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ON THE CONJECTURE OF GÁT

USHANGI GOGINAVA

Abstract. In 2001 Gát conjectured that the integral of the maximal function
of the Walsh –Kaczmarz –Fejér kernels to the pth power with 0 < p < 1 is
finite. We give positive answer to the question.

Let P denote the set of positive integers, N = P
⋃{0} the set of nonnegative

integers and Z2 the discrete cyclic group of order 2. That is, Z2 = {0, 1} the group
operation is the mod 2 addition and every subset is open. Set

G :=
∞×

k=0
Z2

the complete direct product. Thus, every x ∈ G can be represented by a sequence
x = (xi, i ∈ N), where xi ∈ {0, 1}, i ∈ N .

The group operation on G is the coordinate-wise addition. The compact Abelian
group G is called the Walsh group. A base for the neighborhoods of G can be given
as follows

I0(x) = G, In(x) = {y = (yi, i ∈ G : yi = xi for i < n}.
Let n ∈ N . Then n =

∑∞
i=0 ni2i, where ni ∈ Z2 Denote by

|n| = max(j ∈ N : nj 6= 0,

that is, 2|n| ≤ n < 2|n|+1. The Rademacher functions are defined as

rn(x) = (−1)xn (x ∈ G,n ∈ N).

The Walsh – Paley system is defined as the set of Walsh – Paley function

ωn(x) =
∞∏

k=0

(rk(x))nk , (x ∈ G,n ∈ N).

The nth Walsh – Kaczmarz functions is

κn(x) = r|n|(x)
|n|−1∑

i=0

(r|n|−1−i(x))ni

for n ∈ P, κ0(x) = 1, x ∈ G. The Walsh –Kaczmarz system κn, n ∈ N can be
obtained from the Walsh – Paley system by renumbering the functions with in the
dyadic “block” with indices from the segment [2n, 2n+1). That is,

{κn : 2i ≤ n < 2i+1} = { ωn : 2i ≤ n < 2i+1}
for all n ∈ N . By means of the transformation τA : G → G

τA(x) = (xA−1, xA−2, . . . , x1, x0, xA, xA+1, . . .) ∈ G,
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which is clear measure preserving and such that τA(τA(x)) = x we have

κn(x) = r|n|(x)ωn(τ|n|(x))(n ∈ N).

Let us consider the Dirichlet and the Fejér kernel functions:

Dα
n =

n−1∑

j=0

αj , Kα
n =

1
n

n∑

j=1

Dj

where α is either κ or κ and n ∈ P .
Fine [1] proved every Walsh – Paley-Fourier series is a.e. (C, β) summable for

β > 0. Schipp [10] gave a simpler proof for the case β = 1. The theorem of Schipp
are generalized by Taibleson [13], Pál and Simon [9], Gát [4] and Weisz [14].

Skvorcov [12] proved for continuous function f , that Fejér means converges uni-
formly to f . Gát proved [6] for integrable functions that the Fejér means(with
respect to the Walsh – Kaczmarz system) converges a.e. to the function. The con-
ception of quasi-locality is introduced by Schipp [11]. Behind most of the proof
of the preceding result (except the Walsh – Kaczmarz case [7]) there is the quasi-
locality of the maximal function of the Fejér means. The quasi-locality is the
consequence of the following lemma

Lemma. ∫

G\Ik

sup
|n|≥A

|Kω
n (x)|dx ≤

√
2A−k,

for all A ≥ k.

Consequently,
∫

G\Ik
sup|n|∈N |Kω

n (x)|dx ≤ ∞ for all k ∈ N . The proof of this
lemma can be found for the Walsh –Paley system in [5], for the Vilenkin system
in [2] and for the character system of the group of 2-adic integers in [4]. In [7]
Gát proved that this lemma does not hold for the Walsh –Kaczmarz system and
he conjectured that the integral of the maximal function of the Walsh – Kaczmarz –
Fejér kernel to the pth power is finite with 0 < p < 1. In this paper we give positive
answer to the question.

Theorem. Let p ∈ (0, 1). Then
∫

G\Ik

sup
|n|∈N

|Kκ
n(x)|pdx < ∞.

Proof. It is shown in [11] that

Kω
2n(x) ≤ c

n∑

j=0

2j−nD2n(x⊕ 2−j−1).

Applying the inequality

(1)

( ∞∑

k=1

ak

)p

≤
∞∑

k=1

ap
k (ak ≥ 0, 0 < p ≤ 1)

and from

(2) D2n (x) =
{

2n, if x ∈ In(x),
0, if x /∈ In(x),

we have

(3)
∫

G

(2n|Kω
2n(x)|)pdx ≤ c

n∑

j=0

2jp

∫

G

Dp
2n(x⊕ 2−j−1) ≤ c2n(2p−1).
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First we prove that

(4)
∫

G

sup
n∈N

|Kκ
2n(x)|pdx < ∞, 0 < p < 1.

Skvorcov in [12] proved that for any n ∈ P and x ∈ G

2nKκ
2n(x) = 1 +

n−1∑

i=0

2iD2i(x) +
n−1∑

i=0

2iri(x)Kω
2i(τi(x)).

Then from (1) and (2) we have
∫

G

sup
n∈N

|Kκ
2n(x)|pdx ≤

∞∑
ν=1

∫

G

|Kκ
2ν (x)|pdx

≤
∞∑

ν=1

1
2νp

∫

G

1dx +
∞∑

ν=1

1
2νp

ν−1∑

i=1

2ip

∫

G

Dp
2i(x)dx

+
∞∑

ν=1

1
2νp

ν−1∑

i=0

2ip

∫

G

|Kω
2i(τi(x))|pdx

≤ Cp + Cp

∞∑
ν=1

1
2νp

ν−1∑

i=0

2(2p−1)i < Cp < ∞.

(5)

which proves (4).
Since [12]

nKκ
n(x) = 2|n|Kk

2|n|(x) + (n− 2|n|)D2|n|(x)

+ (n− 2|n|)rn(x)Kω
n−2|n|(τ|n|(x))

and [8]

(n− 2|n|)|Kω
n−2|n|(u)| ≤ 3

|n|∑

j=0

2jK2j (u),

from (4) we obtain
∫

G

sup
n≥1

|Kk
n(x)|pdx ≤

∫

G

sup
n∈N

|Kk
2n(x)|pdx

+
∞∑

ν=1

∫

G

Dp
2ν (x)dx +

∞∑
ν=1

1
2νp

ν∑

j=0

∫

G

(2jK2j (x))pdx

≤ Cp +
∞∑

ν=1

1
2ν(1−p)

+
∞∑

ν=1

1
2νp

ν∑

j=0

2j(2p−1) ≤ Cp < ∞.

Theorem is proved. ¤
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