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THE DIOPHANTINE EQUATION x4 − y4 = z2 IN THREE
QUADRATIC FIELDS

SÁNDOR SZABÓ

Abstract. Each solution of the equation x4 − y4 = z2 in the integers of

the quadratic field Q(
√

d) is also a solution of the equation xyz = 0, where
d = −2,−1, 2.

1. Introduction

The solution (x0, y0, z0) of the equation x4 − y4 = z2 is called trivial if x0 = 0
or y0 = 0 or z0 = 0. It is a classical result that the equation x4 − y4 = z2 has only
trivial solutions in integers. (See for example [2] or [3].) The purpose of this paper
is to show that the equation x4 − y4 = z2 has only trivial solutions in some larger
domains, namely in the integers of Q(

√
d), where d = −2,−1, 2.

The proof is a standard application of the infinite decent. The details are de-
pending on the arithmetical properties of Q(

√
d). As a matter of fact the three

values of d are singled out because these are the cases in which the rational prime
2 is an associate of a square in Q(

√
d). Let ω be a prime divisor of 2 in Q(

√
d).

Thus 2 = µω2, where µ is a unit in Q(
√

d). The corresponding values of d, µ, ω
are listed in the table below.

d µ ω

−2 −1
√−2

−1 −√−1 1 +
√−1

2 1
√

2

Table 1

We will use the principal ideals formed by the algebraic integer multiples of ωn

for 1 ≤ n ≤ 4. However, usually we will prefer to formulate our statements in terms
of congruences instead of ideals. Clearly, ω2, ω4 are associates of 2, 4 respectively
and so they span the same principal ideals. Similarly, ω, ω3 are associates of ω, 2ω
and so they span the same ideals. We will use the next observation several times.
If an integer α of Q(

√
d) and α ≡ 1 (mod ω), then α2 ≡ 1 (mod ω2) and α4 ≡ 1
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(mod ω4). Indeed, α can be written in the form α = kω + 1, where k is an integer
of Q(

√
d). Then computing α2 and α4

α2 = (kω)2 + 2(kω) + 1,

α4 = (kω)4 + 4(kω)3 + 6(kω)2 + 4(kω) + 1

show that α2 ≡ 1 (mod ω2) and α4 ≡ 1 (mod ω4).

2. The equation in Q(
√−1)

We list the properties of Q(
√−1) which play part later. Let i =

√−1 and
ω = 1 + i. The ring of integers of Q(i) is Z[i] = {u + vi : u, v ∈ Z} which is a
unique factorization domain. The units of Z[i] are 1, i, −1, −i. The norm of ω is
2 and consequently ω is a prime in Z[i]. The prime factorization of 2 is (−i)ω2.

Theorem 1. The equation x4 − y4 = z2 has only trivial solutions in Z[i].

Proof. We divide the proof into (6) smaller steps.
(1) If (x0, y0, z0) is a nontrivial solution of the equation x4 − y4 = z2, then we

may assume that x0, y0, z0 are pairwise relatively primes.
Let g be the greatest common divisor of x0 and y0 in Z[i]. As x0 6= 0, it follows

that g 6= 0. Dividing x4
0 − y4

0 = z2
0 by g4 we get (x0/g)4 − (y0/g)4 = (z0/g2)2.

This equation holds in Q(i). The left hand side of the equation is an element
of Z[i]. Consequently the right hand side of the equation belongs to Z[i]. Thus
(x0/g, y0/g, z0/g2) is also a nontrivial solution of the equation x4− y4 = z2 in Z[i].
Hence we may assume that x0 and y0 are relatively primes in Z[i]. If there is a
prime q of Z[i] such that q|x0 and q|z0, then q|y0. This violates that x0 and y0 are
relatively primes. Similarly, if q|y0 and q|z0, then q|x0 violating again that x0 and
y0 are relatively primes. Thus we may assume that x0, y0, z0 are pairwise relatively
primes.

(2) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = z2 in Z[i]
such that x0, y0, z0 are pairwise relatively primes. Note that at most one of x0, y0,
z0 can be congruent to 0 modulo ω. We consider the following four cases. None of
x0, y0, z0 is congruent to 0 modulo ω and three cases depending on one of x0, y0,
z0 is congruent to 0 modulo ω respectively. Table 2 summarizes the cases.

x0 ≡ y0 ≡ z0 ≡
case 1 1 1 1 (mod ω)

case 2 0 1 1 (mod ω)

case 3 1 0 1 (mod ω)

case 4 1 1 0 (mod ω)

Table 2

In case 1 the equation x4
0−y4

0 = z2
0 leads to the contradiction 1−1 ≡ 1 (mod ω).

Note that if (x0, y0, z0) is a nontrivial solution of the equation x4−y4 = z2, then
(y0, x0, iz0) is also a nontrivial solution of the equation. This observation reduces
case 2 to case 3.

(3) In case 3 let (x1, ω
ry1, z1) be a solution of the equation x4 − y4 = z2, where

r ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that z1 ≡ 1 (mod ω2).
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In order to prove this claim write z1 in the form z1 = kω2 + l, k, l ∈ Z[i] and
compute z2

1 .
z2
1 = k2ω4 + 2kω2l + l2.

From this it follows that z2
1 ≡ l2 (mod ω4) Since the elements 0, 1, i, 1 + i form

a complete set of representatives modulo ω2 and since z1 ≡ 1 (mod ω) we may
choose l to be 1 or i. Consequently, z2

1 is congruent to 1 or −1 modulo ω4. The
equation x4

1 − ω4ry4
1 = z2

1 gives that 1 ≡ z2
1 (mod ω4) and so z1 ≡ 1 (mod ω2).

(4) In case 3 let (x1, ω
ry1, z1) be a solution of the equation x4 − y4 = z2, where

r ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that there are pairwise relatively prime elements x2, y2, z2 of Z[i] such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and (x2, ω

r−1y2, z2) is a solution of the equation
x4 − y4 = z2.

In order to verify the claim write the equation x4
1 − ω4ry4

1 = z2
1 in the form

ω4ry4
1 = (x2

1 − z1)(x2
1 + z1) and compute the greatest common divisor of (x2

1 − z1)
and (x2

1 + z1). Let g be this greatest common divisor. As g|ω4ry4
1 it follows that

g 6= 0. g|(x2
1 − z1), g|(x2

1 + z1) implies that g|2x2
1, g|2z1 If q is a prime divisor of g

with q 6 |ω, then we get q|x1, q|z1. But we know that this is not the case as x1 and
z1 are relatively primes. Thus g = ωs and 0 ≤ s ≤ 2 since g|2. By step (3) z1 ≡ 1
(mod ω2). This together with x2

1 ≡ 1 (mod ω2) gives that (x2
1− z1) ≡ 0 (mod ω2),

(x2
1 + z1) ≡ 0 (mod ω2). Therefore g = ω2. The unique factorization property in

Z[i] gives that there are relatively prime elements a, b ∈ Z[i] such that

x2
1 − z1 = ω2a, x2

1 + z1 = ω2b.

Let a = ωua1, b = ωvb1. So ω4ry4
1 = ωu+v+4a1b1. By the unique factorization

property in Z[i] there are elements a2, b2 and a unit ε in Z[i] for which

x2
1 − z1 = ωu+2εa4

2, x2
1 + z1 = ωv+2ε−1b4

2,

4r = u + v + 4, a4
2b

4
2 = y4

1 .

Here a2, b2 are prime to ω. It follows that a2 ≡ b2 ≡ 1 (mod ω). By addition we
get

2x2
1 = ωv+2ε−1b4

2 + ωu+2εa4
2.

After dividing by ω2 it gives

µx2
1 = ωvε−1b4

2 + ωuεa4
2,

where µ = −i. We distinguish two cases depending on either u = 0, v = 4r − 4 or
v = 0, u = 4r − 4. When u = 0, v = 4r − 4 we get

−ix2
1 = ω4r−4ε−1b4

2 + εa4
2.

If 4r − 4 = 0, then this reduces to

−i ≡ ε−1 + ε (mod ω2).

But this is not possible as ε−1 + ε ≡ 0 (mod ω2). The computation is summarized
in Table 3.

Thus 4r − 4 6= 0. Now
−i ≡ ε (mod ω2).

From this it follows that ε = ±i. By multiplying by −ε we get

(iε)x2
1 = ω4r−4(−ε−1ε)b4

2 + (−ε2)a4
2.

Note that iε is a square of an element of Z[i], say iε = σ2. Thus (a2, ω
r−1b2, σx1),

t ≥ 2 is a nontrivial solution of the equation x4 − y4 = z2.
When v = 0, u = 4r − 4 we get

−ix2
1 = ε−1b4

2 + ω4r−4εa4
2.
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ε ε−1 ε−1 + ε

1 1 2

i −i 0

−1 −1 −2

−i i 0

Table 3

If 4r − 4 = 0, then this reduces to

−i ≡ ε−1 + ε (mod ω2).

But this is not possible as ε−1 + ε ≡ 0 (mod ω2). Thus 4r − 4 6= 0. Now

−i ≡ ε (mod ω2).

From this it follows that ε = ±i. By multiplying by ε−1 we get

(−iε−1)x2
1 = (ε−2)b4

2 + ω4r−4(ε−1ε)a4
2.

Note that −iε−1 is a square of an element of Z[i], say −iε−1 = σ2. Thus

(ωr−1a2, b2, σx1), r ≥ 2

is a nontrivial solution of the equation x4 − y4 = z2.
(5) In case 4 let (x1, y1, ω

sz1) be a solution of the equation x4 − y4 = z2, where
s ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that there are pairwise relatively prime elements x2, y2, z2 of Z[i] such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and either (ωs−2x2, y2, z2) or (x2, ω

s−2y2, z2) is a
solution of the equation x4 − y4 = z2.

In order to verify the claim write the equation x4
1 − y4

1 = ω2sz2
1 in the form

ω2sz2
1 = (x2

1 − y2
1)(x2

1 + y2
1) and compute the greatest common divisor of (x2

1 − y2
1)

and (x2
1 + y2

1). Let g be this greatest common divisor. As g|ω2sz2
1 it follows that

g 6= 0. g|(x2
1− y2

1), g|(x2
1 + y2

1) implies that g|2x2
1, g|2y2

1 . If q is a prime divisor of g
with q 6 |ω, then we get q|x1, q|y1. But we know that this is not the case as x1 and
y1 are relatively primes. Thus g = ωs and 0 ≤ s ≤ 2 since g|2. As (x2

1 − y2
1) ≡ 0

(mod ω2), (x2
1+y2

1) ≡ 0 (mod ω2). It follows that g = ω2. The unique factorization
property in Z[i] gives that there are relatively prime elements a, b ∈ Z[i] such that

x2
1 − y2

1 = ω2a, x2
1 + y2

1 = ω2b.

Let a = ωua1, b = ωvb1. So ω2sz2
1 = ωu+v+4a1b1. By the unique factorization

property in Z[i] there are elements a2, b2 and a unit ε in Z[i] for which

x2
1 − y2

1 = ωu+2εa2
2, x2

1 + y2
1 = ωv+2ε−1b2

2,

2s = u + v + 4, a2
2b

2
2 = z2

1 .

Here a2, b2 are prime to ω. It follows that a2 ≡ b2 ≡ 1 (mod ω). By addition and
subtraction we get

2x2
1 = ωv+2ε−1b2

2 + ωu+2εa2
2,

2y2
1 = ωv+2ε−1b2

2 − ωu+2εa2
2.

After dividing by ω2 it gives

µx2
1 = ωvε−1b2

2 + ωuεa2
2,

µy2
1 = ωvε−1b2

2 − ωuεa2
2,
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where µ = −i. By multiplying the two equations together and multiplying by ε2

we get
µ2ε2x2

1y
2
1 = ω2vb4

2 − ω2uε4a4
2.

We distinguish two cases depending on either u = 0, v = 2s−4 or v = 0, u = 2s−4.
When u = 0, v = 2s− 4 we get

µ2ε2x2
1y

2
1 = ω4s−8b4

2 − ε4a4
2.

Thus (ωs−2b2, εa2, µεx1y1), is a nontrivial solution of the equation x4 − y4 = z2.
When v = 0, u = 2s− 4 we get

µ2ε2x2
1y

2
1 = b4

2 − ω4s−8ε4a4
2.

Thus (b2, ω
s−2εa2, µεx1y1), is a nontrivial solution of the equation x4 − y4 = z2.

(6) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = z2 in Z[i].
Either y0 ≡ 0 (mod ω) or z0 ≡ 0 (mod ω). In other words there is a solution
(x1, ω

ry1, z1) or (x1, y1, ω
sz1) with x1, y1, z1 ≡ 1 (mod ω), r, s ≥ 1. By step (5)

the second case reduces to the first one. In the first case choose a solution for
which r is minimal. According to step (4) there is a solution (x2, ω

r−1y2, z2), where
x2, y2, z2 ≡ 1 (mod ω), r ≥ 2. This contradicts the choice of r and so completes
the proof. ¤

3. The equation in Q(
√−2)

Let ω =
√−2. The ring of integers of Q(

√−2) is Z[ω] = {u + vω : u, v ∈ Z}
and Z[ω] is a unique factorization domain. The units in Z[ω] are −1, 1. The prime
factorization of 2 is 2 = (−1)ω2.

Theorem 2. The equation x4 − y4 = z2 has only trivial solutions in Z[
√−2].

Proof. We divide the proof into (7) steps many of them similar to the corresponding
steps in the proof of Theorem 1.

(1) If (x0, y0, z0) is a nontrivial solution of the equation x4 − y4 = z2, then we
may assume that x0, y0, z0 are pairwise relatively primes.

(2) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = z2 in Z[ω]
such that x0, y0, z0 are pairwise relatively primes. We face with four cases listed
in Table 2.

In case 1 the equation x4
0 − y4

0 = z2
0 gives the contradiction 1− 1 ≡ 1 (mod ω).

Next we show that case 2 is not possible either. From the equation x4
0− y4

0 = z2
0

it follows that −1 ≡ z0 (mod ω4). Writing z0 in the form z0 = kω2 + l, k, l ∈ Z[ω]
and computing z2

0

z2
0 = k2ω4 + 2kω2l + l2

we can see that z2
0 ≡ l2 (mod ω4). Note that 0, 1, ω, 1 + ω is a complete set of

representatives modulo ω2 and z0 ≡ 1 (mod ω) we can choose l to be either 1 or
1 + ω. These lead to the following contradictions

−1 ≡ 1 (mod ω4),

−1 ≡ (1 + ω)2 ≡ −1 + 2ω (mod ω4)
respectively.

(3) In case 3 let (x1, ω
ry1, z1) be a solution of the equation x4 − y4 = z2, where

r ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that z1 ≡ 1 (mod ω2).

The equation x4
1 − ω4ry4

1 = z2
1 gives that 1 ≡ z2

1 (mod ω4) and so z1 ≡ 1
(mod ω2). From step (2) we know that if z1 is in the form z1 = kω2 + l, k, l ∈ Z[ω],
then z2

1 ≡ l2 (mod ω4) and we may choose l to be 1 or 1 + ω. Since the second
choice leads to the contradiction 1 ≡ (1 + ω)2 ≡ −1 + 2ω (mod ω4) we left with
the l = 1 possibility and so z1 ≡ 1 (mod ω2).
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(4) In case 3 let (x1, ω
ry1, z1) be a solution of the equation x4 − y4 = z2, where

r ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that there are pairwise relatively prime elements x2, y2, z2 of Z[ω] such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and (x2, ω

r−1y2, z2) is a solution of the equation
x4 + y4 = z2.

A similar argument we used in the proof of Theorem 1 gives that from x4
1 −

ω4ry4
1 = z2

1 it follows that

µx2
1 = ωvε−1b4

2 + ωuεa4
2,

where µ = −1. We distinguish two cases depending on either u = 0, v = 4r − 4 or
v = 0, u = 4r − 4. When u = 0, v = 4r − 4 we get

−x2
1 = ω4r−4ε−1b4

2 + εa4
2.

If 4r − 4 = 0, then this reduces to

−1 ≡ ε−1 + ε (mod ω2).

But this is not possible as ε−1 + ε ≡ 0 (mod ω2). Thus 4r − 4 6= 0. Now

x2
1 = ω4r−4b4

2 + a4
2

or
−x2

1 = ω4r−4b4
2 + a4

2

depending on ε = −1 or ε = 1. The second alternative is impossible modulo ω4

and so (a2, ω
r−1b2, x1), r ≥ 2 is a nontrivial solution of the equation x4 + y4 = z2

in Z[ω].
When v = 0, u = 4r − 4 we get

−x2
1 = ε−1b4

2 + ω4r−4εa4
2.

If 4r − 4 = 0, then this reduces to

−1 ≡ ε−1 + ε (mod ω2).

But clearly this is not the case.
Thus 4r − 4 6= 0. Now

x2
1 = b4

2 + ω4r−4a4
2

or
−x2

1 = b4
2 + ω4r−4a4

2

depending on ε = −1 or ε = 1. The second alternative is impossible modulo ω4

and so (b2, ω
r−1a2, x1), r ≥ 2 is a nontrivial solution of the equation x4 + y4 = z2

in Z[ω].
(5) If (x1, ω

ry1, z1) is a solution of the equation x4 + y4 = z2, where r ≥ 1,
x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes, then there
are pairwise relatively prime elements x2, y2, z2 of Z[ω] such that x2 ≡ y2 ≡ z2 ≡ 1
(mod ω) and (x2, ω

r−1y2, z2) is a solution of the equation x4 − y4 = z2.
From the equation ω4ry4

1 = (z1−x2
1)(z1+x2

1) by the standard argument it follows
that

−x2
1 = ωvε−1b4

2 − ωuεa4
2.

We distinguish two cases according to u = 0, v = 4r−4 or v = 0, u = 4r−4. When
u = 0, v = 4r − 4 we have

−x2
1 = ω4r−4ε−1b4

2 − εa4
2.

If 4r−4 = 0, then −1 ≡ ε−1−ε (mod ω2) follows which is not possible so 4r−4 6= 0.
Now

x2
1 = ω4r−4b4

2 − a4
2 or x2

1 = −ω4r−4b4
2 + a4

2
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depending on ε = −1 or ε = 1. In the first case (ωr−1b2, a2, x1) is a solution of
x4 − y4 = z2 which is not possible modulo ω4. In the second case (a2, ω

r−1b2, x1)
is a solution of x4 − y4 = z2.

Let us turn to the v = 0, u = 4r − 4 case when we have

−x2
1 = ε−1b4

2 − ω4r−4εa4
2.

The 4r − 4 = 0 subcase leads to the −1 ≡ ε−1 − ε (mod ω2) contradiction and so
4r − 4 6= 0. Now

x2
1 = b4

2 − ω4r−4a4
2 or x2

1 = −b4
2 + ω4r−4a4

2

depending on ε = −1 or ε = 1. In the first case (b2, ω
r−1a2, x1) is a solution of

x4− y4 = z2. In the second case (ωr−1a2, b2, x1) is a solution of x4− y4 = z2 which
is not possible modulo ω4.

(6) In case 4 let (x1, y1, ω
sz1) be a solution of the equation x4 − y4 = z2, where

s ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes.
It follows that there are pairwise relatively prime elements x2, y2, z2 of Z[ω] such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and either (ωs−2x2, y2, z2) or (x2, ω

s−2y2, z2) is a
solution of the equation x4 − y4 = z2.

The proof of this claim can follow the same lines as step 5 in the proof of Theorem
1.

(7) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = z2 in Z[ω].
Either y0 ≡ 0 (mod ω) or z0 ≡ 0 (mod ω). It means that there is a solution in
one of the forms (x1, ω

ry1, z1) or (x1, y1, ω
sz1), where r, s ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1

(mod ω) and x1, y1, z1 are pairwise relatively primes. By step (6) the second case
reduces to the first one. In the first case choose a solution for which r is minimal. By
step (4) this leads to a solution (x2, ω

r−1y2, z2), r ≥ 2 of the equation x4 +y4 = z2.
By step (5) there is a solution (x2, ω

r−2y2, z2), r ≥ 2 of the equation x4 − y4 = z2.
This contradicts the minimality of r and so completes the proof. ¤

4. The equation in Q(
√

2)

Let ω =
√

2. The ring of integers of Q(
√−2) is Z[ω] = {u + vω : u, v ∈ Z} and

Z[ω] is a unique factorization domain. The units in Z[ω] are ±ηn, where η = 1 + ω
and n ∈ Z. The prime factorization of 2 is 2 = ω2. Setting ηn = an + bnω,
η−n = An + Bnω we can see that an, bn, An, Bn can be computed using the
formulas

a0 = 1, b0 = 0,

an = an−1 + 2bn−1, bn = an−1 + bn−1,

A0 = 1, B0 = 0,

An = −An−1 + 2Bn−1, Bn = An−1 −Bn−1.

The sequences η−n, ηn are periodic modulo ω2 and the length of the period is 4.
It follows that ε + ε−1 ≡ 0 (mod ω2) for each unit of Z[ω] and if ε ≡ 1 (mod ω2),
then ε = η2n or ε = −η2n for some n ∈ Z.

Theorem 3. The equation x4 − y4 = z2 has only trivial solutions in Z[
√

2].

Proof. We divide the proof into (7) steps many of them similar to the corresponding
steps in the proof of Theorem 2.

(1) If (x0, y0, z0) is a nontrivial solution of the equation x4 − y4 = z2, then we
may assume that x0, y0, z0 are pairwise relatively primes.

(2) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = z2 in Z[ω]
such that x0, y0, z0 are pairwise relatively primes. We face with four cases listed
in Table 2.

In case 1 the equation x4
0 − y4

0 = z2
0 gives the contradiction 1− 1 ≡ 1 (mod ω).
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We claim that case 2 is not possible either. From the equation x4
0 − y4

0 = z2
0 it

follows that −1 ≡ z0 (mod ω4). Writing z0 in the form z0 = kω2 + l, k, l ∈ Z[ω]
and computing z2

0

z2
0 = k2ω4 + 2kω2l + l2

we can see that z2
0 ≡ l2 (mod ω4). Note that 0, 1, ω, 1 + ω is a complete set of

representatives modulo ω2 and z0 ≡ 1 (mod ω) we can choose l to be either 1 or
1 + ω. These lead to the following contradictions

−1 ≡ 1 (mod ω4),

−1 ≡ (1 + ω)2 ≡ 3 + 2ω (mod ω4)
respectively.

(3) In case 3 let (x1, ω
ry1, z1) be a solution of the equation x4 − y4 = z2, where

r ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that z1 ≡ 1 (mod ω2).

The equation x4
1 − ω4ry4

1 = z2
1 gives that 1 ≡ z2

1 (mod ω4) and so z1 ≡ 1
(mod ω2). From step (2) we know that if z1 is in the form z1 = kω2 + l, k, l ∈ Z[ω],
then z2

1 ≡ l2 (mod ω4) and we may choose l to be 1 or 1 + ω. Since the second
choice leads to the contradiction 1 ≡ (1 + ω)2 ≡ 3 + 2ω (mod ω4) we left with the
l = 1 possibility and so z1 ≡ 1 (mod ω2).

(4) In case 3 let (x1, ω
ry1, z1) be a solution of the equation x4 − y4 = z2, where

r ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes. We
will show that there are pairwise relatively prime elements x2, y2, z2 of Z[ω] such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and (x2, ω

r−1y2, z2) is a solution of the equation
x4 + y4 = z2.

A similar argument we used in the proof of Theorem 1 gives that from x4
1 −

ω4ry4
1 = z2

1 it follows that

µx2
1 = ωvε−1b4

2 + ωuεa4
2,

where µ = 1. We distinguish two cases depending on either u = 0, v = 4r − 4 or
v = 0, u = 4r − 4. When u = 0, v = 4r − 4 we get

x2
1 = ω4r−4ε−1b4

2 + εa4
2.

If 4r − 4 = 0, then this reduces to

1 ≡ ε−1 + ε (mod ω2).

But this is not possible as ε−1 + ε ≡ 0 (mod ω2). Thus 4r − 4 6= 0. Now

1 ≡ ε (mod ω2)

and so ε = η2n or ε = −η2n. In the first case

x2
1 = ω4r−4η−2nb4

2 + η2na4
2.

Multiplying by η2n we get

η2nx2
1 = ω4r−4b4

2 + η4na4
2.

Therefore (ηna2, ω
r−1b2, η

nx1) is a solution of the equation x4−y4 = z2 and r ≥ 2.
In the second case we get

x2
1 = ω4r−4(−η−2n)b4

2 + (−η2n)a4
2.

Then
−η2nx2

1 = ω4r−4b4
2 + η4na4

2.

Hence (ηna2, ω
r−1b2, η

nx1) is a solution of the equation x4 − y4 = −z2 and r ≥ 2.
But this is impossible modulo ω4.

When v = 0, u = 4r − 4 we get

x2
1 = ε−1b4

2 + ω4r−4εa4
2.
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If 4r − 4 = 0, then this reduces to

1 ≡ ε−1 + ε (mod ω2)

which is not the case. Thus 4r − 4 6= 0. Now

1 ≡ ε−1 (mod ω2)

and so ε = η2n or ε = −η2n. In the first case

x2
1 = ω4r−4η−2nb4

2 + η2na4
2.

Multiplying by η2n we get

η2nx2
1 = ω4r−4b4

2 + η4na4
2.

Therefore (ηna2, ω
r−1b2, η

nx1) is a solution of the equation x4−y4 = z2 and r ≥ 2.
In the second case we get

x2
1 = ω4r−4(−η−2n)b4

2 + (−η2n)a4
2.

Then
−η2nx2

1 = ω4r−4b4
2 + η4na4

2.

Hence (ηna2, ω
r−1b2, η

nx1) is a solution of the equation x4 − y4 = −z2 and r ≥ 2.
But this is impossible modulo ω4.

(5) If (x1, ω
ry1, z1) is a solution of the equation x4 + y4 = z2, where r ≥ 1,

x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes, then there
are pairwise relatively prime elements x2, y2, z2 of Z[ω] such that x2 ≡ y2 ≡ z2 ≡ 1
(mod ω) and (x2, ω

r−1y2, z2) is a solution of the equation x4 − y4 = z2.
From the equation ω4ry4

1 = (z1 − x2
1)(z1 + x2

1) in the known way we can deduce

x2
1 = ωvε−1b4

2 − ωuεa4
2

and in the usual way we distinguish two cases depending on either u = 0, v = 4r−4
or v = 0, u = 4r − 4. In the u = 0, v = 4r − 4 case

x2
1 = ω4r−4ε−1b4

2 − εa4
2.

If 4r− 4 = 0 we get the 1 ≡ ε−1 − ε (mod ω2) contradiction. Thus 4r− 4 6= 0 and
we get 1 ≡ −ε (mod ω2) which in turn implies that ε = η2n or ε = −η2n. In the
first subcase

η2nx2
1 = ω4r−4b4

2 − η4na4
2

shows that (ωr−1b2, η
na2, η

nx1) is a solution of the equation x4 − y4 = z2. This is
impossible modulo ω4 as r ≥ 2. In the second subcase

η2nx2
1 = −ω4r−4b4

2 + η4na4
2

shows that (ηna2, ω
r−1b2, η

nx1) is a solution of the equation x4 − y4 = z2.
Let us turn to the v = 0, u = 4r − 4 case. Now

x2
1 = ε−1b4

2 − ω4r−4εa4
2.

If 4r − 4 = 0 we get the 1 ≡ ε−1 − ε (mod ω2) contradiction and so 4r − 4 6= 0.
Consequently we get 1 ≡ ε−1 (mod ω2) which gives that ε = η2n or ε = −η2n. In
the first subcase

η2nx2
1 = b4

2 − ω4r−4η4na4
2

shows that (b2, ω
r−1ηna2, η

nx1) is a solution of the equation x4−y4 = z2 and r ≥ 2.
This is impossible modulo ω4 as r ≥ 2. In the second subcase

η2nx2
1 = −b4

2 + ω4r−4η4na4
2

shows that (ωr−1ηna2, b2, η
nx1) is a solution of the equation x4−y4 = z2. But this

is impossible modulo ω4 as r ≥ 2.
(6) In case 4 let (x1, y1, ω

sz1) be a solution of the equation x4 − y4 = z2, where
s ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively primes.
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It follows that there are pairwise relatively prime elements x2, y2, z2 of Z[ω] such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and either (ωs−2x2, y2, z2) or (x2, ω

s−2y2, z2) is a
solution of the equation x4 − y4 = z2.

The proof of this claim can follow the same lines as step 5 in the proof of
Theorem 1.

(7) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = z2 in Z[ω].
Either y0 ≡ 0 (mod ω) or z0 ≡ 0 (mod ω). It means that there is a solution in
one of the forms (x1, ω

ry1, z1) or (x1, y1, ω
sz1), where r, s ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1

(mod ω) and x1, y1, z1 are pairwise relatively primes. By step (6) the second
case reduces to the first one. In the second case choose a solution for which r is
minimal. By step (4) this leads to a solution (x2, ω

r−1y2, z2), r ≥ 2 of the equation
x4 + y4 = z2. By step (5) there is a solution (x2, ω

r−2y2, z2), r ≥ 2 of the equation
x4 − y4 = z2. This contradicts the minimality of r and so completes the proof. ¤
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