ON EXISTING OF FILTERED MULTIPLICATIVE BASES IN GROUP ALGEBRAS

Zsolt Balogh

Abstract

We give an explicit list of all p-groups G of order at most p^{4} or 2^{5} such that the group algebra $K G$ over the field K of characteristic p has a filtered multiplicative K-basis.

1. Introduction. In [8] Kupish introduced the following definition. Let A be a finite-dimensional algebra over a field K and B a K-basis of A. Suppose that B is a K-basis of A with properties:
2. if $u, v \in B$ then either $u v=0$ or $u v \in B$;
3. $B \cap \operatorname{rad}(A)$ is a K-basis for $\operatorname{rad}(A)$, where $\operatorname{rad}(A)$ denotes the Jacobson radical of A.
Then B is called a filtered multiplicative K-basis of A.
R. Bautista, P. Gabriel, A. Roiter and L. Salmeron showed in [1] that if there are only finitely many isomorphism classes of indecomposable A-modules over an algebraically closed field K, then A has a filtered multiplicative K-basis.

In the present article we shall investigate the following question from [1]: When have the group algebras $K G$ got a filtered multiplicative K-basis?

According to Higman's theorem the group algebra $K G$ over a field of characteristic p has only finitely many isomorphism classes of indecomposable $K G$-modules if and only if all the Sylow p-subgroups of G are cyclic.

Let $G=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{s}\right\rangle$ be a finite abelian p-group with factors $\left\langle a_{i}\right\rangle$ of order q_{i}. Then the set

$$
B=\left\{\left(a_{1}-1\right)^{n_{1}}\left(a_{2}-1\right)^{n_{2}} \cdots\left(a_{s}-1\right)^{n_{s}} \quad \mid \quad 0 \leq n_{i}<q_{i}\right\}
$$

forms a filtered multiplicative K-basis of the group algebra $K G$ over the field K of characteristic p.

[^0]Evidently, if B_{1} and B_{2} are filtered multiplicative K-bases of $K G_{1}$ and $K G_{2}$, respectively, then $B_{1} \times B_{2}$ is a filtered multiplicative K-basis of the group algebra $K\left[G_{1} \times G_{2}\right]$.

First L. Paris gave examples of nonabelian metacyclic p-groups G such that group algebras $K G$ have a filtered multiplicative K-bases in [9].

In [10] P. Landrock and G.O. Michler proved that the group algebra of the smallest Janko group over a field of characteristic 2 does not have a filtered multiplicative K-basis.

In [2] the following theorem was proved:
Theorem. Let G be a finite metacyclic p-group and K a field of characteristic p. Then the group algebra KG possesses a filtered multiplicative K-basis if and only if $p=2$ and exactly one of the following conditions holds:

1. G is a dihedral group;
2. K contains a primitive cube root of the unity and G is a quaternion group of order 8.

In [3] was given all p-groups G with a cyclic subgroup of index p^{2} such that the group algebra $K G$ over the field K of characteristic p has a filtered multiplicative K-basis.

For this question negative answer was given in [3], when G is either a powerful p-group or a two generated p-group ($p \neq 2$) with central cyclic commutator subgroup.

2. Main results.

Denote C_{n} the cyclic group of order n. For the sake of convenience we shall keep the indices of these groups as in GAP. We have obtained the following theorems:

Theorem 1. Let $K G$ be the group algebra of a finite nonabel p-group G of order p^{n} over the field K of characteristic p, where $n<5$. Then $K G$ possesses a filtered multiplicative K-basis if and only if $p=2$ and one of the following conditions satisfy:

1. G is either dihedral group D_{8} of order 8 or dihedral group D_{16} of order 16;
2. G is either Q_{8} or $Q_{8} \times C_{2}$ and K contains a primitive cube root of the unity;
3. G is either $D_{8} \times C_{2}$, or the central product $D_{8} Y C_{4}$ of D_{8} with C_{4};
4. G is $H_{16}=\left\langle\quad a, c \mid \quad a^{4}=b^{2}=c^{2}=1,(a, b)=1,(a, c)=b,(b, c)=1 \quad\right\rangle$.

Theorem 2. Let K be a field of characteristic 2 and

$$
G=\left\langle\quad a, b \quad \mid \quad a^{2^{n}}=b^{2^{m}}=c^{2}=1,(a, b)=c,(a, c)=1,(b, c)=1 \quad\right\rangle
$$

with $n, m \geq 2$. Then $K G$ possesses a filtered multiplicative K-basis.

Theorem 3. Let G be the group

$$
\begin{aligned}
G=\langle\quad a, b \quad| \quad a^{2^{n}}=b^{2}=c^{2}=d^{2}=1,(a, b) & =c,(a, c)=d \\
(a, d) & =(b, c)=(b, d)=(c, d)=1 \quad\rangle
\end{aligned}
$$

with $n>1$, and K a field of characteristic 2 . Then $K G$ has no filtered multiplicative K-basis.

Theorem 4. Let $K G$ be the group algebra of a finite nonabel 2-group G of order 2^{5} over a field K of characteristic 2 . Then $K G$ possesses a filtered multiplicative K-basis if and only if one of the following conditions satisfy:

1. G is $G_{18}=D_{32}, G_{25}=D_{8} \times C_{4}, G_{39}=D_{16} \times C_{2}$ or $G_{46}=D_{8} \times C_{2} \times C_{2}$;
2. G is $G_{26}=Q_{8} \times C_{4}$, or $G_{47}=Q_{8} \times C_{2} \times C_{2}$ and K contains a primitive cube root of the unity;
3. G is $G_{22}=H_{16} \times C_{2}, G_{48}=\left(D_{8} Y C_{4}\right) \times C_{2}$
4. G is one of the following groups:

$$
\begin{aligned}
& G_{2}=\langle a, b \quad\left|\quad a^{4}=b^{4}=c^{2}=1,(a, b)=c,(a, c)=1,(b, c)=1\right\rangle ; \\
& G_{5}=\langle a, b \quad\left|\quad a^{8}=b^{2}=c^{2}=1,(a, b)=c,(a, c)=(b, c)=1\right\rangle ; \\
& G_{7}=\langle a, b, c\left|a^{8}=b^{2}=c^{2}=1,(a, c)=a^{4},(a, b)=a^{4} c,(b, c)=1\right\rangle ; \\
& G_{8}=\langle a, b, c\left|\quad a^{8}=c^{2}=1, b^{2}=a^{4},(a, c)=a^{4},(a, b)=a^{4} c,(b, c)=1\right\rangle ; \\
& G_{9}=\langle a, b, c\left|\quad a^{2}=b^{8}=c^{2}=1,(b, c)=a b^{6},(a, c)=(a, b)=1\right\rangle ; \\
& G_{10}=\langle a, b, c\left|\quad a^{8}=b^{4}=c^{2}=1, a^{4}=b^{2},(a, b)=a^{6} c,(a, c)=(b, c)=1\right\rangle ; \\
& G_{11}=\langle a, b, c\left|\quad a^{4}=b^{4}=c^{2}=1,(b, c)=a b^{2},(a, c)=(a, b)=1\right\rangle ; \\
& G_{49}=\langle\quad a, b, c, d| a^{4}=1, b^{2}=c^{2}=d^{2}=a^{2},(a, b)=a^{2},(c, d)=a^{2}, \\
&\quad(a, c)=(a, d)=(b, c)=(b, d)=1\rangle .
\end{aligned}
$$

3. Preliminary remarks and notation. Assume that B is a filtered multiplicative K-basis for a finite-dimensional K-algebra A. In the proof of the main results we use the following simple properties of B (see [2]):
(I) $\quad B \cap \operatorname{rad}(A)^{n}$ is a K-basis of $\operatorname{rad}(A)^{n}$ for all $n \geq 1$.
(II) if $u, v \in B \backslash \operatorname{rad}(A)^{k}$ and $u \equiv v\left(\bmod \operatorname{rad}(A)^{k}\right)$ then $u=v$.

Recall that the Frattini subalgebra $\Phi(A)$ of A is defined as the intersection of all maximal subalgebras of A if those exist, and as A otherwise. If A is a nilpotent algebra over a field K, then $\Phi(A)=A^{2}$ by [5]. It implies that
(III) if B is a filtered multiplicative K-basis of A and if $B \backslash\{1\} \subseteq \operatorname{rad}(A)$, then all elements of $B \backslash \operatorname{rad}(A)^{2}$ are generators of A over K.

A p-group G is called powerful, if one of the following conditions holds:

1. G is a 2 -group and G / G^{4} is abelian;
2. G is a p-group ($p>2$) and G / G^{p} is abelian.

Let G be a finite p-group. For $a, b \in G$ we define $a^{b}=b^{-1} a b$ and the commutator $(a, b)=a^{-1} b^{-1} a b$. Denote by $Q_{2^{n}}, D_{2^{n}}$ and $S D_{2^{n}}$ the generalized quaternion group, the dihedral and semidihedral 2 -group of order 2^{n}, respectively, and

$$
M D_{2^{n}}=\left\langle\quad a, b \quad \mid \quad a^{2^{n-1}}=b^{2}=1,(a, b)=a^{2^{n-2}}\right\rangle
$$

We define the Lazard-Jennings series $M_{i}(G)$ of a finite p-group G by induction (see [6]). Put $M_{1}(G)=G$ and $\left.M_{i}(G)=\left\langle\left(M_{i-1}(G), G\right), M_{\left[\frac{i}{p}\right]}^{p}(G)\right)\right\rangle$, where

- $\left[\frac{i}{p}\right]$ is the smallest integer not less than $\frac{i}{p}$;
$-\left(M_{i-1}(G), G\right)=\left\langle(u, v) \quad \mid \quad u \in M_{i-1}(G), v \in G\right\rangle ;$
- $M_{i}^{p}(G)$ is the subgroup generated by p-powers of the elements of $M_{i}(G)$.

Evidently,

$$
M_{1}(G) \supseteq M_{2}(G) \supseteq \cdots \supseteq M_{t}(G)=1
$$

Let K be a field of characteristic p. The ideal

$$
A(K G)=\left\{\begin{array}{ll}
\sum_{g \in G} \alpha_{g} g \in K G \quad \mid \quad \sum_{g \in G} \alpha_{g}=0
\end{array}\right\}
$$

is called the augmentation ideal of $K G$. Since G is a finite p-group and K is a field of characteristic $p, A(K G)$ is nilpotent, and

$$
A(K G) \supset A^{2}(K G) \supset \cdots \supset A^{s}(K G) \supset A^{s+1}(K G)=0
$$

Moreover, $A(K G)$ is the radical of $K G$.
Then the subgroup $\mathfrak{D}_{n}(G)=\left\{g \in G \quad \mid \quad g-1 \in A^{n}(K G)\right\}$ is called the nth dimensional subgroup of $K G$.

It is well known that for finite p-group $G, M_{i}(G)=\mathfrak{D}_{i}(G)$ for all i.
Let $\mathbb{I}=\left\{i \in \mathbb{N} \mid \mathfrak{D}_{i}(G) \neq \mathfrak{D}_{i+1}(G)\right\}$. For $i \in \mathbb{I}$, let $p^{d_{i}}$ be the order of the elementary abelian p-group

$$
\mathfrak{D}_{i}(G) / \mathfrak{D}_{i+1}(G)=\prod_{j=1}^{d_{i}}\left\langle u_{i j} \mathfrak{D}_{i+1}(G)\right\rangle
$$

Hence each $g \in G$ can be written uniquely in the form

$$
g=u_{11}^{\alpha_{11}} u_{12}^{\alpha_{12}} \cdots u_{1 d_{1}}^{\alpha_{1 d_{1}}} u_{21}^{\alpha_{21}} \cdots u_{2 d_{2}}^{\alpha_{2 d_{2}}} \cdots u_{i 1}^{\alpha_{i 1}} \cdots u_{i d_{i}}^{\alpha_{i d_{i}}} \cdots u_{s 1}^{\alpha_{s 1}} \cdots u_{s d_{s}}^{\alpha_{s d_{s}}}
$$

where the indices are in lexicographic order, $i \in \mathbb{I}, 0 \leq \alpha_{i j}<p$, and s is defined as above.

Let $w=\prod_{l \in \mathbb{I}}\left(\prod_{k=1}^{d_{l}}\left(u_{l k}-1\right)^{y_{l k}}\right) \in A(K G)$ be where $0 \leq y_{l k}<p$, and the indices of the factors are in lexicographic order. Then w is called a regular element of weight $\mu(w)=\sum_{l \in \mathbb{I}}\left(\sum_{k=1}^{d_{l}} l y_{l k}\right)$. By Jennings Theorem (see [6]), regular elements which weight not less than t constitute a K-basis for the ideal $A^{t}(K G)$.
Clearly, $\left\{\left(u_{1 j}-1\right)+A^{2}(K G) \mid j=1, \ldots, d_{1}\right\}$ is a K-basis of $A(K G) / A^{2}(K G)$.
Note that $\mathfrak{D}_{2}(G)$ coincides with the Frattini subgroup of G, so the set $\left\{u_{11}, u_{12}, \ldots, u_{1 d_{1}}\right\}$ is a minimal generator system of G.

Suppose that $B_{1}=\{1\} \cup\left\{b_{1}, b_{2}, \ldots, b_{|G|-1}\right\}$ is a filtered multiplicative K-basis for $K G$. Then $B=B_{1} \backslash\{1\}$ is a filtered multiplicative K-basis of $A(K G)$ and contains $|G|-1$ elements.

Let $B \backslash\left(B \cap A^{2}(K G)\right)=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Evidently, $n=d_{1}$ and

$$
b_{k} \equiv \sum_{i=1}^{n} \alpha_{k i}\left(u_{1 i}-1\right) \quad\left(\bmod A^{2}(K G)\right),
$$

where $\alpha_{k i} \in K$ and $\Delta=\operatorname{det}\left(\alpha_{k i}\right) \neq 0$.
For units x, y of $K G$ we have

$$
\begin{align*}
(y-1)(x-1) & =[(x-1)(y-1)+(x-1)+(y-1)](z-1) \\
& +(x-1)(y-1)+(z-1) \tag{1}
\end{align*}
$$

where $z=(y, x)$. Since $z_{j i}=\left(u_{1 j}, u_{1 i}\right) \in \mathfrak{D}_{2}(G)$ and $z_{j i}-1 \in A^{2}(K G)$, using (1) we obtain that

$$
\begin{equation*}
\left(u_{1 j}-1\right)\left(u_{1 i}-1\right) \equiv\left(u_{1 i}-1\right)\left(u_{1 j}-1\right)+\left(z_{j i}-1\right) \quad\left(\bmod A^{3}(K G)\right) \tag{2}
\end{equation*}
$$

Thus simple computations give that

$$
\begin{align*}
b_{k} b_{s} \equiv \sum_{i=1}^{n} \alpha_{k i} \alpha_{s i}\left(u_{1 i}-1\right)^{2} & +\sum_{\substack{i, j=1 \\
i<j}}^{n}\left(\alpha_{k i} \alpha_{s j}+\alpha_{k j} \alpha_{s i}\right)\left(u_{1 i}-1\right)\left(u_{1 j}-1\right) \\
& +\sum_{\substack{i, j=1 \\
i<j}}^{n} \alpha_{k j} \alpha_{s i}\left(z_{j i}-1\right)\left(\bmod A^{3}(K G)\right) \tag{3}
\end{align*}
$$

where $k, s=1, \ldots, n$.
Denote by \mathfrak{A} the set of groups which belong to one of the following type of nonabelian p-groups:

1. either metacyclic or powerful;
2. p-group with cyclic subgroup of index p^{2};
3. two generated p-group $(p \neq 2)$ with central cyclic commutator subgroup.
4. Proof of Theorem 1. Let K be a field of characteristic p (p is odd) and G a p-group of order p^{4}. The classification of these groups can be found in [7]. According to [2] and [3] if G belongs to \mathfrak{A} then G has no filtered multiplicative basis. If G does not belong to \mathfrak{A}, then it is one of the following two groups:

$$
\begin{aligned}
H_{1}=\langle\quad a, c \quad| \quad a^{p}=c^{p}=1, \quad & (a, c)=d,(d, c)=f \\
& (a, d)=(a, f)=(c, f)=(d, f)=1 \quad\rangle \text { with } p>3
\end{aligned}
$$

and

$$
\begin{aligned}
H_{2}=\langle\quad a, c \quad| \quad a^{p}=c^{p}=1,(a, c) & =d, \\
(c, d) & =(a, d)=1 \quad\rangle \times\left\langle\quad h \mid h^{p}=1 \quad\right\rangle \text { with } p \geq 3 .
\end{aligned}
$$

It is easy to check that in both group algebras $K H_{1}$ and $K H_{2}$:

$$
\begin{equation*}
(c-1)(a-1) \equiv(a-1)(c-1)-(d-1) \quad\left(\bmod A^{3}(K G)\right) \tag{4}
\end{equation*}
$$

Let us consider the following cases:
Case 1. Let $G=H_{1}$. Since

$$
M_{1}(G)=G, \quad M_{2}(G)=\left\langle G^{\prime}, G^{p}\right\rangle=\langle d, f\rangle, \quad M_{3}(G)=\left\langle(\langle d, f\rangle, G), G^{p}\right\rangle=\langle f\rangle
$$

we have that $\mu(d)=2$ and $\mu(f)=3$, where μ is the weight of these elements. Using (4) and

$$
(d-1)(c-1) \equiv(c-1)(d-1)+(f-1) \quad\left(\bmod A^{4}(K G)\right)
$$

let us compute $b_{i_{1}} b_{i_{2}} b_{i_{3}}$ modulo $A^{4}(K G)$ where $\left(i_{k}=1,2\right)$. The results of our computations will be written in a table, consisting of the coefficients of the decomposition $b_{i_{1}} b_{i_{2}} b_{i_{3}}$ with respect to the basis

$$
\begin{cases}\left\{(a-1)^{j_{1}}(c-1)^{j_{2}}(d-1)^{j_{3}}(f-1)^{j_{4}} \quad \left\lvert\, \begin{array}{l}
\\
j_{1}+j_{2}+2 j_{3}+3 j_{4}=3 \\
\\
\\
j_{1}, j_{2}=0,1,2,3 ; j_{3}, j_{4}=0,1
\end{array}\right.\right\}\end{cases}
$$

of the ideal $A^{3}(K G) / A^{4}(K G)$. The coefficients of $b_{i_{1}}, b_{i_{2}}, b_{i_{3}}$ will be denoted $\alpha_{i}, \beta_{i}, \gamma_{i}$, respectively, and in the following we shall use these coefficients. We shall divide the table into two parts (the second part written below the first part). The coefficients corresponding to the first four basis elements will be in the first part of the table, while the next three will be in the second one. Thus

	$(a-1)^{3}$	$(a-1)^{2}(c-1)$	$(a-1)(d-1)$	$(a-1)(c-1)^{2}$
$b_{1} b_{2} b_{1}$	$\alpha_{1}^{2} \beta_{1}$	$2 \alpha_{1} \alpha_{2} \beta_{1}+\alpha_{1}^{2} \beta_{2}$	$-2 \alpha_{1} \alpha_{2} \beta_{1}-\alpha_{1}^{2} \beta_{2}$	$2 \alpha_{1} \alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{1}$
$b_{1} b_{2}^{2}$	$\alpha_{1} \beta_{1}^{2}$	$2 \alpha_{1} \beta_{1} \beta_{2}+\alpha_{2} \beta_{1}^{2}$	$-2 \alpha_{2} \beta_{1}^{2}-\alpha_{1} \beta_{1} \beta_{2}$	$2 \alpha_{2} \beta_{1} \beta_{2}+\alpha_{1} \beta_{2}^{2}$
$b_{2} b_{1}^{2}$	$\alpha_{1}^{2} \beta_{1}$	$2 \alpha_{1} \alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{1}$	$-2 \alpha_{1}^{2} \beta_{2}-\alpha_{1} \alpha_{2} \beta_{1}$	$2 \alpha_{1} \alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{1}$
$b_{2} b_{1} b_{2}$	$\alpha_{1} \beta_{1}^{2}$	$2 \alpha_{1} \beta_{1} \beta_{2}+\alpha_{2} \beta_{1}^{2}$	$-2 \alpha_{1} \beta_{1} \beta_{2}-\alpha_{2} \beta_{1}^{2}$	$2 \alpha_{2} \beta_{1} \beta_{2}+\alpha_{1} \beta_{2}^{2}$
b_{1}^{3}	α_{1}^{3}	$3 \alpha_{1}^{2} \alpha_{2}$	$-3 \alpha_{1}^{2} \alpha_{2}$	$3 \alpha_{1} \alpha_{2}^{2}$
$b_{1}^{2} b_{2}$	$\alpha_{1}^{2} \beta_{1}$	$2 \alpha_{1} \alpha_{2} \beta_{1}+\alpha_{1}^{2} \beta_{2}$	$-3 \alpha_{1} \alpha_{2} \beta_{1}$	$2 \alpha_{1} \alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{1}$
$b_{2}^{2} b_{1}$	$\alpha_{1} \beta_{1}^{2}$	$2 \alpha_{1} \beta_{1} \beta_{2}+\alpha_{2} \beta_{1}^{2}$	$-3 \alpha_{1} \beta_{1} \beta_{2}$	$2 \alpha_{2} \beta_{1} \beta_{2}+\alpha_{1} \beta_{2}^{2}$
b_{2}^{3}	β_{1}^{3}	$3 \beta_{1}^{2} \beta_{2}$	$-3 \beta_{1}^{2} \beta_{2}$	$3 \beta_{1} \beta_{2}^{2}$

	$(c-1)(d-1)$	$(f-1)$	$(c-1)^{3}$
$b_{1} b_{2} b_{1}$	$-2 \alpha_{1} \alpha_{2} \beta_{2}-\alpha_{2}^{2} \beta_{1}$	$-\alpha_{2}^{2} \beta_{1}-\alpha_{1} \alpha_{2} \beta_{2}$	$\alpha_{2}^{2} \beta_{2}$
$b_{1} b_{2}^{2}$	$-3 \alpha_{2} \beta_{1} \beta_{2}$	$-2 \alpha_{2} \beta_{1} \beta_{2}$	$\alpha_{2} \beta_{2}^{2}$
$b_{2} b_{1}^{2}$	$-3 \alpha_{1} \alpha_{2} \beta_{2}$	$-2 \alpha_{1} \alpha_{2} \beta_{2}$	$\alpha_{2}^{2} \beta_{2}$
$b_{2} b_{1} b_{2}$	$-2 \alpha_{2} \beta_{1} \beta_{2}-\alpha_{1} \beta_{2}^{2}$	$-\alpha_{1} \beta_{2}^{2}-\alpha_{2} \beta_{1} \beta_{2}$	$\alpha_{2} \beta_{2}^{2}$
b_{1}^{3}	$-3 \alpha_{1} \alpha_{2}^{2}$	$-2 \alpha_{1} \alpha_{2}^{2}$	α_{2}^{3}
$b_{1}^{2} b_{2}$	$-2 \alpha_{2}^{2} \beta_{1}-\alpha_{1} \alpha_{2} \beta_{2}$	$-\alpha_{1} \alpha_{2} \beta_{2}-\alpha_{2}^{2} \beta_{1}$	$\alpha_{2}^{2} \beta_{2}$
$b_{2}^{2} b_{1}$	$-2 \alpha_{1} \beta_{2}^{2}-\alpha_{2} \beta_{1} \beta_{2}$	$-\alpha_{2} \beta_{1} \beta_{2}-\alpha_{1} \beta_{2}^{2}$	$\alpha_{2} \beta_{2}^{2}$
b_{2}^{3}	$-3 \beta_{2} \beta_{2}^{2}$	$-2 \beta_{1} \beta_{2}^{2}$	β_{2}^{3}

We have obtained 8 elements, but the K-dimension of $A^{3}(K G) / A^{4}(K G)$ equals 7. Since $\Delta \neq 0$, we can establish that one of this elements either equals to zero modulo ideal $A^{4}(K G)$ or coincides with another one.

It is easy to see that none of lines are equal to zero. Indeed, for example, if $b_{1} b_{2} b_{1} \equiv 0\left(\bmod A^{4}(K G)\right)$ then from second column of the first part and fourth column of the second part of the table we get that $\alpha_{1}^{2} \beta_{1}=0$ and $\alpha_{2}^{2} \beta_{2}=0$. Since $\Delta \neq 0$, this case is impossible by third column of the first part of this table. In a similar manner we can proof this statement for all lines.

The assumption that two of lines are equal also a contradiction. For instance, if $b_{1} b_{2} b_{1} \equiv b_{1} b_{2}^{2}\left(\bmod A^{4}(K G)\right)$, then from second column of the first part and fourth column of the second part of the table it follows that $\alpha_{1} \beta_{1}\left(\alpha_{1}-\beta_{1}\right)=0$ and $\alpha_{2} \beta_{2}\left(\alpha_{2}-\beta_{2}\right)=0$. Since $\Delta \neq 0$, the third column of the first part of the table leads to a contradiction.

Similar calculations for any two lines also lead to a contradiction, so we have got that $K G$ has no filtered multiplicative basis.

Case 2. Let $G=H_{2}$. Using (4) let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G)$ where $\left(i_{k}=1,2,3\right)$. The results of our computations will be written in a table, consisting of the coefficients of the decomposition $b_{i_{1}} b_{i_{2}}$ with respect to the basis

$$
\begin{cases}\left\{(a-1)^{j_{1}}(c-1)^{j_{2}}(h-1)^{j_{3}}(d-1)^{j_{4}} \quad \left\lvert\, \begin{array}{l}
\\
j_{1}+j_{2}+j_{3}+2 j_{4}=2 \\
\\
\\
j_{1}, j_{2}, j_{3}=0,1,2 ; j_{4}=0,1
\end{array}\right.\right\}\end{cases}
$$

of the ideal $A^{2}(K G) / A^{3}(K G)$:

	$(a-1)^{2}$	$(a-1)(c-1)$	$(a-1)(h-1)$	$(c-1)^{2}$	$(c-1)(h-1)$	$(h-1)^{2}$	$(d-1)$
$b_{1} b_{2}$	$\alpha_{1} \beta_{1}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{2}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{3} \beta_{3}$	$-\alpha_{2} \beta_{1}$
$b_{2} b_{1}$	$\alpha_{1} \beta_{1}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{2}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{3} \beta_{3}$	$-\alpha_{1} \beta_{2}$
$b_{1} b_{3}$	$\gamma_{1} \alpha_{1}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{2}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{3} \gamma_{3}$	$-\alpha_{2} \gamma_{1}$
$b_{3} b_{1}$	$\gamma_{1} \alpha_{1}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{2}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{3} \gamma_{3}$	$-\alpha_{1} \gamma_{2}$
$b_{2} b_{3}$	$\beta_{1} \gamma_{1}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{2}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{3} \gamma_{3}$	$-\beta_{2} \gamma_{1}$
$b_{3} b_{2}$	$\beta_{1} \gamma_{1}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{2}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{3} \gamma_{3}$	$-\beta_{1} \gamma_{2}$
b_{1}^{2}	α_{1}^{2}	$2 \alpha_{1} \alpha_{2}$	$2 \alpha_{1} \alpha_{3}$	α_{2}	$2 \alpha_{2} \alpha_{3}$	α_{3}	$-\alpha_{1} \alpha_{2}$
b_{2}^{2}	β_{1}^{2}	$2 \beta_{1} \beta_{2}$	$2 \beta_{1} \beta_{3}$	β_{2}^{2}	$2 \beta_{2} \beta_{3}$	β_{3}^{2}	$-\beta_{1} \beta_{2}$
b_{3}^{2}	γ_{1}^{2}	$2 \gamma_{1} \gamma_{2}$	$2 \gamma_{1} \gamma_{3}$	γ_{2}^{2}	$2 \gamma_{2} \gamma_{3}$	γ_{3}^{2}	$-\gamma_{1} \gamma_{2}$

We have obtained 9 elements, but the K-dimension of $A^{2}(K G) / A^{3}(K G)$ equals 7 , so we conclude that some lines of the table either are equal to zero modulo the ideal $A^{3}(K G)$ or coincide with some other lines.

Since $\Delta \neq 0$, it is clear that $b_{i}^{2} \not \equiv 0$ and $b_{i} b_{j} \not \equiv 0\left(\bmod A^{3}(K G)\right)$. According to the last tree lines of the table if $b_{i}^{2} \equiv b_{j}^{2}\left(\bmod A^{3}(K G)\right)$, then either $b_{i} \equiv b_{j}$ or $b_{i} \equiv-b_{j}\left(\bmod A^{3}(K G)\right)$, so we have that $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \equiv b_{3} b_{1}$ and $b_{2} b_{3} \not \equiv b_{3} b_{2}$ $\left(\bmod A^{3}(K G)\right)$, because the other cases are similar to this one.

Simple computations show that if either $\alpha_{1} \neq 0$ or $\beta_{1} \neq 0$, then $K G$ is a commutative algebra which is a contradiction, so we can assume that $\alpha_{1}=\beta_{1}=0$. From the 8 th column we have $\alpha_{2} \gamma_{1}=0$. Since $\Delta \neq 0$ we conclude that $\alpha_{2}=0$ and we have a basis of $A(K G) / A^{2}(K G)$:

$$
\left\{\begin{aligned}
b_{1} & \equiv(h-1)\left(\bmod A^{2}(K G)\right) \\
b_{2} & \equiv(c-1)+\beta_{3}(h-1)\left(\bmod A^{2}(K G)\right) \\
b_{3} & \equiv(a-1)+\gamma_{2}(c-1)+\gamma_{3}(h-1)\left(\bmod A^{2}(K G)\right)
\end{aligned}\right.
$$

Let us compute $b_{i_{1}} b_{i_{2}} b_{i_{3}}$ modulo $A^{4}(K G)$ where $i_{k}=1,2,3$ with respect to the basis

$$
\begin{cases}\left\{(a-1)^{j_{1}}(c-1)^{j_{2}}(h-1)^{j_{3}}(d-1)^{j_{4}} \quad \left\lvert\, \begin{array}{l}
\\
j_{1}+j_{2}+j_{3}+2 j_{4}=3 \\
\\
\\
j_{1}, j_{2}, j_{3}=0,1,2,3 ; j_{4}=0,1
\end{array}\right.\right\}\end{cases}
$$

of the ideal $A^{3}(K G) / A^{4}(K G)$.
Assume that $p=3$. Since the dimension of $A^{3}(K G) / A^{4}(K G)$ is 10 , so we conclude that

$$
b_{1}^{2} b_{2} \equiv b_{1} b_{2}^{2}, \quad b_{2}^{2} b_{3} \equiv b_{3} b_{2}^{2}, \quad b_{3}^{2} b_{2} \equiv b_{3} b_{2} b_{3} \quad\left(\bmod A^{4}(K G)\right)
$$

and $b_{1}^{3} \equiv 0, \quad b_{2}^{3} \equiv 0\left(\bmod A^{4}(K G)\right)$. From these congruences give that $\beta_{3}=\gamma_{2}=$ $\gamma_{3}=0$.

Now suppose that $p>3$. In this case the dimension of $A^{3}(K G) / A^{4}(K G)$ is 15 , so we conclude that

$$
b_{1}^{2} b_{2} \equiv b_{1} b_{2}^{2}, \quad b_{3}^{2} b_{2} \equiv b_{3} b_{2} b_{3} \quad\left(\bmod A^{4}(K G)\right)
$$

and we also get that $\beta_{3}=\gamma_{2}=\gamma_{3}=0$.
Assume that $K G$ has a filtered multiplicative basis. Since $K G=K\left[G_{1} \times G_{2}\right]$, where

$$
G_{1}=\left\langle\quad a, c \quad \mid \quad a^{p}=c^{p}=1, \quad(a, c)=d,(c, d)=(a, d)=1\right\rangle
$$

and $G_{2}=\left\langle h \mid h^{p}=1 \quad\right\rangle$, and we have established that

$$
\left\{\begin{array}{l}
b_{1} \equiv(h-1)\left(\bmod A^{2}(K G)\right) \\
b_{2} \equiv(c-1)\left(\bmod A^{2}(K G)\right) \\
b_{3} \equiv(a-1)\left(\bmod A^{2}(K G)\right)
\end{array}\right.
$$

with $b_{1} \in K G_{1}, b_{2}, b_{3} \in K G_{2}$, so we conclude that $K G_{2}$ also has filtered multiplicative basis, which is a contradiction by [3].

Let K be a field of characteristic 2 . If $|G|<2^{5}$, then $K G$ has a filtered multiplicative basis (see $[2,3]$) if and only if G and K satisfy the conditions of Theorem 1 , so the proof of the theorem is complete.

5. Proof of Theorem 2. Let

$$
G=\left\langle\quad a, b \quad \mid \quad a^{2^{n}}=b^{2^{m}}=c^{2}=1,(a, b)=c,(a, c)=1,(b, c)=1\right\rangle
$$

and put

$$
b_{1}^{1}=u \equiv(1+a), \quad b_{1}^{2}=v \equiv(1+b) \quad\left(\bmod A^{2}(K G)\right) .
$$

Using the identity:

$$
(1+b)(1+a) \equiv(1+a)(1+b)+(1+c)\left(\bmod A^{3}(K G)\right)
$$

we get that the set $\left\{b_{2}^{1}=u v, b_{2}^{2}=v u, b_{2}^{3}=u^{2}, b_{2}^{4}=v^{2}\right\}$ is a basis of $A^{2}(K G) / A^{3}(K G)$ and

$$
\begin{aligned}
& b_{3}^{1}=u v u \equiv(1+a)^{2}(1+b)+(1+a)(1+c)\left(\bmod A^{3}(K G)\right) ; \\
& b_{3}^{2}=u^{2} v \equiv(1+a)^{2}(1+b)\left(\bmod A^{3}(K G)\right) ; \\
& b_{3}^{3}=u^{3} \equiv(1+a)^{3}\left(\bmod A^{3}(K G)\right) ; \\
& b_{3}^{4}=u v^{2} \equiv(1+a)(1+b)^{2}\left(\bmod A^{3}(K G)\right) ; \\
& b_{3}^{5}=v u v \equiv(1+a)(1+b)^{2}+(1+b)(1+c)\left(\bmod A^{3}(K G)\right) ; \\
& b_{3}^{6}=v^{3} \equiv(1+b)^{3}\left(\bmod A^{3}(K G)\right) ;
\end{aligned}
$$

is a basis for $A^{3}(K G) / A^{4}(K G)$ and its determinant $\Delta_{3}=1$. We shall construct a basis of $A^{i}(K G) / A^{i+1}(K G)$ by induction. Assume that $b_{i-1}^{1}, b_{i-1}^{2}, \cdots, b_{i-1}^{n-1}, b_{i-1}^{n}$ is a basis for $A^{i-1}(K G) / A^{i}(K G)$. Evidently, the determinant Δ_{i-1} of this basis is not zero. Simple computations show that the determinant Δ_{i} of the elements $b_{i}^{j}=$ $u b_{i-1}^{j}$, for $j=\{1,2, \cdots, n\}$ and $b_{i}^{n+1}=b_{i-1}^{n-1} v, b_{i}^{n+2}=b_{i-1}^{n} v$ is equal to $\Delta_{i-1} \cdot\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right| \neq$ 0 , so we got $n+2$ linearly independent elements. Since $\operatorname{dim} A^{i}(K G) / A^{i+1}(K G)$ is also $n+2$ we have obtained that $K G$ has a filtered multiplicative basis.
6. Proof of Theorem 3. Let G be the group

$$
\begin{aligned}
G_{6}=\langle\quad a, b \quad| \quad a^{2^{n}}=b^{2}=c^{2}=d^{2}=1,(a, b) & =c,(a, c)=d \\
(a, d) & =(b, c)=(b, d)=(c, d)=1 \quad\rangle
\end{aligned}
$$

with $n>1$. Let us compute the Lazard-Jennings series of this group:

$$
M_{1}(G)=G, \quad M_{2}(G)=\left\langle a^{2}, c, d\right\rangle, \quad M_{3}(G)=\langle d\rangle, \quad M_{4}(G)=\langle 1\rangle .
$$

We conclude that $\mu(c)=2$ and $\mu(d)=3$. Using the identity

$$
\begin{equation*}
(1+b)(1+a) \equiv(1+a)(1+b)+(1+c) \quad\left(\bmod A^{3}(K G)\right) \tag{5}
\end{equation*}
$$

it follows that

$$
\left\{\begin{array}{l}
b_{1} b_{2} \equiv \alpha_{1} \beta_{1}(1+a)^{2}+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)(1+a)(1+b)+\alpha_{2} \beta_{1}(1+c)\left(\bmod A^{3}(K G)\right) ; \\
b_{2} b_{1} \equiv \alpha_{1} \beta_{1}(1+a)^{2}+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)(1+a)(1+b)+\alpha_{1} \beta_{2}(1+c)\left(\bmod A^{3}(K G)\right) ; \\
b_{1}^{2} \equiv \alpha_{1}^{2}(1+a)^{2}+\alpha_{1} \alpha_{2}(1+c)\left(\bmod A^{3}(K G)\right) ; \\
b_{2}^{2} \equiv \beta_{1}^{2}(1+a)^{2}+\beta_{1} \beta_{2}(1+c)\left(\bmod A^{3}(K G)\right)
\end{array}\right.
$$

We have obtained 4 elements, but the K-dimension of $A^{2}(K G) / A^{3}(K G)$ equals 3. Since $\Delta \neq 0$, we get that $b_{1} b_{2} \not \equiv b_{2} b_{1}, b_{1}^{2}, b_{2}^{2}$ and $b_{1} b_{2}, b_{2} b_{1} \not \equiv 0$ and $b_{1}^{2} \not \equiv b_{2}^{2}$ $\left(\bmod A^{3}(K G)\right)$. Thus either $b_{1}^{2} \equiv 0$ or $b_{2}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$. It is easy to see that the second case is similar to the first one, so we consider the second one. Let $\beta_{1}=0$ and we can put $\alpha_{1}=\beta_{2}=1$ and

$$
\begin{aligned}
& u=b_{1} \equiv(1+a)+\alpha_{2}(1+b)\left(\bmod A^{2}(K G)\right) \\
& v=b_{2} \equiv(1+b)\left(\bmod A^{2}(K G)\right)
\end{aligned}
$$

Using (5) and the identity

$$
(1+c)(1+a) \equiv(1+a)(1+c)+(1+d) \quad\left(\bmod A^{4}(K G)\right)
$$

straightforward computations show that

$$
\left\{\begin{aligned}
& u v u^{2} \equiv(1+a)^{3}(1+b)+\alpha_{2}(1+a)(1+b)(1+c)+(1+a)(1+d)\left(\bmod A^{5}(K G)\right) ; \\
& v u^{3} \equiv(1+a)^{3}(1+b)+(1+a)^{2}(1+c)+\alpha_{2}(1+a)(1+b)(1+c)+ \\
&(1+a)(1+d)\left(\bmod A^{5}(K G)\right) ; \\
& v u v u \equiv(1+b)(1+d)+(1+a)(1+b)(1+c)\left(\bmod A^{5}(K G)\right) ; \\
& u^{2} v u \equiv(1+a)^{3}(1+b)+(1+a)^{2}(1+c)+\alpha_{2}(1+a)(1+b)(1+c)+ \\
& \alpha_{2}(1+b)(1+d)\left(\bmod A^{5}(K G)\right) ; \\
& u v u v \equiv(1+a)(1+b)(1+c)\left(\bmod A^{5}(K G)\right) ; \\
& v u^{5} \equiv(1+b)(1+d)\left(\bmod A^{5}(K G)\right) ; \\
& v u^{2} v \equiv(1+b)(1+c)+\alpha_{2}(1+b)(1+d)\left(\bmod A^{5}(K G)\right) . \\
& u^{3} v \equiv(1+a)^{3}(1+b)+\alpha_{2}(1+a)(1+b)(1)
\end{aligned}\right.
$$

We have obtained 7 different element, but this is a contradiction because $\operatorname{dim}\left(A^{4}(K G) / A^{5}(K G)\right)=5$.

6. Proof of Theorem 4.

Let G be a nonabelian 2-group of order 2^{5}. According to [3] if G is one of the following groups $\left\{G_{5}, G_{7}, G_{8}, G_{9}, G_{10}, G_{11}\right\}$, then G has a cyclic subgroup of index p^{2} and $K G$ has filtered multiplicative basis, but if G is one of the following groups:

$$
\begin{aligned}
& G_{40}=S D_{16} \times C_{2} ; \\
& G_{41}=Q_{16} \times C_{2} ; \\
& G_{42}=\left\langle\quad a, b, c \quad \mid a^{8}=b^{4}=c^{4}=1, a^{4}=b^{2}=c^{2},(a, b)=a^{6},(a, c)=(b, c)=1\right\rangle ; \\
& G_{43}=\left\langle\quad a, b, c \quad \mid a^{8}=b^{2}=c^{2}=1,(a, b)=a^{6},(a, c)=a^{4},(b, c)=1\right\rangle ; \\
& G_{44}=\left\langle\quad a, b, c \quad \mid a^{8}=c^{2}=1, b^{2}=a^{4},(a, c)=a^{4},(a, b)=a^{6},(b, c)=1\right\rangle
\end{aligned}
$$

then $K G$ has no filtered multiplicative basis.
If G is one of the following groups:

$$
\begin{aligned}
G_{4} & =\left\langle\quad a, b \quad \mid \quad a^{8}=b^{4}=1,(a, b)=a^{4} \quad\right\rangle \\
G_{37} & =M D_{16} \times C_{2} ; \\
G_{38} & =\left\langle\quad a, b, c \quad \mid \quad a^{8}=b^{2}=c^{2}=1,(b, c)=a^{4},(a, b)=(a, c)=1 \quad\right\rangle
\end{aligned}
$$

then they are powerful groups and by [3] $K G$ has no a filtered multiplicative basis. If G is one of the following groups:

$$
\begin{aligned}
& G_{12}=\left\langle\quad a, b \quad \mid a^{4}=b^{8}=1,(a, b)=a^{2}\right\rangle ; \\
& G_{13}=\left\langle\quad a, b \quad \mid a^{8}=b^{4}=1,(a, b)=a^{2}\right\rangle ; \\
& G_{14}=\left\langle\quad a, b \quad \mid a^{8}=b^{4}=1,(a, b)=a^{6}\right\rangle ; \\
& G_{15}=\left\langle\quad a, b \quad \mid a^{8}=1, b^{4}=a^{4},(a, b)=a^{6}\right\rangle ; \\
& G_{17}=M D_{32}, G_{18}=D_{32}, G_{19}=S D_{32}, G_{20}=Q_{32},
\end{aligned}
$$

then G is a metacyclic group and $K G$ has a filtered multiplicative basis if and only if $G=G_{18}$ by [2].

According to [2] and [3] we get that for the following direct products $K G$ has a filtered multiplicative basis: $G_{22}=H_{16} \times C_{2}, G_{25}=D_{8} \times C_{4}, G_{26}=Q_{8} \times C_{4}, G_{39}=$ $D_{16} \times C_{2}, G_{46}=D_{8} \times C_{2} \times C_{2}, G_{47}=Q_{8} \times C_{2} \times C_{2}, G_{48}=\left(D_{8} Y C_{4}\right) \times C_{2}$.

If $G=G_{2}$, then for $n=m=2$ Theorem 2 asserts that $K G$ has a filtered multiplicative K-basis.

Let G be the group

$$
\begin{aligned}
G_{6}=\langle\quad a, b \quad| \quad a^{4}=b^{2}=1 & (a, b)=c,(a, c)=d \\
& (a, d)=(b, c)=(b, d)=(c, d)=1 \quad\rangle
\end{aligned}
$$

For $n=2$ the group in Theorem 3 is isomorphic to G_{6}, so the group algebra $K G_{6}$ has no filtered multiplicative K-basis.

Now, we shall consider the following 7 cases.
Case 1. Let G be the group

$$
G_{23}=\left\langle\quad a, b, c \quad \mid \quad a^{4}=b^{4}=c^{2}=1,(a, c)=(b, c)=1,(a, b)=a^{2} \quad\right\rangle .
$$

Using the identity

$$
(1+b)(1+a) \equiv(1+a)(1+b)+(1+a)^{2} \quad\left(\bmod A^{3}(K G)\right)
$$

let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G)$ where $\left(i_{k}=1,2,3\right)$. The results of our computation will be written in a table, consisting of the coefficients of the decomposition $b_{i_{1}} b_{i_{2}}$ with respect to the basis

$$
\left\{\begin{array}{ll}
\left\{(1+a)^{j_{1}}(1+b)^{j_{2}}(1+c)^{j_{3}} \quad \mid\right. & j_{1}+j_{2}+j_{3}=2 \\
& j_{1}, j_{2}=0,1,2 ; j_{3}=0,1
\end{array}\right\}
$$

of the ideal $A^{2}(K G)$.

	$(1+a)^{2}$	$(1+a)(1+b)$	$(1+a)(1+c)$	$(1+b)(1+c)$	$(1+b)^{2}$
$b_{1} b_{2}$	$\alpha_{1} \beta_{1}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{2} \beta_{2}$
$b_{2} b_{1}$	$\alpha_{1} \beta_{1}+\alpha_{1} \beta_{2}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{2} \beta_{2}$
$b_{1} b_{3}$	$\alpha_{1} \gamma_{1}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{2} \gamma_{2}$
$b_{3} b_{1}$	$\alpha_{1} \gamma_{1}+\alpha_{1} \gamma_{2}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{2} \gamma_{2}$
$b_{2} b_{3}$	$\beta_{1} \gamma_{1}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{2} \gamma_{2}$
$b_{3} b_{2}$	$\beta_{1} \gamma_{1}+\beta_{1} \gamma_{2}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\gamma_{3} \gamma_{2}$	$\beta_{2} \gamma_{2}$
b_{1}^{2}	$\alpha_{1}^{2}+\alpha_{2} \alpha_{3}$	0	0	0	α_{2}^{2}
b_{2}^{2}	$\beta_{1}^{2}+\beta_{2} \beta_{3}$	0	0	0	β_{2}^{2}
b_{3}^{2}	$\gamma_{1}^{2}+\gamma_{2} \gamma_{3}$	0	0	0	γ_{2}^{2}

Since $\Delta \neq 0$, it is easy to see that the first six lines not equal neither zero nor the last three lines. Note that the dimension of $A^{2}(K G) / A^{3}(K G)$ equal to 5 and $K G$ is not a commutative algebra. From the fact $b_{i}^{2} \equiv b_{j}^{2} \equiv 0\left(\bmod A^{3}(K G)\right), i \neq j$ it implies that b_{i} linearly depends on b_{j}, so we shall consider two interesting cases.

In the first case $b_{1}^{2} \equiv 0, b_{2}^{2} \equiv b_{3}^{2} \not \equiv 0\left(\bmod A^{3}(K G)\right)$ and we get that $b_{1} \equiv$ $\alpha_{3}(1+c)\left(\bmod A^{2}(K G)\right)$ and by property (II) of the filtered multiplicative K-basis, $b_{2}^{2}=b_{3}^{2}$. From the condition $b_{2}^{2} \equiv b_{3}^{2}\left(\bmod A^{3}(K G)\right)$ we have that $\beta_{2}=\gamma_{2} \neq 0$ and $\left(\beta_{1}+\gamma_{1}\right)\left(\beta_{1}+\gamma_{1}+\gamma_{2}\right)=0$. Since $\Delta \neq 0$ so $\beta_{1}=\gamma_{1}+\gamma_{2}$ and we conclude that $b_{2}=(\lambda+1)(1+a)+(1+b)+\mu(1+c)$ and $b_{3}=\lambda(1+a)+(1+b)+\eta(1+c)$, where $\lambda=\frac{\gamma_{1}}{\gamma_{2}}, \mu=\frac{\beta_{3}}{\gamma_{2}}$ and $\eta=\frac{\gamma_{3}}{\gamma_{2}}$. The fact $b_{2}^{2}=b_{3}^{2}$ gives that $1+a^{2}+a b+a^{3} b=0$, which is impossible.

In the second case $b_{1}^{2} \equiv b_{2}^{2} \equiv b_{3}^{2} \not \equiv 0\left(\bmod A^{3}(K G)\right)$ and we can assume that $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \equiv b_{3} b_{1}\left(\bmod A^{3}(K G)\right)$ and $b_{3} b_{2} \not \equiv b_{2} b_{3}\left(\bmod A^{3}(K G)\right)$. Since $b_{1} b_{2} \equiv b_{2} b_{1}$ and $b_{1} b_{3} \equiv b_{3} b_{1}\left(\bmod A^{3}(K G)\right)$ we have that $\alpha_{2} \beta_{1}=\alpha_{1} \beta_{2}$ and $\alpha_{2} \gamma_{1}=$ $\alpha_{1} \gamma_{2}$. From the fact that $b_{1}^{2} \equiv b_{2}^{2} \equiv b_{3}^{2} \not \equiv 0\left(\bmod A^{3}(K G)\right)$ the sixth column asserts that $\alpha_{2}=\beta_{2}=\gamma_{2}$ and the second column give that $\alpha_{1}=\beta_{1}=\gamma_{1}$, so we conclude that $b_{3} b_{2} \equiv b_{2} b_{3}\left(\bmod A^{3}(K G)\right)$, which is a contradiction. These facts give that $K G$ has no filtered multiplicative basis.

Case 2. Let G be the group

$$
G_{24}=\left\langle\quad a, b, c \quad \mid \quad a^{4}=b^{4}=c^{2}=1,(a, b)=(a, c)=1,(b, c)=a^{2} \quad\right\rangle .
$$

Using the identity

$$
(1+c)(1+b) \equiv(1+b)(1+c)+(1+a)^{2} \quad\left(\bmod A^{3}(K G)\right)
$$

let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G)$ where $\left(i_{k}=1,2,3\right)$. The results of our computation will be written in a table, consisting of the coefficients of the decomposition $b_{i_{1}} b_{i_{2}}$ with respect to the basis

$$
\left\{\begin{array}{ll}
\left\{(1+a)^{j_{1}}(1+b)^{j_{2}}(1+c)^{j_{3}} \quad \mid\right. & j_{1}+j_{2}+j_{3}=2 ; \\
& j_{1}, j_{2}=0,1,2 ; j_{3}=0,1
\end{array}\right\}
$$

of the ideal $A^{2}(K G)$.

	$(1+a)^{2}$	$(1+a)(1+b)$	$(1+a)(1+c)$	$(1+b)(1+c)$	$(1+b)^{2}$
$b_{1} b_{2}$	$\alpha_{1} \beta_{1}+\alpha_{3} \beta_{2}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{2} \beta_{2}$
$b_{2} b_{1}$	$\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{2} \beta_{2}$
$b_{1} b_{3}$	$\alpha_{1} \gamma_{1}+\alpha_{3} \gamma_{2}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{2} \gamma_{2}$
$b_{3} b_{1}$	$\alpha_{1} \gamma_{1}+\alpha_{2} \gamma_{3}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{2} \gamma_{2}$
$b_{2} b_{3}$	$\beta_{1} \gamma_{1}+\beta_{3} \gamma_{2}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3} \beta_{3} \gamma_{2}$	$\beta_{2} \gamma_{2}$
$b_{3} b_{2}$	$\beta_{1} \gamma_{1}+\beta_{2} \gamma_{3}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{2} \gamma_{2}$
b_{1}^{2}	$\alpha_{1}^{2}+\alpha_{2} \alpha_{3}$	0	0	α_{2}^{2}	
b_{2}^{2}	$\beta_{1}^{2}+\beta_{2} \beta_{3}$	0	0	0	β_{2}^{2}
b_{3}^{2}	$\gamma_{1}^{2}+\gamma_{2} \gamma_{3}$	0	0	0	β_{2}^{2}

It is obvious that the first six lines not equal neither zero nor the last three lines. Since the dimension of $A^{2}(K G) / A^{3}(K G)$ equals 5 and $K G$ is not commutative we have either $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \not \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$ or $b_{1} b_{2} \equiv b_{2} b_{1}$, $b_{1} b_{3} \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$, because the other cases are analogous to these.

In the first case we get that $b_{1}^{2} \equiv b_{2}^{2} \equiv b_{3}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$, so $\Delta=0$ which is impossible. In the second case consider the following subcases:
a) $b_{1}^{2} \equiv b_{2}^{2} \equiv b_{3}^{2} \not \equiv 0\left(\bmod A^{3}(K G)\right)$;
b) $b_{i}^{2} \equiv b_{j}^{2} \equiv 0$ and $b_{k}^{2} \not \equiv 0\left(\bmod A^{3}(K G)\right)$;
c) $b_{i}^{2} \equiv b_{j}^{2} \not \equiv 0$ and $b_{k}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$.

Since $\Delta \neq 0$ the subcase a) is impossible. Consider the subcase b), and for example put $b_{1}^{2} \equiv b_{2}^{2} \equiv 0$ and $b_{3}^{2} \not \equiv 0\left(\bmod A^{3}(K G)\right)$. We get that $\alpha_{2}=\beta_{2}=0$ and $\alpha_{1}=\beta_{1}=0$ by second and sixth columns, so $\Delta=0$ which is a contradiction. The other cases also lead to contradictions.

Assume that $b_{i}^{2} \equiv b_{j}^{2} \not \equiv 0$ and $b_{k}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$, for instance $b_{1}^{2} \equiv b_{2}^{2} \not \equiv 0$ and $b_{3}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$. According to second and sixth columns $\alpha_{2}=\beta_{2} \neq 0$ and $\left(\alpha_{1}+\beta_{1}\right)^{2}=\alpha_{2}\left(\alpha_{3}+\beta_{3}\right)$. Since $b_{1} b_{2} \equiv b_{2} b_{1}$ the second column gives that $\alpha_{3} \beta_{2}=\alpha_{2} \beta_{3}$, so $\Delta=0$ which is a contradiction. Thus $K G$ has no a filtered multiplicative basis.

Case 3. Let

$$
\begin{aligned}
G=G_{27}= & \langle\quad a, b, c \quad| \quad a^{2}=b^{2}=c^{2}=1,(a, c)=d,(b, c)=e \\
& (a, b)=(a, d)=(a, e)=(b, d)=(b, e)=(c, d)=(c, e)=(d, e)=1 \quad\rangle
\end{aligned}
$$

Since

$$
M_{1}(G)=G, \quad M_{2}(G)=\langle d, e\rangle, \quad M_{3}(G)=\langle 1\rangle
$$

we obtained that $\mu(d)=\mu(e)=2$. Let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G)$ where $\left(i_{k}=1,2,3\right)$. The results of our computation will be also written in a table, consisting of the coefficients of the decomposition $b_{i_{1}} b_{i_{2}}$ with respect to the basis

$$
\left\{\quad(1+a)^{j_{1}}(1+b)^{j_{2}}(1+c)^{j_{3}}(1+d)^{j_{4}}(1+e)^{j_{5}} \quad \begin{array}{r}
j_{1}+j_{2}+j_{3}+2 j_{4}+2 j_{5}=2 \\
j_{1}, j_{2}, j_{3}=0,1 ; j_{4}, j_{5}=0,1
\end{array}\right\}
$$

of the ideal $A^{2}(K G)$. Using the identities:

$$
\begin{aligned}
& (1+c)(1+a) \equiv(1+a)(1+c)+(1+d)\left(\bmod A^{3}(K G)\right) \\
& (1+c)(1+b) \equiv(1+b)(1+c)+(1+e)\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

we get

	$(1+a)(1+b)$	$(1+a)(1+c)$	$(1+b)(1+c)$	$(1+d)$	$(1+e)$
$b_{1} b_{2}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{3} \beta_{1}$	$\alpha_{3} \beta_{2}$
$b_{2} b_{1}$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{1} \beta_{3}$	$\alpha_{2} \beta_{3}$
$b_{1} b_{3}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{3} \gamma_{1}$	$\alpha_{3} \gamma_{2}$
$b_{3} b_{1}$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{1} \gamma_{3}$	$\alpha_{2} \gamma_{3}$
$b_{2} b_{3}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{3} \gamma_{1}$	$\beta_{3} \gamma_{2}$
$b_{3} b_{2}$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{1} \gamma_{3}$	$\beta_{2} \gamma_{3}$
b_{1}^{2}	0	0	0	$\alpha_{1} \alpha_{3}$	$\alpha_{2} \alpha_{3}$
b_{2}^{2}	0	0	0	$\beta_{1} \beta_{3}$	$\beta_{2} \beta_{3}$
b_{3}^{2}	0	0	0	$\gamma_{1} \gamma_{3}$	$\gamma_{2} \gamma_{3}$

It is easy to see that the first six lines not equal neither zero nor the last three lines. Since the dimension of $A^{2}(K G) / A^{3}(K G)$ equals 5 and $K G$ is not commutative we have either $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \not \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$ or $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$, because the other cases are similar to these.

In the first case we get that $b_{1}^{2} \equiv b_{2}^{2} \equiv b_{3}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$ and $\alpha_{3}=\beta_{3}=$ $\gamma_{1}=\gamma_{2}=0$. Let us compute $b_{i_{1}} b_{i_{2}} b_{i_{3}}$ modulo $A^{4}(K G)$ where ($i_{k}=1,2,3$). Since the dimension of $A^{3}(K G) / A^{4}(K G)$ equal to 7 but we have got 8 different elements, this case is impossible. In the second case $b_{1} b_{2} \equiv b_{2} b_{1}$ and $b_{1} b_{3} \equiv$ $b_{3} b_{1}\left(\bmod A^{3}(K G)\right)$. Assume that $\alpha_{3}=0$. Fifth and sixth columns give that $\beta_{3}=\gamma_{3}=0$ which is impossible, so $\alpha_{3}, \beta_{3}, \gamma_{3} \neq 0$. These columns gives that $b_{2} \equiv \beta_{3} \alpha_{3}^{-1} b_{1}\left(\bmod A^{2}(K G)\right)$ which is a contradiction, therefore $K G$ has no a filtered multiplicative basis.

Case 4. Let G be one of the following groups:

$$
\begin{aligned}
& G_{28}=\langle\quad a, b, c \quad| \quad a^{4}=b^{2}=c^{2}=1,(a, c)=a^{2},(b, c)=d, \\
& (a, b)=(a, d)=(b, d)=(c, d)=1 \quad\rangle ; \\
& G_{29}=\langle\quad a, b, c \quad| \quad a^{4}=b^{2}=1, a^{2}=c^{2},(a, c)=a^{2},(b, c)=d, \\
& (a, b)=(a, d)=(b, d)=(c, d)=1 \quad\rangle ; \\
& G_{30}=\langle\quad a, b, c \quad| \quad a^{4}=b^{2}=c^{2}=1,(a, c)=d,(b, c)=a^{2}, \\
& (a, b)=(a, d)=(b, d)=(c, d)=1 \quad\rangle .
\end{aligned}
$$

If G is either G_{28} or G_{29} then we have

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+d)\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

If $G=G_{30}$ then we have

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+d)\left(\bmod A^{3}(K G)\right) \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

Using the last four identities let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G)$ where $\left(i_{k}=\right.$ $1,2,3)$. The results of our computation will be written in a table as above, consisting of the coefficients of the decomposition $b_{i_{1}} b_{i_{2}}$ with respect to the basis

$$
\left\{\begin{array}{ll}
\left\{(1+a)^{j_{1}}(1+b)^{j_{2}}(1+c)^{j_{3}}(1+d)^{j_{4}} \quad \left\lvert\, \begin{array}{l}
\\
\\
\\
\\
\\
\\
j_{1}, j_{2}, j_{3}=0, j_{3}+2 j_{4}=2 ; \\
j_{4}
\end{array}\right.\right)
\end{array}\right\}
$$

of the ideal $A^{3}(K G)$:

	$(1+a)^{2}$	$(1+a)(1+b)$	$(1+a)(1+c)$	$(1+b)(1+c)$	$(1+d)$
$b_{1} b_{2}$	$\alpha_{1} \beta_{1}+\Delta(\alpha, \beta)$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\Omega(\alpha, \beta)$
$b_{2} b_{1}$	$\alpha_{1} \beta_{1}+\Delta(\beta, \alpha)$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\Omega(\beta, \alpha)$
$b_{1} b_{3}$	$\alpha_{1} \gamma_{1}+\Delta(\alpha, \gamma)$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\Omega(\alpha, \gamma)$
$b_{3} b_{1}$	$\alpha_{1} \gamma_{1}+\Delta(\gamma, \alpha)$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\Omega(\gamma, \alpha)$
$b_{2} b_{3}$	$\beta_{1} \gamma_{1}+\Delta(\beta, \gamma)$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\Omega(\beta, \gamma)$
$b_{3} b_{2}$	$\beta_{1} \gamma_{1}+\Delta(\gamma, \beta)$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\Omega(\gamma, \beta)$
b_{1}^{2}	$\alpha_{1}^{2}+\Delta(\alpha, \alpha)$	0	0	0	$\Omega(\alpha, \alpha)$
b_{2}^{2}	$\beta_{1}^{2}+\Delta(\beta, \beta)$	0	0	0	$\Omega(\beta, \beta)$
b_{3}^{2}	$\gamma_{1}^{2}+\Delta(\gamma, \gamma)$	0	0	0	$\Omega(\gamma, \gamma)$

where if $G=G_{28}$ then $\Delta(\delta, \epsilon)=\delta_{3} \epsilon_{1}, \Omega(\delta, \epsilon)=\delta_{3} \epsilon_{2}$, if $G=G_{29}$ then $\Delta(\delta, \epsilon)=$ $\delta_{3} \epsilon_{1}+\delta_{3} \epsilon_{3}, \Omega(\delta, \epsilon)=\delta_{3} \epsilon_{2}$ and if $G=G_{30}$ then $\Delta(\delta, \epsilon)=\delta_{3} \epsilon_{2}, \Omega(\delta, \epsilon)=\delta_{3} \epsilon_{1}$.

It is clearly that the first six lines not equal neither zero nor the last three lines. Since the dimension of $A^{2}(K G) / A^{3}(K G)$ equal to 5 and $K G$ is not commutative we have either $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \not \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$ or $b_{1} b_{2} \equiv b_{2} b_{1}$, $b_{1} b_{3} \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$, because the other cases are analogous to these.

In the first case we get that $b_{1}^{2} \equiv b_{2}^{2} \equiv b_{3}^{2} \equiv 0\left(\bmod A^{3}(K G)\right)$, so $\Delta=0$ which is impossible. In the second case $b_{1} b_{2} \equiv b_{2} b_{1}$ and $b_{1} b_{3} \equiv b_{3} b_{1}\left(\bmod A^{3}(K G)\right)$. Assume that $\alpha_{3}=0$. Second and sixth columns give that $\beta_{3}=\gamma_{3}=0$ which is impossible, so $\alpha_{3}, \beta_{3}, \gamma_{3} \neq 0$. Consequences of columns 2 and 6 are that $b_{2} \equiv$ $\beta_{3} \alpha_{3}^{-1} b_{1}\left(\bmod A^{2}(K G)\right)$ which is a contradiction. Thus these group algebras have no filtered multiplicative bases.

Case 5. Let G one of the following groups:

$$
\begin{aligned}
& G_{31}=\left\langle\quad a, b, c \quad \mid \quad a^{4}=b^{4}=c^{2}=1,(b, c)=a^{2} b^{2},(a, c)=a^{2},(a, b)=1\right\rangle ; \\
& G_{32}=\left\langle\quad a, b, c \quad \mid a^{4}=b^{4}=1, c^{2}=a^{2} b^{2},(b, c)=a^{2} b^{2},(a, c)=a^{2},(a, b)=1\right\rangle ; \\
& G_{33}=\left\langle\quad a, b, c \quad \mid a^{4}=b^{4}=c^{2}=1,(b, c)=a^{2},(a, c)=a^{2} b^{2},(a, b)=1\right\rangle ; \\
& G_{34}=\left\langle\quad a, b, c \quad \mid a^{4}=b^{4}=c^{2}=1,(b, c)=b^{2},(a, c)=a^{2},(a, b)=1\right\rangle ; \\
& G_{35}=\left\langle\quad a, b, c \quad \mid a^{4}=b^{4}=1, c^{2}=a^{2},(b, c)=b^{2},(a, c)=a^{2},(a, b)=1\right\rangle .
\end{aligned}
$$

Let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G),\left(i_{k}=1,2,3\right)$. The results of our computations will be written in a table, as before, with respect to the basis

$$
\begin{cases}\left\{(1+a)^{j_{1}}(1+b)^{j_{2}}(1+c)^{j_{3}} \quad \left\lvert\, \begin{array}{l}
j_{1}+j_{2}+j_{3}=2 \\
\\
\\
j_{1}, j_{2}, j_{3}=0,1,2
\end{array}\right.\right\}\end{cases}
$$

of the ideal $A^{3}(K G)$. If $G=G_{31}$ then

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+a)^{2}+(1+b)^{2}\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

if $G=G_{32}$ then

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) ; \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+a)^{2}+(1+b)^{2}\left(\bmod A^{3}(K G)\right) ; \\
(1+c)^{2} & \equiv(1+a)^{2}+(1+b)^{2}\left(\bmod A^{3}(K G)\right),
\end{aligned}
$$

if $G=G_{33}$ then

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+a)^{2}+(1+b)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

if $G=G_{34}$ then

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+b)^{2}\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

if $G=G_{35}$ then

$$
\begin{aligned}
(1+c)(1+a) & \equiv(1+a)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+b)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+c)^{2} & \equiv(1+a)^{2}
\end{aligned}
$$

Using the last 12 identities we get

	$(1+a)^{2}$	$(1+a)(1+b)$	$(1+a)(1+c)$	$(1+b)(1+c)$	$(1++b)^{2}$
$b_{1} b_{2}$	$\alpha_{1} \beta_{1}+\Delta(\alpha, \beta)$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{2} \beta_{2}+\Omega(\alpha, \beta)$
$b_{2} b_{1}$	$\alpha_{1} \beta_{1}+\Delta(\beta, \alpha)$	$\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}$	$\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}$	$\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$	$\alpha_{2} \beta_{2}+\Omega(\beta, \alpha)$
$b_{1} b_{3}$	$\alpha_{1} \gamma_{1}+\Delta(\gamma, \alpha)$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{2} \gamma_{2}+\Omega(\gamma, \alpha)$
$b_{3} b_{1}$	$\alpha_{1} \gamma_{1}+\Delta(\alpha, \gamma)$	$\alpha_{1} \gamma_{2}+\alpha_{2} \gamma_{1}$	$\alpha_{1} \gamma_{3}+\alpha_{3} \gamma_{1}$	$\alpha_{2} \gamma_{3}+\alpha_{3} \gamma_{2}$	$\alpha_{2} \gamma_{2}+\Omega(\alpha, \gamma)$
$b_{2} b_{3}$	$\beta_{1} \gamma_{1}+\Delta(\gamma, \beta)$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{2} \gamma_{2}+\Omega(\gamma, \beta)$
$b_{3} b_{2}$	$\beta_{1} \gamma_{1}+\Delta(\beta, \gamma)$	$\beta_{1} \gamma_{2}+\beta_{2} \gamma_{1}$	$\beta_{1} \gamma_{3}+\beta_{3} \gamma_{1}$	$\beta_{2} \gamma_{3}+\beta_{3} \gamma_{2}$	$\beta_{2} \gamma_{2}+\Omega(\beta, \gamma)$
b_{1}^{2}	$\alpha_{1}^{2}+\Delta(\alpha, \alpha)$	0	0	$\left.\alpha_{2}^{2}+\Omega, \alpha\right)$	
b_{2}^{2}	$\beta_{1}^{2}+\Delta(\beta, \beta)$	0	0	α^{2}	0
b_{3}^{2}	$\gamma_{1}^{2}+\Delta(\gamma, \gamma)$	0	0	0	$\beta_{2}^{2}+\Omega(\beta, \beta)$

where $\Delta(\delta, \epsilon)$ and $\Omega(\delta, \epsilon)$ is the following:

	$\Delta(\delta, \epsilon)$	$\Omega(\delta, \epsilon)$
G_{31}	$\delta_{3} \epsilon_{1}+\delta_{3} \epsilon_{2}$	$\delta_{3} \epsilon_{2}$
G_{32}	$\delta_{3} \epsilon_{1}+\delta_{3} \epsilon_{2}+\delta_{3} \epsilon_{3}$	$\delta_{3} \epsilon_{2}+\delta_{3} \epsilon_{3}$
G_{33}	$\delta_{3} \epsilon_{1}+\delta_{3} \epsilon_{2}$	$\delta_{3} \epsilon_{1}$
G_{34}	$\delta_{3} \epsilon_{1}$	$\delta_{3} \epsilon_{2}$
G_{35}	$\delta_{3} \epsilon_{1}+\delta_{3} \epsilon_{3}$	$\delta_{3} \epsilon_{2}$

Evidently the first six lines not equal neither zero nor the last three lines. Since the dimension of $A^{2}(K G) / A^{3}(K G)$ equal to 5 and $K G$ is not commutative, we have either $b_{1} b_{2} \equiv b_{2} b_{1}, b_{1} b_{3} \not \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$ or $b_{1} b_{2} \equiv b_{2} b_{1}$, $b_{1} b_{3} \equiv b_{3} b_{1}, b_{2} b_{3} \not \equiv b_{3} b_{2}\left(\bmod A^{3}(K G)\right)$, because the other cases are similar to these.

In both of cases we can see that $b_{1} b_{2} \equiv b_{2} b_{1}\left(\bmod A^{3}(K G)\right)$. Assume that $\alpha_{3}=0$. Second and sixth columns give that $\beta_{3}=\gamma_{3}=0$ which is impossible, so $\alpha_{3}, \beta_{3}, \gamma_{3}$ are not zero. Columns 2 and 6 imply b_{2} depends on b_{1} modulo $A^{2}(K G)$ which is a contradiction so these group algebras have no filtered multiplicative bases.

Case 6. Let $G=G_{49}$ be and put $u \equiv(1+a)+(1+c), v \equiv(1+b)+(1+d)$, $w \equiv(1+b)+(1+c)+(1+d)$ and $z \equiv(1+a)+(1+b)+(1+c)\left(\bmod A^{2}(K G)\right)$.

Using the identities:

$$
\begin{aligned}
(1+b)(1+a) & \equiv(1+a)(1+b)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+d)(1+c) & \equiv(1+c)(1+d)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) \\
(1+a)^{2} & \equiv(1+b)^{2} \equiv(1+c)^{2} \equiv(1+d)^{2}\left(\bmod A^{3}(K G)\right)
\end{aligned}
$$

we get that

- $\{u v, u w, u z, z u, v w, v z, w z\}$ is a basis of $A^{2}(K G) / A^{3}(K G)$;
- $\{u z u, u v w, v z u, w z u, v u z, u z w, v w z, z u z\}$ is a basis for $A^{3}(K G) / A^{4}(K G)$;
- $\{v u z u, w u z u, z u z u, v z u z, w z u z, u v w z, v w z u\}$ is a basis of $A^{4}(K G) / A^{5}(K G)$;
- $\{v z u z, w z u z, v w u z u, v w z u z\}$ is a basis of $A^{5}(K G) / A^{6}(K G)$,
and the element $v w z u z u$ is a basis for $A^{6}(K G)$.
Case 7. Let

$$
\begin{aligned}
G=G_{50}=\langle\quad a, b, c, d \quad| \quad a^{4}=b^{2}=c^{2}=d^{4}=1, a^{2}=d^{2} \\
\left.(a, d)=(b, c)=(c, d)=a^{2},(a, b)=(a, c)=(b, d)=1 \quad\right\rangle .
\end{aligned}
$$

Using the identities:

$$
\begin{aligned}
(1+d)(1+a) & \equiv(1+a)(1+d)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) ; \\
(1+c)(1+b) & \equiv(1+b)(1+c)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) ; \\
(1+d)(1+c) & \equiv(1+c)(1+d)+(1+a)^{2}\left(\bmod A^{3}(K G)\right) ; \\
(1+a)^{2} & \equiv(1+d)^{2}\left(\bmod A^{3}(K G)\right),
\end{aligned}
$$

let us compute $b_{i_{1}} b_{i_{2}}$ modulo $A^{3}(K G)$ where $\left.i_{k}=1,2,3,4\right\}$. The results of our computations we shall write in a table, similar to previous cases with respect to the basis

$$
\left\{(1+a)^{j_{1}}(1+b)^{j_{2}}(1+c)^{j_{3}}(1+d)^{j_{4}} \quad \left\lvert\, \begin{array}{l}
j_{1}+j_{2}+j_{3}+j_{4}=2 \\
\\
\\
j_{1}=0,1,2 ; j_{2}, j_{3}, j_{4}=0,1
\end{array}\right.\right\}
$$

of the ideal $A^{2}(K G)$:

	(1+a) (1+b)	+c)	$(1+d)$	$(1+b)(1+c)$	(1+b) $(1+d)$	$1+c)(1+d)$	$1+a)^{2}$
$\overline{b_{1} b_{2}}$	$\Delta^{1,2}(\alpha, \beta)$	$\Delta^{1,3}(\alpha, \beta)$	$\Delta^{1,4}(\alpha, \beta)$	$\Delta^{2,3}(\alpha, \beta)$	$\Delta^{2,4}(\alpha, \beta)$	$\Delta^{3,4}(\alpha, \beta)$	$\Omega_{\alpha, \beta}+\alpha_{3} \beta_{2}+\alpha_{4} \beta_{1}+\alpha_{4} \beta_{3}$
$b_{2} b_{1}$	$\Delta^{1,2}(\alpha, \beta)$	$\Delta^{1,3}(\alpha, \beta)$	$\Delta^{1,4}(\alpha, \beta)$	$\Delta^{2,3}(\alpha, \beta)$	$\Delta^{2,4}(\alpha, \beta)$	$\Delta^{3,4}(\alpha, \beta)$	$\Omega_{\alpha, \beta}+\alpha_{2} \beta_{3}+\alpha_{1} \beta_{4}+\alpha_{3} \beta_{4}$
$b_{1} b_{3}$	$\Delta^{1,2}(\alpha, \gamma)$	$\Delta^{1,3}(\alpha, \gamma)$	$\Delta^{1,4}(\alpha, \gamma)$	$\Delta^{2,3}(\alpha, \gamma)$	$\Delta^{2,4}(\alpha, \gamma)$	$\Delta^{3,4}(\alpha, \gamma)$	$\Omega_{\alpha, \gamma}+\alpha_{3} \gamma_{2}+\alpha_{4} \gamma_{1}+\alpha_{4} \gamma_{3}$
$b_{3} b_{1}$	$\Delta^{1,2}(\alpha, \gamma)$	$\Delta^{1,3}(\alpha, \gamma)$	$\Delta^{1,4}(\alpha, \gamma)$	$\Delta^{2,3}(\alpha, \gamma)$	$\Delta^{2,4}(\alpha, \gamma)$	$\Delta^{3,4}(\alpha, \gamma)$	$\Omega_{\alpha, \gamma}+\alpha_{2} \gamma_{3}+\alpha_{1} \gamma_{4}+\alpha_{3} \gamma_{4}$
$b_{1} b_{4}$	$\Delta^{1,2}(\alpha, \delta)$	$\Delta^{1,3}(\alpha, \delta)$	$\Delta^{1,4}(\alpha, \delta)$	$\Delta^{2,3}(\alpha, \delta)$	$\Delta^{2,4}(\alpha, \delta)$	$\Delta^{3,4}(\alpha, \delta)$	$\Omega_{\alpha, \delta}+\alpha_{3} \delta_{2}+\alpha_{4} \delta_{1}+\alpha_{4} \delta_{3}$
$b_{4} b_{1}$	$\Delta^{1,2}(\alpha, \delta)$	$\Delta^{1,3}(\alpha, \delta)$	$\Delta^{1,4}(\alpha, \delta)$	$\Delta^{2,3}(\alpha, \delta)$	$\Delta^{2,4}(\alpha, \delta)$	$\Delta^{3,4}(\alpha, \delta)$	$\Omega_{\alpha, \delta}+\alpha_{2} \delta_{3}+\alpha_{1} \delta_{4}+\alpha_{3} \delta_{4}$
$b_{2} b_{3}$	$\Delta^{1,2}(\beta, \gamma)$	$\Delta^{1,3}(\beta, \gamma)$	$\Delta^{1,4}(\beta, \gamma)$	$\Delta^{2,3}(\beta, \gamma)$	$\Delta^{2,4}(\beta, \gamma)$	$\Delta^{3,4}(\beta, \gamma)$	$\Omega_{\beta, \gamma}+\beta_{3} \gamma_{2}+\beta_{4} \gamma_{1}+\beta_{4} \gamma_{3}$
$b_{3} b_{2}$	$\Delta^{1,2}(\beta, \gamma)$	$\Delta^{1,3}(\beta, \gamma)$	$\Delta^{1,4}(\beta, \gamma)$	$\Delta^{2,3}(\beta, \gamma)$	$\Delta^{2,4}(\beta, \gamma)$	$\Delta^{3,4}(\beta, \gamma)$	$\Omega_{\beta, \gamma}+\beta_{2} \gamma_{3}+\beta_{1} \gamma_{4}+\beta_{3} \gamma_{4}$
$b_{2} b_{4}$	$\Delta^{1,2}(\beta, \delta)$	$\Delta^{1,3}(\beta, \delta)$	$\Delta^{1,4}(\beta, \delta)$	$\Delta^{2,3}(\beta, \delta)$	$\Delta^{2,4}(\beta, \delta)$	$\Delta^{3,4}(\beta, \delta)$	$\Omega_{\beta, \delta}+\beta_{3} \delta_{2}+\beta_{4} \delta_{1}+\beta_{4} \delta_{3}$
$b_{4} b_{2}$	$\Delta^{1,2}(\beta, \delta)$	$\Delta^{1,3}(\beta, \delta)$	$\Delta^{1,4}(\beta, \delta)$	$\Delta^{2,3}(\beta, \delta)$	$\Delta^{2,4}(\beta, \delta)$	$\Delta^{3,4}(\beta, \delta)$	$\Omega_{\beta, \delta}+\beta_{2} \delta_{3}+\beta_{1} \delta_{4}+\beta_{3} \delta_{4}$
$b_{3} b_{4}$	$\Delta^{1,2}(\gamma, \delta)$	$\Delta^{1,3}(\gamma, \delta)$	$\Delta^{1,4}(\gamma, \delta)$	$\Delta^{2,3}(\gamma, \delta)$	$\Delta^{2,4}(\gamma, \delta)$	$\Delta^{3,4}(\gamma, \delta)$	$\Omega_{\gamma, \delta}+\gamma_{3} \delta_{2}+\gamma_{4} \delta_{1}+\gamma_{4} \delta_{3}$
$b_{4} b_{3}$	$\Delta^{1,2}(\gamma, \delta)$	$\Delta^{1,3}(\gamma, \delta)$	$\Delta^{1,4}(\gamma, \delta)$	$\Delta^{2,3}(\gamma, \delta)$	$\Delta^{2,4}(\gamma, \delta)$	$\Delta^{3,4}(\gamma, \delta)$	$\Omega_{\gamma, \delta}+\gamma_{2} \delta_{3}+\gamma_{1} \delta_{4}+\gamma_{3} \delta_{4}$
b_{1}^{2}	0	0	0	0	0	0	$\Omega_{\alpha, \alpha}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{3} \alpha_{4}$
b_{2}^{2}	0	0	0	0	0	0	$\Omega_{\beta, \beta}+\beta_{2} \beta_{3}+\beta_{1} \beta_{4}+\beta_{3} \beta_{4}$
b_{3}^{2}	0	0	0	0	0	0	$\Omega_{\gamma, \gamma}+\gamma_{2} \gamma_{3}+\gamma_{1} \gamma_{4}+\gamma_{3} \gamma_{4}$
${ }^{\text {b }}$	0	0	0	0	0	0	$\Omega_{\delta, \delta}+\delta_{2} \delta_{3}+\delta_{1} \delta_{4}+\delta_{3} \delta_{4}$

where $\Omega_{\alpha, \beta}=\alpha_{1} \beta_{1}+\alpha_{4} \beta_{4}$ and $\Delta^{i, j}(\alpha, \beta)=\alpha_{i} \beta_{j}+\alpha_{j} \beta_{i}$.
It is easy to see that the first twelve lines not equal neither zero nor the last four lines.

Since $\Delta^{i, j}(\varepsilon, \eta)$ is a subdeterminant of Δ and $\Delta \neq 0$, by expansion theorem of determinant $b_{i} b_{j}$ cannot be equivalent other else $b_{k} b_{l}\left(\bmod A^{3}(K G)\right)$ apart from the case when $k=j$ and $l=i$.

Assume that $\left\{u \equiv b_{1}, v \equiv b_{2}, w \equiv b_{3}, z \equiv b_{4}\left(\bmod A^{2}(K G)\right)\right\}$ and the coefficients of u, v, w, z will be denoted by $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$, respectively.

Since the dimension of $A^{2}(K G) / A^{3}(K G)$ is equal to 7 and this group algebra is not commutative, we have that

$$
\begin{align*}
& u v \equiv v u, u w \equiv w u, \quad u z \equiv z u, \quad v w \equiv w v, \quad v z \equiv z v \\
& w z \not \equiv z w, \tag{6}\\
& u^{2} \equiv v^{2} \equiv w^{2} \equiv z^{2} \equiv 0\left(\bmod A^{3}(K G)\right)
\end{align*}
$$

and the other cases are analogous to this one.
Assume that $K G$ has a filtered multiplicative basis and $\{u, v, w, z\}$ form a basis of $A(K G) / A^{2}(K G)$, satisfies (6) and
$\{u v, u w, u z, v w, v z, w z, z w\}$ is a basis for $\quad A^{2}(K G) / A^{3}(K G)$;
$\{u v w, u v z, u w z, u z w, v w z, v z w, w z w, z w z\}$ is a basis of $A^{3}(K G) / A^{4}(K G)$;
$\{u v w z, u v z w, u w z w, u z w z, v w z w, v z w z, w z w z\}$ is a basis of $A^{4}(K G) / A^{5}(K G)$;
$\{u v w z w, u v z w z, u w z w z, v w z w z\}$ is a basis for $A^{5}(K G) / A^{6}(K G)$;
$\{u v w z w z\}$ is a basis for $A^{6}(K G)$.
Suppose that $\alpha_{4}=0$ and there exists $b \in\{v, w, z\}$ such that b is congruent with $\varepsilon_{1}(1+a)+\varepsilon_{2}(1+b)+\varepsilon_{3}(1+c)+\varepsilon_{4}(1+d)\left(\bmod A^{2}(K G)\right)$ and $\varepsilon_{4}=0$. The facts $u^{2} \equiv b^{2} \equiv 0$ and $u b \equiv b u\left(\bmod A^{3}(K G)\right)$ give that $\alpha_{3} \varepsilon_{2}+\alpha_{2} \varepsilon_{3}=0$ and $\alpha_{1}^{2}+\alpha_{2} \alpha_{3}=\varepsilon_{1}^{2}+\varepsilon_{2} \varepsilon_{3}=0$. It is very simple to prove that either $b_{1} \equiv 0$ or $b_{1} \equiv b_{i}$ $\left(\bmod A^{2}(K G)\right)$, which is impossible.

Now, we shall consider two subcases.
Subcase 1. Suppose that $\alpha_{4}=0$ and $\beta_{4}=\gamma_{4}=1$. For $\alpha_{2}=0$ it follows that $\Delta=0$, so we can also assume that $\alpha_{2}=1$. According to eighth column of the previous table

$$
\begin{align*}
\alpha_{1}^{2}+\alpha_{3} & =0 ; \\
\beta_{1}+\beta_{3}+1 & =\beta_{1}^{2}+\beta_{2} \beta_{3} ; \tag{8}\\
\gamma_{1}+\gamma_{3}+1 & =\gamma_{1}^{2}+\gamma_{2} \gamma_{3} ;
\end{align*}
$$

Since $v w \equiv w v\left(\bmod A^{3}(K G)\right)$ we get $\beta_{3} \gamma_{2}+\gamma_{1}+\gamma_{3}+1=\beta_{2} \beta_{3}+\beta_{1}+\beta_{3}+1$ and using (8) it follows that

$$
\begin{equation*}
\left(\beta_{1}+\gamma_{1}\right)^{2}=\left(\beta_{2}+\gamma_{2}\right)\left(\beta_{3}+\gamma_{3}\right) \tag{9}
\end{equation*}
$$

Also eighth column of the previous table and $u v \equiv v u, u w \equiv w u\left(\bmod A^{3}(K G)\right)$ give that $\alpha_{1}^{2} \beta_{2}+\beta_{3}=\alpha_{1}^{2} \gamma_{2}+\gamma_{3}$, so

$$
\begin{equation*}
\alpha_{1}^{2}\left(\beta_{2}+\gamma_{2}\right)=\beta_{3}+\gamma_{3} \tag{10}
\end{equation*}
$$

Thus (9) and (10) give the equation $\beta_{1}+\gamma_{1}=\alpha_{1}\left(\beta_{2}+\gamma_{2}\right)$.
Since $\alpha_{1}^{2}=\alpha_{3}$ we have established $v+w \equiv\left(\beta_{2}+\gamma_{2}\right) u\left(\bmod A^{3}(K G)\right)$ which is a contradiction.

Subcase 2. Suppose that $\alpha_{4}, \beta_{4} \neq 0$ and without loss of generality we can assume that $\alpha_{4}=\beta_{4}=1$. Simple computations show that $\left\{u \equiv b_{1}+b_{2}, v \equiv b_{2}, w \equiv\right.$ $\left.b_{3}, z \equiv b_{4}\left(\bmod A^{2}(K G)\right)\right\}$ form a basis of $A(K G) / A^{2}(K G)$, satisfies conditions (6) and (7), but it is a contradiction to subcase 1 , so this group algebra has no filtered multiplicative basis. This completes the proof of the theorem.

References

1. Bautista, R., Gabriel, P., Roiter, A., and Salmeron, L., Representation-finite algebras and multiplicative bases, Invent.-Math. 81(2) (1985), 217-285.
2. Bovdi, V., On filtered multiplicative bases of group algebras, Arch. Math. (Basel) 74 (2000), 81-88.
3. Bovdi, V., On filtered multiplicative bases of group algebras II, Algebr. Represent. Theory 5 (2003), 1-15.
4. Blackburn, N., On prime-power groups with two generators, Proc. Cambridge Phil. Soc. 54 (1958), 327-337.
5. Carns, G.L., Chao, C.-Y., On the radical of the group algebra of a p-group over a modular field, Proc. Amer. Math. Soc. 33(2) (1972), 323-328.
6. Jennings, S.A., The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
7. Huppert,B., Blackburn, N., Finite groups, Springer-Verlag, 1982, pp. 531.
8. Kupisch, H., Symmetrische Algebren mit endlich vielen unzerlegbaren Darstellungen, I. J. Reine Angew. Math. 219 (1965), 1-25.
9. Paris, L., Some examples of group algebras without filtred multiplicative basis, L'Enseignement Math. 33 (1987), 307-314.
10. Landrock, P., Michler, G.O., Block structure of the smallest Janko group, Math. Ann. 232(3) (1978), 205-238.

Received November 27, 2003.

Institute of Mathematics and Computer Science
College of Nyíregyháza
Sóstói Út 31/b, H-4410 Nyíregyháza
Hungary
BALOGHZS@NYF.HU

[^0]: 2000 Mathematics Subject Classification. Primary 16A46, 16A26, 20C05. Secondary 19A22. Supported by Hungarian National Fund for Scientific Research (OTKA) grants No. T037202 and No. T043034

