and study a class of generalized non-
linear complementarity problems and construct an iterative algorithm, called
the Noor iterations with errors, by using the change of variables technique.
We establish the existence and uniqueness of solution of the generalized non-
linear complementarity problem and the convergence and stability of iterative
sequence generated by the algorithm.

1. Introduction

It is well known that the complementarity theory has a lot of applications in
diverse fields of mathematical, regional, physical, and engineering sciences ([1], [3],
[4], [6]-[12], [14] -[16]). In 1980, Van Bokhoven used first the change of variables
technique to study a class of linear complementarity problems in Rn. Afterwards,
Noor [9] and Noor and Zarae [15] modified the change of variables technique to
suggest some iterative methods for solving some classes of nonlinear complemen-
tarity problems in Rn. Recently, Ahmad, Kazmi and Rehman [1] and Noor and
Al-Said [14] have extended the results of Noor [9], Noor and Zarae [15] and Van
Bokhoven [16] to the implicit complementarity problem in the infinite-dimensional
spaces and the generalized strongly nonlinear complementarity problem in Hilbert
spaces, respectively. On the other hand, Noor [13] introduced and studied a class
of three-step approximation schemes for general variational inequalities.

Inspired and motivated by the research work in [1], [9], [13]-[16], in this paper, we
introduce and study a new class of generalized nonlinear complementarity problems
in Hilbert spaces. Using the change of variables technique, we obtain that the
generalized nonlinear complementarity problem and the fixed point problem are
equivalent. Using this equivalence, we suggest and analysis a new unified and
general algorithm, which is called the Noor iteration with errors, for computing
the approximate solution of the generalized nonlinear complementarity problem.
Under certain conditions, we establish the existence and uniqueness of solution
of the generalized nonlinear complementarity problem, and the convergence and
stability of iterative sequence of generated by the algorithm. Our results are an
extension and improvements of previously known results.

2. Preliminaries

Let H be a real Hilbert space on which the inner product and norm are denoted
by 〈·, ·〉 and ‖ · ‖, respectively. Let K be a nonempty closed convex cone of H, PK
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denote the projection of H onto K and A,B and N : H × H → H be nonlinear
mappings. We now consider the following problem.

The generalized nonlinear complementarity problem consists in finding u ∈ H
such that:

(2.1) u ∈ K, N(Au,Bu) ∈ K∗ and 〈N(Au, Bu), u〉 = 0,

where K∗ = {y ∈ H : 〈y, x〉 ≥ 0, ∀x ∈ K} is a convex polar cone of K in H.
In case N(u, v) = u + v for all u, v ∈ H, then problem (2.1) is equivalent to

finding u ∈ H such that

(2.2) u ∈ K, Au + Bu ∈ K∗ and 〈Au + Bu, u〉 = 0,

which is called the strongly nonlinear complementarity problem, or the generalized
strongly nonlinear complementarity problem or the generalized mildly nonlinear
complementarity problem, introduced and studied by Noor [8]-[10] and Noor and
Al-Said [14]. In [9], Noor proved that a wide class of problems arising in fluid flow
through porous media, lubrication problems, contact problems elasticity, econom-
ics, and structural analysis can be studied by the generalized strongly nonlinear
complementarity problem.

If N(u, v) = u for all u, v ∈ H, then problem (2.1) is equivalent to finding u ∈ H
such that

(2.3) u ∈ K,Au ∈ K∗ and 〈Au, u〉 = 0,

which is called the generalized complementarity problem. For the applications,
numerical methods and formulations, see [4], [15] and the references therein.

It is worth mentioning that problem (2.1) can be written as

(2.4) u ∈ K, v = N(Au,Bu) ∈ K∗ and 〈v, u〉 = 0.

Let us recall the following concepts. For each u ∈ H, we define the absolute
value of u as follows:

|u| = u+ + u−, u+ = sup{0, u} and u− = − inf{0, u}.

It is known that for any arbitrary element u ∈ H, we get that u = u+ − u− and
〈u+, u−〉 = 0. Using the idea and technique of Noor [10], Noor and Al-Said [14]
and Noor and Zarae [15], and for all z ∈ H, we consider the following change of
variables:

u =
|z|+ z

2
= z+ = PK(z), v =

|z| − z

ρ
=

2z−1

ρ
=

2
ρ
(PK(z)− z),

where ρ > 0 is a constant. It is easy to verify that the generalized nonlinear
complementarity problem (2.1) has a solution u ∈ H if and only if the mapping
G : H → H defined by

(2.5) G(z) = (1− t)z+ + t
(
z+ − ρ

2
N(Az+, Bz+)

)
for all z ∈ H

has a fixed point z ∈ H, where t is a constant in (0, 1] and

(2.6) u = z+ = PK(z).

Invoking the method of Noor [13], by (2.5) and (2.6) we suggest the following
algorithms for the generalized nonlinear complementarity problem (2.1):
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Algorithm 2.1 (Noor iteration with errors). Given z0 ∈ H, compute the
sequence {zn}n≥0 by the iterative schemes

xn = (1− γn)z+
n + γn

(
z+
n −

ρ

2
N(Az+

n , Bz+
n )

)
+ sn, z+

n = PK(zn),

yn = (1− βn)z+
n + βn

(
x+

n −
ρ

2
N(Ax+

n , Bx+
n )

)
+ qn, x+

n = PK(xn),

zn+1 = (1− αn)z+
n + αn

(
y+

n −
ρ

2
N(Ay+

n , By+
n )

)
+ pn, y+

n = PK(yn)

(2.7)

for all n ≥ 0, where {sn}n≥0, {qn}n≥0 and {pn}n≥0 are the sequences of the ele-
ments of H introduced to take into account possible inexact computations, and the
sequences {αn}n≥0, {βn}n≥0 and {γn}n≥0 satisfy

(2.8) 0 ≤ αn, βn, γn ≤ 1 for all n ≥ 0 and
∞∑

n=0

αn = ∞.

As special cases of the Noor iteration with errors, we have
Algorithm 2.2 (Ishikawa iteration with errors). Given z0 ∈ H, compute the
sequence {zn}n≥0 by the iterative schemes

xn = (1− γn)z+
n + γn

(
z+
n − ρ

2N(Az+
n , Bz+

n )
)

+ sn, z+
n = PK(zn),

zn+1 = (1− βn)z+
n + βn

(
x+

n − ρ
2N(Ax+

n , Bx+
n )

)
+ qn, x+

n = PK(xn)

for all n ≥ 0, where {sn}n≥0 and {qn}n≥0 are the sequences of the elements of H
introduced to take into account possible inexact computations, and the sequences
{βn}n≥0 and {γn}n≥0 satisfy

0 ≤ βn, γn ≤ 1 for all n ≥ 0 and
∞∑

n=0

βn = ∞.

Algorithm 2.3 (Mann iteration with errors). Given z0 ∈ H, compute the
sequence {zn}n≥0 by the iterative schemes

zn+1 = (1− γn)z+
n + γn

(
z+
n −

ρ

2
N(Az+

n , Bz+
n )

)
+ sn, z+

n = PK(zn)

for all n ≥ 0, where {sn}n≥0 is the sequence of the elements of H introduced to take
into account possible inexact computations, and the sequence {γn}n≥0 satisfies

0 ≤ γn ≤ 1 for all n ≥ 0 and
∞∑

n=0

γn = ∞.

Remark 2.1. If γn = βn = 0, αn = 1, sn = qn = pn = 0 for all n ≥ 0 and
N(u, v) = u + v for all u, v ∈ H, then Algorithm 2.1 reduces to Algorithm 3.1
in [14]. On the other hand, Algorithms 3.3 and 3.5 in [10] are special cases of
Algorithm 2.1.

Definition 2.1. Let A : H → H and N : H ×H → H be mappings.
(i) N is said to be γ-strongly monotone with respect to A in the first argument if
there exists a constant γ > 0 such that

〈N(Ax, z)−N(Ay, z), x− y〉 ≥ γ‖x− y‖2 for all x, y, z ∈ H;

(ii) N is said to be α-Lipschitz continuous in the first argument if there exists a
constant α > 0 such that

‖N(x, z)−N(y, z)‖ ≤ α‖x− y‖ for all x, y ∈ H.

(iii) A is said to be δ-Lipschitz continuous if there exists a constant δ > 0 such that

‖Ax−Ay‖ ≤ δ‖x− y‖ for all x, y ∈ H.
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It follows from (i), (ii) and (iii) that αδ ≥ γ. Similarly, we can define the
Lipschitz continuity of N in the second argument.

Definition 2.2 ([2]). Let T : H → H be a mapping and x0 ∈ H. Assume that
xn+1 = f(T, xn) define an iteration procedure which yields a sequence of points
{xn}n≥0 ⊂ H. Suppose that F (T ) = {x ∈ H : x = Tx} 6= ∅ and {xn}n≥0

converges to some u ∈ F (T ). Let {zn}n≥0 be an arbitrary sequence in H and
εn = ‖zn+1−f(T, zn)‖ for all n ≥ 0. If limn→∞ εn = 0 implies that limn→∞ zn = u,
then the iteration procedure defined by xn+1 = f(T, xn) is said to be T -stable or
stable with respect to T .

Harder and Hicks [2] proved how such a sequence {zn}n≥0 could arise in practice
and demonstrated the importance of investigating the stability of various iterative
schemes for various classes of nonlinear mappings.

Lemma 2.1 ([5]). Let {an}n≥0, {bn}n≥0 and {cn}n≥0 be nonnegative sequences
satisfying

an+1 ≤ (1− tn)an + tnbn + cn, ∀n ≥ 0,

where {tn}n≥0 ⊂ [0, 1],
∑∞

n=0 tn = ∞, limn→∞ bn = 0 and
∑∞

n=0 cn < ∞. Then
limn→∞ an = 0.

3. Main results

We now study the existence and uniqueness of solution of the generalized non-
linear complementarity problem (2.1) and establish the convergence and stability
of iterative sequence of generated by Algorithm 2.1.

Theorem 3.1. Let A,B : H → H be δ-Lipschitz continuous and η-Lipschitz con-
tinuous, respectively. Let N : H × H → H be α-Lipschitz continuous in the first
argument and β-Lipschitz continuous in the second argument, and γ-strongly mono-
tone with respect to A in the first argument. Assume that

(3.1) lim
n→∞

βn‖sn‖ = lim
n→∞

‖qn‖ = 0,

and one of the conditions (3.2) and (3.3) holds:

(3.2)
∞∑

n=0

‖pn‖ < ∞;

there exists a nonnegative sequence {dn}n≥0 such that

(3.3) ‖pn‖ = dnαn for all n ≥ 0 and lim
n→∞

dn = 0.

Suppose that there exists a positive constant ρ satisfying

(3.4) ρβη < 2

and one of the following conditions

βη < γ, ρ < 4
γ − βη

α2δ2 − β2η2
,(3.5)

αδ < βη, ρ > 4
βη − γ

β2η2 − α2δ2
.(3.6)

Then the mapping G defined by (2.5) and (2.6) satisfies that

‖G(x)−G(y)‖ ≤ (1− t(1− θ))‖x− y‖ for all x, y ∈ H,

where

(3.7) θ =
1
2
ρβη +

√
1− ργ +

1
4
ρ2α2δ2.
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Moreover, G has a unique fixed point z ∈ H and the sequence {zn}n≥0 generated
by Algorithm 2.1 converges strongly to z.

Proof. Let x, y be arbitrary elements in H. Since N is α-Lipschitz continuous, β-
Lipschitz continuous in the second argument, and γ-strongly monotone with respect
to A in the first argument, A and B are δ-Lipschitz continuous and η-Lipschitz
continuous, respectively, it follows that

‖x+ − y+ − 1
2
ρ(N(Ax+, Bx+)−N(Ay+, Bx+))‖2

= ‖x+ − y+‖2 − ρ〈N(Ax+, Bx+)−N(Ay+, Bx+), x+ − y+〉

+
1
4
ρ2‖N(Ax+, Bx+)−N(Ay+, Bx+)‖2

≤ (1− ργ +
1
4
ρ2α2δ2)‖x+ − y+‖2

(3.8)

and

(3.9) ‖N(Ay+, Bx+)−N(Ay+, By+)‖ ≤ βη‖x+ − y+‖.
In view of (2.5), (2.6), (3.7)-(3.9) and the nonexpansivity of PK , we deduce that

‖G(x)−G(y)‖

= ‖(1− t)(x+ − y+) + t[x+ − y+ − 1
2
ρ(N(Ax+, Bx+)−N(Ay+, By+))]‖

≤ (1− t)‖x+ − y+‖+ t‖x+ − y+ − 1
2
ρ(N(Ax+, Bx+)−N(Ay+, Bx+))‖

+
1
2
tρ‖N(Ay+, Bx+)−N(Ay+, By+)‖

≤ (1− t + t

√
1− ργ +

1
4
ρ2α2δ2 +

1
2
tρβη)‖x+ − y+‖

= (1− t(1− θ))‖PK(x)− PK(y)‖
≤ (1− t(1− θ))‖x− y‖.

Notice that (3.4) and (3.7) mean that

θ < 1 ⇔ 1− ργ +
1
4
ρ2α2δ2 < 1− ρβη +

1
4
ρ2β2η2

⇔ 1
4
ρ2(α2δ2 − β2η2) < ρ(γ − βη).

(3.10)

Now we consider the following three cases:
Case 1. Suppose that βη < γ. Note that αδ ≥ γ. Then (3.10) implies that

θ < 1 ⇔ ρ < 4
γ − βη

α2δ2 − β2η2
.

Case 2. Suppose that βη = γ. Since αδ ≥ γ, it follows from (3.10) that

θ < 1 ⇔ 0 ≤ 1
4
ρ2(α2δ2 − β2η2) < ρ(γ − βη) = 0,

which is a contradiction.
Case 3. Suppose that βη > γ. If αδ ≥ βη, then (3.10) means that

θ < 1 ⇔ 0 ≤ 1
4
ρ2(α2δ2 − β2η2) < ρ(γ − βη) < 0,

which is impossible. Hence αδ < βη. According to (3.10), we know that

θ < 1 ⇔ ρ > 4
βη − γ

β2η2 − α2δ2
.
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Thus θ < 1 is equivalent to (3.5) and (3.6). It follows from (3.5), (3.6) and t ∈ (0, 1]
that 1− t(1− θ) < 1. Hence G has a unique fixed point z ∈ H and

z = (1− γn)z+ + γn

(
z+ − ρ

2
N(Az+, Bz+)

)

= (1− βn)z+ + βn

(
z+ − ρ

2
N(Az+, Bz+)

)

= (1− αn)z+ + αn

(
z+ − ρ

2
N(Az+, Bz+)

)
,

(3.11)

where z+ = PK(z). By virtue of (2.7), (3.8), (3.9) and (3.11), we infer that

‖xn − z‖ = ‖(1− γn)(z+
n − z+)

+ γn[z+
n − z+ − 1

2
ρ(N(Az+

n , Bz+
n )−N(Az+, Bz+))] + sn‖

≤ (1− γn)‖z+
n − z+‖+ γn‖z+

n − z+

− 1
2
ρ(N(Az+

n , Bz+
n )−N(Az+, Bz+

n ))]‖

+
1
2
γnρ‖N(Az+, Bz+

n )−N(Az+, Bz+)‖+ ‖sn‖
≤ (1− γn)‖z+

n − z+‖+ γnθ‖z+
n − z+‖+ ‖sn‖

= (1− γn(1− θ))‖PK(zn)− PK(z)‖+ ‖sn‖
≤ (1− γn(1− θ))‖zn − z‖+ ‖sn‖
≤ ‖zn − z‖+ ‖sn‖.

Similarly, we have

‖yn − z‖ ≤ (1− βn)‖z+
n − z+‖+ βnθ‖x+

n − z+‖+ ‖qn‖
≤ (1− βn(1− θ))‖zn − z‖+ βn‖sn‖+ ‖qn‖
≤ ‖zn − z‖+ βn‖sn‖+ ‖qn‖

and
‖zn+1 − z‖ ≤ (1− αn)‖z+

n − z+‖+ αnθ‖y+
n − z+‖+ ‖pn‖

≤ (1− αn(1− θ))‖zn − z‖+ αn(βn‖sn‖+ ‖qn‖) + ‖pn‖.
(3.12)

Suppose that (3.2) holds. Set an = ‖zn − z‖, bn = (1 − θ)−1(βn‖sn‖ + ‖qn‖),
cn = ‖pn‖ and tn = (1 − θ)αn for all n ≥ 0. It follows from (2.8), (3.1), (3.2) and
Lemma 2.1 that limn→∞ zn = z.

Suppose that (3.3) holds. Put an = ‖zn−z‖, bn = (1−θ)−1(βn‖sn‖+‖qn‖+dn),
cn = 0 and tn = (1−θ)αn for all n ≥ 0. According to (2.8), (3.1), (3.3) and Lemma
2.1, we conclude that limn→∞ zn = z. ¤

Remark 3.1. Under the assumptions of Theorem 3.1, we know that the general-
ized nonlinear complementarity problem (2.1) has a unique solution u = PK(z) =
limn→∞ PK(zn), where z is the unique fixed point of G and {zn}n≥0 satisfies (2.7).

Remark 3.2. Theorem 3.1 extends Theorem 4.3 of Noor [10] and Theorem 3.1 of
Noor and Al-Said [14] in the following ways:

(i) the strongly nonlinear complementarity problem in [10] and the generalized
strongly nonlinear complementarity problem in [14] are replaced by the more general
generalized nonlinear complementarity problem;

(ii) Algorithm 3.3 in [10] and Algorithm 3.1 in [14] are replaced by the more
general Algorithm 3.1;

(iii) the conditions (3.1)-(3.6) are weaker than the conditions used in [10] and
[14].
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Theorem 3.2. Let N and θ be as in Theorem 3.1 and (3.1) hold. Suppose that

(3.13) lim
n→∞

‖pn‖ = 0

an there exists a constant s ∈ (0, 1) such that

(3.14) αn ≥ s for all n ≥ 0.

Let {An}n≥0 be an arbitrary sequence in H and define {εn}n≥0 ⊂ [0,+∞) by

εn = ‖An+1 − [(1− αn)A+
n + αn(B+

n − 1
2
ρN(AB+

n , BB+
n )) + pn]‖,

B+
n = PK(Bn),

Bn = (1− βn)A+
n + βn(C+

n − 1
2
ρN(AC+

n , BC+
n )) + qn, C+

n = PK(Cn),

Cn = (1− γn)A+
n + γn(A+

n −
1
2
ρN(AA+

n , BA+
n )) + sn, A+

n = PK(An)

(3.15)

for all n ≥ 0. If there exists a constant ρ > 0 satisfying (3.4) and one of (3.5)
and (3.6), then the mapping G defined by (2.5) and (2.6) has a unique fixed point
z ∈ H, the sequence {zn}n≥0 generated by Algorithm 2.1 converges strongly to z
and limn→∞An = z if and only if limn→∞ εn = 0.

Proof. Let dn = ‖pn‖α−1
n for all n ≥ 0. Then (3.13) and (3.14) yield that (3.3)

holds. It follows from Theorem 3.1 that G has a unique fixed point z ∈ H and
limn→∞ zn = z. As in the proof of Theorem 3.1, by (3.11) and (3.15) we obtain
that

‖(1− αn)A+
n + αn(B+

n − 1
2
ρN(AB+

n , BB+
n )) + pn − z‖

≤ (1− αn)‖A+
n − z+‖+ αn‖B+

n − z+

− 1
2
ρ(N(AB+

n , BB+
n )−N(Az+, BB+

n ))‖

+
1
2
αnρ‖N(Az+, BB+

n )−N(Az+, Bz+)‖+ ‖pn‖
≤ (1− αn)‖A+

n − z+‖+ αnθ‖B+
n − z+‖+ ‖pn‖

= (1− αn)‖PK(An)− PK(z)‖+ αnθ‖PK(Bn)− PK(z)‖+ ‖pn‖
≤ (1− αn)‖An − z‖+ αnθ‖Bn − z‖+ ‖pn‖,

(3.16)

and
‖Bn − z‖ ≤ (1− βn)‖An − z‖+ βnθ‖Cn − z‖+ ‖qn‖,
‖Cn − z‖ ≤ (1− γn)‖An − z‖+ γnθ‖An − z‖+ ‖sn‖.

(3.17)

Substituting (3.17) into (3.16), by (3.14) we have

‖(1− αn)A+
n + αn(B+

n − 1
2
ρN(AB+

n , BB+
n )) + pn − z‖

≤ (1− αn(1− θ))‖An − z‖+ αn(βn‖sn‖+ ‖qn‖) + ‖pn‖
≤ (1− s(1− θ))‖An − z‖+ βn‖sn‖+ ‖qn‖+ ‖pn‖.

(3.18)

Suppose that limn→∞An = z. Then (3.1), (3.13), (3.14) and (3.18) ensure that

εn ≤ ‖An+1 − z‖+ ‖(1− αn)A+
n + αn(B+

n − 1
2
ρN(AB+

n , BB+
n )) + pn − z‖

≤ ‖An+1 − z‖+ (1− s(1− θ))‖An − z‖+ βn‖sn‖+ ‖qn‖+ ‖pn‖ → 0

as n →∞. That is, limn→∞ εn = 0.
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Conversely, suppose that limn→∞ εn = 0. Then (3.14), (3.15) and (3.18) imply
that

‖An+1 − z‖ ≤ εn + ‖(1− αn)A+
n + αn(B+

n

− 1
2
ρN(AB+

n , BB+
n )) + pn − z‖

≤ (1− s(1− θ))‖An − z‖+ βn‖sn‖+ ‖qn‖+ ‖pn‖+ εn.

(3.19)

Put an = ‖An − z‖, bn = s−1(1 − θ)−1(βn‖sn‖ + ‖qn‖ + ‖pn‖ + εn), cn = 0 and
tn = s(1− θ) for all n ≥ 0. It follows from (3.1), (3.13),(3.19) and Lemma 2.1 that
limn→∞An = z. ¤
Remark 3.3. Theorem 3.2 reveals that the iterative sequence generated by Algo-
rithm 2.1 is G-stable, where G is defined by (2.5).

Acknowledgment. The authors would like to thank the referee for his many
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