```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
20 (2004), 31-37
www.emis.de/journals
```


STARLIKE AND CONVEX FUNCTIONS WITH RESPECT TO CONJUGATE POINTS

V. RAVICHANDRAN

Abstract

An analytic functions $f(z)$ defined on $\triangle=\{z:|z|<1\}$ and normalized by $f(0)=0, f^{\prime}(0)=1$ is starlike with respect to conjugate points if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)+\bar{f}(\bar{z})}\right\}>0, z \in \triangle$. We obtain some convolution conditions, growth and distortion estimates of functions in this and related classes.

1. Introduction

Let \mathcal{A} denote the class of all analytic functions defined in the unit disk

$$
\triangle=\{z:|z|<1\}
$$

and normalized by $f(0)=0=f^{\prime}(0)-1$. Let $S^{*}(\alpha), C(\alpha)$ and $K(\alpha)$ denote the classes of starlike, convex and close to convex functions of order $\alpha, 0 \leq \alpha<1$, respectively. A function $f \in \mathcal{A}$ is starlike with respect to symmetric points in \triangle if for every r close to $1, r<1$ and every z_{0} on $|z|=r$ the angular velocity of $f(z)$ about $f\left(-z_{0}\right)$ is positive at $z=z_{0}$ as z traverses the circle $|z|=r$ in the positive direction. This class was introduced and studied by Sakaguchi[7]. He proved that the condition is equivalent to

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, z \in \triangle
$$

A function $f \in \mathcal{A}$ is starlike with respect to conjugate points in \triangle if f satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)+\bar{f}(\bar{z})}\right\}>0, \quad z \in \triangle
$$

A function $f \in \mathcal{A}$ is starlike with respect to symmetric conjugate points in \triangle if it satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-\bar{f}(-\bar{z})}\right\}>0, z \in \triangle
$$

Denote the classes consisting of these functions by S_{c}^{*} and $S_{s c}^{*}$ respectively. These classes were introduced by El-Ashwah and Thomas[1]. The functions in these classes are close to convex and hence univalent. Sokol [11] introduced two more parameter in this class and obtained structural formula, the coefficient estimate, the radius of convexity and results about the neighborhoods of functions. See also Sokol [12].

If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then the convolution of $f(z)$ and $g(z)$, denoted by $(f * g)(z)$, is the analytic function given by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

[^0]The function $f(z)$ is subordinate to $F(z)$ in the disk Δ if there exits an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=F(w(z))$ for $|z|<1$. This is written as $f(z) \prec F(z)$. Notice that $f \in S^{*}(\alpha)$ if and only if

$$
z f^{\prime}(z) / f(z) \prec(1+(1-2 \alpha) z) /(1-z)
$$

and $f \in C(\alpha)$ if and only if $f * g \in S^{*}(\alpha)$ where $g(z)=z /(1-z)^{2}$. This enables to obtain results about the convex class from the corresponding result of starlike class. Let $h(z)$ be analytic and $h(0)=1$. A function $f \in \mathcal{A}$ is in the class $S^{*}(h)$ if

$$
\frac{z f^{\prime}(z)}{f(z)} \prec h(z), z \in \triangle .
$$

The class $S^{*}(h)$ and a corresponding convex class $C(h)$ was defined by Ma and Minda[3]. But results about the convex class can be obtained easily from the corresponding result of functions in $S^{*}(h)$.

If $\phi(z)=(1+z) /(1-z)$, then the classes reduce to the usual classes of starlike and convex functions. If $\phi(z)=(1+(1-2 \alpha) z) /(1-z), 0 \leq \alpha<1$, then the classes reduce to the usual classes of starlike and convex functions of order α. If $\phi(z)=[(1+z) /(1-z)]^{\alpha}, 0<\alpha \leq 1$, then the classes reduce to the classes of strongly starlike and convex functions of order α. If $\phi(z)=(1+A z) /(1+B z)$, $-1 \leq B<A \leq 1$, then the classes reduce to the classes $S^{*}[A, B]$ and $C[A, B]$.

Definition 1. A function $f \in \mathcal{A}$ is in the class $S_{s}^{*}(\phi)$ if

$$
\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \prec \phi(z), z \in \triangle
$$

and is in the class $C_{s}(\phi)$ if

$$
\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)+f^{\prime}(-z)} \prec \phi(z), z \in \triangle .
$$

Let $S_{c}^{*}(\phi), S_{s c}^{*}(\phi)$ denote the corresponding classes of starlike functions with respect to conjugate points and symmetric conjugate points respectively.

The functions $k_{\phi n}(n=2,3, \ldots)$ defined by $k_{\phi n}(0)=k_{\phi n}^{\prime}(0)-1=0$ and

$$
1+\frac{z k_{\phi n}^{\prime \prime}(z)}{k_{\phi n}^{\prime}(z)}=\phi\left(z^{n-1}\right)
$$

are examples of functions in $C(\phi)$. The functions $h_{\phi n}$ satisfying $z k_{\phi n}^{\prime}(z)=h_{\phi n}$ are examples of functions in $S^{*}(\phi)$. The odd functions in $S^{*}(\phi)(C(\phi))$ are in the class $S_{s}^{*}(\phi)\left(C_{s}(\phi)\right)$. The function with real coefficient belonging to $S^{*}(\phi)(C(\phi))$ are in the class $S_{c}^{*}(\phi)\left(C_{c}(\phi)\right)$. Similarly, the odd function with real coefficient belonging to $S^{*}(\phi)(C(\phi))$ are in the class $S_{s c}^{*}(\phi)\left(C_{s c}(\phi)\right)$.

In this paper, we obtain convolution conditions, growth and distortion inequalities for functions in our classes. Also we prove a convolution result.

2. Convolutions Conditions

Let $\mathcal{P}=\{p=1+c z+\cdots \mid \operatorname{Re} p(z)>0\}$.
Theorem 1. Let $f \in \mathcal{A}, \phi \in \mathcal{P}$ and $\phi(z)=1 / q(z)$. Then $f \in S^{*}(\phi)$ if and only if

$$
\frac{1}{z}\left[f(z) *\left(\frac{z+z^{2} /\left(q\left(e^{i \theta}\right)-1\right)}{(1-z)^{2}}\right)\right] \neq 0
$$

for all $z \in \triangle$ and $0 \leq \theta<2 \pi$.

Proof. Since $\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z)$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)} \neq \phi\left(e^{i \theta}\right)
$$

it follows that

$$
\frac{1}{z}\left(z f^{\prime}(z)-f(z) \phi\left(e^{i \theta}\right)\right) \neq 0
$$

for $z \in \triangle$ and $0 \leq \theta<2 \pi$. Since $z f^{\prime}(z)=f * \frac{z}{(1-z)^{2}}$ and $f(z)=f(z) * \frac{z}{1-z}$, the above inequality is equivalent to

$$
\frac{1}{z}\left[f *\left(\frac{z}{(1-z)^{2}}-\frac{\phi\left(e^{i \theta}\right) z}{1-z}\right)\right] \neq 0
$$

which proves the result.
Corollary 1. Let $f \in \mathcal{A}, \phi \in \mathcal{P}$ and $\phi(z)=1 / q(z)$. Then $f \in C(\phi)$ if and only if

$$
\frac{1}{z}\left[f(z) *\left(\frac{z+\left(1+\frac{2}{q\left(e^{i \theta}\right)-1}\right) z^{2}}{(1-z)^{3}}\right)\right] \neq 0
$$

for all $z \in \triangle$ and $0 \leq \theta<2 \pi$.
We state the following theorems without proof.
Theorem 2. Let $f \in \mathcal{A}$ and $\phi \in \mathcal{P}$. Then $f \in S_{s}^{*}(\phi)$ if and only if

$$
\frac{1}{z}\left(f * h_{\theta}\right)(z) \neq 0
$$

where

$$
h_{\theta}(z)=\frac{z+\frac{1+\phi\left(e^{i \theta}\right)}{1-\phi\left(e^{i \theta}\right)} z^{2}}{(1-z)^{2}(1+z)}
$$

for all $z \in \triangle$ and $0 \leq \theta<2 \pi$.
Corollary 2. Let $f \in \mathcal{A}$ and $\phi \in \mathcal{P}$. Then $f \in C_{s}(\phi)$ if and only if

$$
\frac{1}{z}\left(f * k_{\theta}\right)(z) \neq 0
$$

where $k_{\theta}=z h_{\theta}^{\prime}(z), h_{\theta}(z)$ is as in the previous Theorem, for all $z \in \triangle$ and

$$
0 \leq \theta<2 \pi
$$

Theorem 3. Let $f \in \mathcal{A}$ and $\phi \in \mathcal{P}$. Then $f \in S_{c}^{*}(\phi)$ if and only if

$$
\frac{1}{z}\left[\left(f * g_{\theta}\right)(z)+\overline{\left(f * e_{\theta}\right)(\bar{z})}\right] \neq 0
$$

where

$$
g_{\theta}(z)=\frac{2 z-\phi\left(e^{i \theta}\right) z(1-z)}{(1-z)^{2}}, e_{\theta}=\frac{\phi\left(e^{-i \theta}\right) z}{1-z}
$$

for all $z \in \triangle$ and $0 \leq \theta<2 \pi$.
Theorem 4. Let $f \in \mathcal{A}$ and $\phi \in \mathcal{P}$. Then $f \in S_{s c}^{*}(\phi)$ if and only if

$$
\frac{1}{z}\left[\left(f * g_{\theta}\right)(z)-\overline{\left(f * e_{\theta}\right)(\overline{-z})}\right] \neq 0
$$

where

$$
g_{\theta}(z)=\frac{2 z-\phi\left(e^{i \theta}\right) z(1-z)}{(1-z)^{2}}, e_{\theta}=\frac{\phi\left(e^{-i \theta}\right) z}{1-z}
$$

for all $z \in \triangle$ and $0 \leq \theta<2 \pi$.

Similar results are true for the classes $C_{c}(\phi), C_{s c}(\phi)$.
In particular, if $\phi(z)=(1+A z) /(1+B z),-1 \leq B<A \leq 1$, then the following results of Silverman and Silvia[10] are obtained as special cases of the previous Theorems.

Corollary 3 ([10]). $f \in S^{*}[A, B]$ if and only if for all $z \in \triangle$ and all ζ, with $|\zeta|=1$,

$$
\frac{1}{z}\left[f * \frac{z+\frac{\zeta-A}{A-B} z^{2}}{(1-z)^{2}}\right] \neq 0
$$

Corollary 4 ([10]). $f \in C[A, B]$ if and only if for all $z \in \triangle$ and all ζ, with $|\zeta|=1$,

$$
\frac{1}{z}\left[f * \frac{z+\frac{2 \zeta-A-B}{A-B} z^{2}}{(1-z)^{3}}\right] \neq 0
$$

3. Growth, Distortion and Covering Theorems

For the purpose of this section, assume that the function $\phi(z)$ is an analytic function with positive real part in the unit disk $\triangle, \phi(\triangle)$ is convex and symmetric with respect to the real axis, $\phi(0)=1$ and $\phi^{\prime}(0)>0$. The functions $k_{\phi n}(n=$ $2,3, \ldots)$ defined by $k_{\phi n}(0)=k_{\phi n}^{\prime}(0)-1=0$ and

$$
1+\frac{z k_{\phi n}^{\prime \prime}(z)}{k_{\phi n}^{\prime}(z)}=\phi\left(z^{n-1}\right)
$$

are important examples of functions in $C(\phi)$. The functions $h_{\phi n}$ satisfying $z k_{\phi n}^{\prime}(z)=$ $h_{\phi n}$ are examples of functions in $S^{*}(\phi)$. Write $k_{\phi 2}$ simply as k_{ϕ} and $h_{\phi 2}$ simply as h_{ϕ}.

Theorem $5([3])$. Let $\min _{|z|=r}|\phi(z)|=\phi(-r), \max _{|z|=r}|\phi(z)|=\phi(r),|z|=r$. If $f \in C(\phi)$, then
(i) $k_{\phi}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq k_{\phi}^{\prime}(r)$
(ii) $-k_{\phi}(-r) \leq|f(z)| \leq k_{\phi}(r)$
(iii) $f(\triangle) \supset\left\{w:|w| \leq-k_{\phi}(-1)\right\}$.

The results are sharp.
If $f(z)=z+a_{k+1} z^{k+1}+\ldots \in C(\phi)$, then we can prove that

$$
\left[k_{\phi}^{\prime}\left(-r^{k}\right)\right]^{1 / k} \leq\left|f^{\prime}(z)\right| \leq\left[k_{\phi}^{\prime}\left(r^{k}\right)\right]^{1 / k} .
$$

See [2].
We prove the following
Theorem 6. Let $\min _{|z|=r}|\phi(z)|=\phi(-r), \max _{|z|=r}|\phi(z)|=\phi(r),|z|=r$. If $f \in C_{c}(\phi)$, then
(i) $k_{\phi}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq k_{\phi}^{\prime}(r)$
(ii) $-k_{\phi}(-r) \leq|f(z)| \leq k_{\phi}(r)$
(iii) $f(\triangle) \supset\left\{w:|w| \leq-k_{\phi}(-1)\right\}$.

The results are sharp.
Proof. Since $f \in C_{c}(\phi)$ and ϕ is convex and symmetric with respect to real axis, it follows that $g(z)=[f(z)+\bar{f}(\bar{z})] / 2$ is in $C(\phi)$. Since $g \in C(\phi)$, it follows that $g^{\prime}(z) \prec k_{\phi}^{\prime}(z)$. Now,

$$
\begin{aligned}
r k_{\phi}^{\prime}(-r)=k_{\phi}^{\prime}(-r)-r k_{\phi}^{\prime \prime}(-r) & \leq k_{\phi}^{\prime}(-r) \phi(-r) \\
& \leq\left|\left(z f^{\prime}(z)\right)^{\prime}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left(z f^{\prime}(z)\right)^{\prime}\right| & =\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} g^{\prime}(z)\right| \\
& \leq \phi(r) k_{\phi}^{\prime}(r)=k_{\phi}^{\prime}(r)+r k_{\phi}^{\prime \prime}(r) \\
& \leq\left(r k_{\phi}(r)\right)^{\prime}
\end{aligned}
$$

By integrating from 0 to r, it follows that

$$
k_{\phi}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq k_{\phi}^{\prime}(r) .
$$

Part (ii) follows from (i). Also part (iii) follows from part (ii), since $-k_{\phi}(-r)$ is increasing in $(0,1)$ and bounded by 1 . Here $-k_{\phi}(-1)=\lim _{r \rightarrow 1}-k_{\phi}(-r)$.

The results are sharp for the function $f(z)=k_{\phi}(z) \in C_{c}(\phi)$ since it has real coefficients and is in $C(\phi)$.

Theorem 7. Let $\min _{|z|=r}|\phi(z)|=\phi(-r), \max _{|z|=r}|\phi(z)|=\phi(r),|z|=r$. If $f \in S_{c}^{*}(\phi)$, then
(i) $h_{\phi}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq h_{\phi}^{\prime}(r)$
(ii) $-h_{\phi}(-r) \leq|f(z)| \leq h_{\phi}(r)$
(iii) $f(\triangle) \supset\left\{w:|w| \leq-h_{\phi}(-1)\right\}$.

The results are sharp.
Proof. Part (i) follows from above Theorem and the fact $z f^{\prime} \in S_{c}^{*}(\phi)$ if and only if $f \in C_{c}(\phi)$. Let

$$
p(z)=\frac{2 z f^{\prime}(z)}{f(z)+\bar{f}(\bar{z})}=\frac{z f^{\prime}(z)}{g(z)}
$$

where $g(z)=[f(z)+\bar{f}(\bar{z})] / 2$. Since $g \in S^{*}(\phi)$, and hence,

$$
-h_{\phi}(-r) \leq|g(z)| \leq h_{\phi}(r)
$$

Therefore, for $|z|=r<1$,

$$
h_{\phi}^{\prime}(-r)=\frac{\phi(-r) h_{\phi}(-r)}{-r} \leq\left|p(z) \frac{g(z)}{z}\right|=\left|f^{\prime}(z)\right| \leq \frac{\phi(r) h_{\phi}(r)}{r}=h_{\phi}(r) .
$$

This proves (ii). The other part follows easily.
Similar theorems are true for the classes of functions with respect to symmetric conjugate points.

Theorem 8. Let $\min _{|z|=r}|\phi(z)|=\phi(-r), \max _{|z|=r}|\phi(z)|=\phi(r),|z|=r$. If $f \in C_{s}(\phi)$, then

$$
\frac{1}{r} \int_{0}^{r} \phi(-r)\left[k_{\phi}^{\prime}\left(-r^{2}\right)\right]^{1 / 2} d r \leq\left|f^{\prime}(z)\right| \leq \frac{1}{r} \int_{0}^{r} \phi(r)\left[k_{\phi}^{\prime}\left(r^{2}\right)\right]^{1 / 2} d r
$$

The other results for this class may be obtained easily and hence omitted.
Proof. The function $g(z)=[f(z)-f(-z)] / 2=z+a_{3} z^{3}+\ldots$ is in $C(\phi)$. Then the result follows easily.

The following theorem gives a growth and distortion estimate for functions subordinate to starlike functions with respect to conjugate points.

Theorem 9. If $f(z)$ is starlike with respect to conjugate points in \triangle and $g(z) \prec$ $f(z)$, then

$$
|g(z)| \leq \frac{r}{(1-r)^{2}} \text { and }\left|g^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{3}}
$$

for $|z|=r<1$.

Proof. Since $g(z) \prec f(z)$ implies $g(z)=f(w(z))$ for some analytic function $w(z)$ with $|w(z)| \leq|z|$,

$$
|g(z)|=|f(w(z))| \leq \frac{|w(z)|}{(1-|w(z)|)^{2}} \leq \frac{r}{(1-r)^{2}}
$$

for $|z|=r<1$.
To prove the other inequality, note that

$$
g^{\prime}(z)=f^{\prime}(w(z)) w^{\prime}(z)
$$

and

$$
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}}
$$

Now, for $|z|=r<1$,

$$
\begin{aligned}
\left|g^{\prime}(z)\right| & =\left|f^{\prime}(w(z))\right|\left|w^{\prime}(z)\right| \\
& \leq \frac{1+|w(z)|}{(1-|w(z)|)^{3}} \frac{1-|w(z)|^{2}}{1-|z|^{2}} \\
& =\left[\frac{1+|w(z)|}{1-|w(z)|}\right]^{2} \frac{1}{1-|z|^{2}} \\
& \leq \frac{1+r}{(1-r)^{3}}
\end{aligned}
$$

Theorem 10. If $f(z)$ is starlike with respect to symmetric conjugate points in \triangle and $g(z) \prec f(z)$, then

$$
|g(z)| \leq \frac{r}{(1-r)^{2}} \text { and }\left|g^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{3}}
$$

for $|z|=r<1$.

4. Convolution Theorems

Let $\alpha \leq 1$. The class R_{α} of prestarlike functions of order α consists of functions $f(z) \in \mathcal{A}$ satisfying the following condition: For $\alpha<1$,

$$
f * \frac{z}{(1-z)^{2-2 \alpha}} \in S^{*}(\alpha)
$$

and for $\alpha=1$

$$
\operatorname{Re} \frac{f(z)}{z} \geq \frac{1}{2}, z \in \triangle
$$

To prove our results we need the following
Theorem 11. For $\alpha \leq 1$, let $f \in R_{\alpha}, g \in S^{*}(\alpha), F \in \mathcal{A}$. Then

$$
\left(\frac{f * g F}{f * g}\right)(\triangle) \subset \overline{\operatorname{Co}}(F(\triangle))
$$

where $\overline{\mathrm{Co}}(F(\triangle))$ denotes the closed convex hull of $F(\triangle)$.
Unless or otherwise stated, in this section we assume that $\phi(z)=1+c z+\ldots$ is convex, $\operatorname{Re} \phi(z)>\alpha, 0 \leq \alpha<1$. We now prove that the class of starlike functions with respect to conjugate points is closed under convolution with convex functions.

Theorem 12. Let $\phi(z)$ is convex, $\phi(0)=1, \operatorname{Re} \phi(z)>\alpha, 0 \leq \alpha<1$. If $f \in S^{*}(\phi)$, $g \in R_{\alpha}$, then $f * g \in S^{*}(\phi)$.

Proof. Since $g \in S^{*}(\phi)$, the function $F(z)=\frac{z g^{\prime}(z)}{g(z)}$ is analytic in \triangle and $F(z) \prec \phi(z)$. Also $\operatorname{Re} \phi(z)>\alpha$ implies $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha$. This means that $g \in S^{*}(\alpha)$. Let $f \in R_{\alpha}$. Then by an application of Theorem 11, we have

$$
\left(\frac{f * g F}{f * g}\right)(\triangle) \subset \overline{\operatorname{Co}}(F(\triangle))
$$

Since $\phi(z)$ is convex in \triangle and $F(z) \prec \phi(z), \overline{\operatorname{Co}}(F(\triangle)) \subset \phi(\triangle)$. Also $(f * g F)(z)=$ $\left(f * z g^{\prime}\right)(z)=z(f * g)^{\prime}(z)$. Therefore,

$$
\frac{z(f * g)^{\prime}(z)}{(f * g)(z)} \prec \phi(z)
$$

and hence $f * g \in S^{*}(\phi)$.
It should be noted that the class $C(\phi)$ is also closed under convolution with prestarlike functions of order α. This follows directly from the above result. Also the other four classes $S_{c}^{*}(\phi), C_{c}(\phi), S_{s c}^{*}(\phi) C_{s c}(\phi)$ are all closed under convolution with prestarlike functions of order α having real coefficients. We omit the details.

References

[1] R. M. El-Ashwah and D. K. Thomas. Some subclasses of close-to-convex functions. J. Ramanujan Math. Soc., 2(1):85-100, 1987.
[2] I. Graham and D. Varolin. Bloch constants in one and several variables. Pacific J. Math., 174(2):347-357, 1996.
[3] W. C. Ma and D. Minda. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, pages 157-169, Cambridge, MA, 1994. Internat. Press.
[4] M. S. Robertson. Applications of the subordination principle to univalent functions. Pacific J. Math., 11:315-324, 1961.
[5] S. Ruscheweyh. Convolutions in geometric function theory, volume 83 of Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics]. Presses de l'Université de Montréal, Montreal, Que., 1982. Fundamental Theories of Physics.
[6] S. Ruscheweyh and T. Sheil-Small. Hadamard products of Schlicht functions and the PólyaSchoenberg conjecture. Comment. Math. Helv., 48:119-135, 1973.
[7] K. Sakaguchi. On a certain univalent mapping. J. Math. Soc. Japan, 11:72-75, 1959.
[8] T. N. Shanmugam. Convolution and differential subordination. Internat. J. Math. Math. Sci., 12(2):333-340, 1989.
[9] T. N. Shanmugam and V. Ravichandran. On the radius of univalency of certain classes of analytic functions. J. Math. Phys. Sci., 28(1):43-51, 1994.
[10] H. Silverman and E. M. Silvia. Subclasses of starlike functions subordinate to convex functions. Canad. J. Math., 37(1):48-61, 1985.
[11] J. Sokół. Function starlike with respect to conjugate points. Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., 12:53-64, 1991.
[12] J. Sokół, A. Szpila, and M. Szpila. On some subclass of starlike functions with respect to symmetric points. Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., 12:65-73, 1991.
[13] J. Stankiewicz. Some remarks on functions starlike with respect to symmetric points. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 19:53-59 (1970), 1965.

Received January 20, 2003.

Department of Computer Applications,
Sri Venkateswara College of Engineering,
Pennalur 602 105,
INDIA
E-mail address: vravi@svce.ac.in

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Convex functions, starlike functions, conjugate points.

