THE DIOPHANTINE EQUATION $x^{4}-y^{4}=z^{2}$ IN THREE QUADRATIC FIELDS

SÁNDOR SZABÓ

Abstract

Each solution of the equation $x^{4}-y^{4}=z^{2}$ in the integers of the quadratic field $Q(\sqrt{d})$ is also a solution of the equation $x y z=0$, where $d=-2,-1,2$.

1. Introduction

The solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $x^{4}-y^{4}=z^{2}$ is called trivial if $x_{0}=0$ or $y_{0}=0$ or $z_{0}=0$. It is a classical result that the equation $x^{4}-y^{4}=z^{2}$ has only trivial solutions in integers. (See for example [2] or [3].) The purpose of this paper is to show that the equation $x^{4}-y^{4}=z^{2}$ has only trivial solutions in some larger domains, namely in the integers of $Q(\sqrt{d})$, where $d=-2,-1,2$.

The proof is a standard application of the infinite decent. The details are depending on the arithmetical properties of $Q(\sqrt{d})$. As a matter of fact the three values of d are singled out because these are the cases in which the rational prime 2 is an associate of a square in $Q(\sqrt{d})$. Let ω be a prime divisor of 2 in $Q(\sqrt{d})$. Thus $2=\mu \omega^{2}$, where μ is a unit in $Q(\sqrt{d})$. The corresponding values of d, μ, ω are listed in the table below.

d	μ	ω
-2	-1	$\sqrt{-2}$
-1	$-\sqrt{-1}$	$1+\sqrt{-1}$
2	1	$\sqrt{2}$

TABLE 1

We will use the principal ideals formed by the algebraic integer multiples of ω^{n} for $1 \leq n \leq 4$. However, usually we will prefer to formulate our statements in terms of congruences instead of ideals. Clearly, ω^{2}, ω^{4} are associates of 2,4 respectively and so they span the same principal ideals. Similarly, ω, ω^{3} are associates of $\omega, 2 \omega$ and so they span the same ideals. We will use the next observation several times. If an integer α of $Q(\sqrt{d})$ and $\alpha \equiv 1(\bmod \omega)$, then $\alpha^{2} \equiv 1\left(\bmod \omega^{2}\right)$ and $\alpha^{4} \equiv 1$

[^0]$\left(\bmod \omega^{4}\right)$. Indeed, α can be written in the form $\alpha=k \omega+1$, where k is an integer of $Q(\sqrt{d})$. Then computing α^{2} and α^{4}
\[

$$
\begin{gathered}
\alpha^{2}=(k \omega)^{2}+2(k \omega)+1 \\
\alpha^{4}=(k \omega)^{4}+4(k \omega)^{3}+6(k \omega)^{2}+4(k \omega)+1
\end{gathered}
$$
\]

show that $\alpha^{2} \equiv 1\left(\bmod \omega^{2}\right)$ and $\alpha^{4} \equiv 1\left(\bmod \omega^{4}\right)$.

2. The equation in $Q(\sqrt{-1})$

We list the properties of $Q(\sqrt{-1})$ which play part later. Let $i=\sqrt{-1}$ and $\omega=1+i$. The ring of integers of $Q(i)$ is $Z[i]=\{u+v i: u, v \in Z\}$ which is a unique factorization domain. The units of $Z[i]$ are $1, i,-1,-i$. The norm of ω is 2 and consequently ω is a prime in $Z[i]$. The prime factorization of 2 is $(-i) \omega^{2}$.
Theorem 1. The equation $x^{4}-y^{4}=z^{2}$ has only trivial solutions in $Z[i]$.
Proof. We divide the proof into (6) smaller steps.
(1) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$, then we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively primes.

Let g be the greatest common divisor of x_{0} and y_{0} in $Z[i]$. As $x_{0} \neq 0$, it follows that $g \neq 0$. Dividing $x_{0}^{4}-y_{0}^{4}=z_{0}^{2}$ by g^{4} we get $\left(x_{0} / g\right)^{4}-\left(y_{0} / g\right)^{4}=\left(z_{0} / g^{2}\right)^{2}$. This equation holds in $Q(i)$. The left hand side of the equation is an element of $Z[i]$. Consequently the right hand side of the equation belongs to $Z[i]$. Thus $\left(x_{0} / g, y_{0} / g, z_{0} / g^{2}\right)$ is also a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[i]$. Hence we may assume that x_{0} and y_{0} are relatively primes in $Z[i]$. If there is a prime q of $Z[i]$ such that $q \mid x_{0}$ and $q \mid z_{0}$, then $q \mid y_{0}$. This violates that x_{0} and y_{0} are relatively primes. Similarly, if $q \mid y_{0}$ and $q \mid z_{0}$, then $q \mid x_{0}$ violating again that x_{0} and y_{0} are relatively primes. Thus we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively primes.
(2) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[i]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively primes. Note that at most one of x_{0}, y_{0}, z_{0} can be congruent to 0 modulo ω. We consider the following four cases. None of x_{0}, y_{0}, z_{0} is congruent to 0 modulo ω and three cases depending on one of x_{0}, y_{0}, z_{0} is congruent to 0 modulo ω respectively. Table 2 summarizes the cases.

	$x_{0} \equiv$	$y_{0} \equiv$	$z_{0} \equiv$	
case 1	1	1	1	$(\bmod \omega)$
case 2	0	1	1	$(\bmod \omega)$
case 3	1	0	1	$(\bmod \omega)$
case 4	1	1	0	$(\bmod \omega)$

Table 2

In case 1 the equation $x_{0}^{4}-y_{0}^{4}=z_{0}^{2}$ leads to the contradiction $1-1 \equiv 1(\bmod \omega)$.
Note that if $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$, then ($y_{0}, x_{0}, i z_{0}$) is also a nontrivial solution of the equation. This observation reduces case 2 to case 3 .
(3) In case 3 let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.

In order to prove this claim write z_{1} in the form $z_{1}=k \omega^{2}+l, k, l \in Z[i]$ and compute z_{1}^{2}.

$$
z_{1}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2}
$$

From this it follows that $z_{1}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$ Since the elements $0,1, i, 1+i$ form a complete set of representatives modulo ω^{2} and since $z_{1} \equiv 1(\bmod \omega)$ we may choose l to be 1 or i. Consequently, z_{1}^{2} is congruent to 1 or -1 modulo ω^{4}. The equation $x_{1}^{4}-\omega^{4 r} y_{1}^{4}=z_{1}^{2}$ gives that $1 \equiv z_{1}^{2}\left(\bmod \omega^{4}\right)$ and so $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.
(4) In case 3 let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1(\bmod \omega)$ and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.

In order to verify the claim write the equation $x_{1}^{4}-\omega^{4 r} y_{1}^{4}=z_{1}^{2}$ in the form $\omega^{4 r} y_{1}^{4}=\left(x_{1}^{2}-z_{1}\right)\left(x_{1}^{2}+z_{1}\right)$ and compute the greatest common divisor of $\left(x_{1}^{2}-z_{1}\right)$ and $\left(x_{1}^{2}+z_{1}\right)$. Let g be this greatest common divisor. As $g \mid \omega^{4 r} y_{1}^{4}$ it follows that $g \neq 0 . g\left|\left(x_{1}^{2}-z_{1}\right), g\right|\left(x_{1}^{2}+z_{1}\right)$ implies that $g\left|2 x_{1}^{2}, g\right| 2 z_{1}$ If q is a prime divisor of g with $q \nmid \omega$, then we get $q\left|x_{1}, q\right| z_{1}$. But we know that this is not the case as x_{1} and z_{1} are relatively primes. Thus $g=\omega^{s}$ and $0 \leq s \leq 2$ since $g \mid 2$. By step (3) $z_{1} \equiv 1$ $\left(\bmod \omega^{2}\right)$. This together with $x_{1}^{2} \equiv 1\left(\bmod \omega^{2}\right)$ gives that $\left(x_{1}^{2}-z_{1}\right) \equiv 0\left(\bmod \omega^{2}\right)$, $\left(x_{1}^{2}+z_{1}\right) \equiv 0\left(\bmod \omega^{2}\right)$. Therefore $g=\omega^{2}$. The unique factorization property in $Z[i]$ gives that there are relatively prime elements $a, b \in Z[i]$ such that

$$
x_{1}^{2}-z_{1}=\omega^{2} a, \quad x_{1}^{2}+z_{1}=\omega^{2} b
$$

Let $a=\omega^{u} a_{1}, b=\omega^{v} b_{1}$. So $\omega^{4 r} y_{1}^{4}=\omega^{u+v+4} a_{1} b_{1}$. By the unique factorization property in $Z[i]$ there are elements a_{2}, b_{2} and a unit ε in $Z[i]$ for which

$$
\begin{gathered}
x_{1}^{2}-z_{1}=\omega^{u+2} \varepsilon a_{2}^{4}, \quad x_{1}^{2}+z_{1}=\omega^{v+2} \varepsilon^{-1} b_{2}^{4} \\
4 r=u+v+4, \quad a_{2}^{4} b_{2}^{4}=y_{1}^{4}
\end{gathered}
$$

Here a_{2}, b_{2} are prime to ω. It follows that $a_{2} \equiv b_{2} \equiv 1(\bmod \omega)$. By addition we get

$$
2 x_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{4}+\omega^{u+2} \varepsilon a_{2}^{4}
$$

After dividing by ω^{2} it gives

$$
\mu x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4}+\omega^{u} \varepsilon a_{2}^{4},
$$

where $\mu=-i$. We distinguish two cases depending on either $u=0, v=4 r-4$ or $v=0, u=4 r-4$. When $u=0, v=4 r-4$ we get

$$
-i x_{1}^{2}=\omega^{4 r-4} \varepsilon^{-1} b_{2}^{4}+\varepsilon a_{2}^{4} .
$$

If $4 r-4=0$, then this reduces to

$$
-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)
$$

But this is not possible as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. The computation is summarized in Table 3.

Thus $4 r-4 \neq 0$. Now

$$
-i \equiv \varepsilon \quad\left(\bmod \omega^{2}\right)
$$

From this it follows that $\varepsilon= \pm i$. By multiplying by $-\varepsilon$ we get

$$
(i \varepsilon) x_{1}^{2}=\omega^{4 r-4}\left(-\varepsilon^{-1} \varepsilon\right) b_{2}^{4}+\left(-\varepsilon^{2}\right) a_{2}^{4}
$$

Note that $i \varepsilon$ is a square of an element of $Z[i]$, say $i \varepsilon=\sigma^{2}$. Thus $\left(a_{2}, \omega^{r-1} b_{2}, \sigma x_{1}\right)$, $t \geq 2$ is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$.

When $v=0, u=4 r-4$ we get

$$
-i x_{1}^{2}=\varepsilon^{-1} b_{2}^{4}+\omega^{4 r-4} \varepsilon a_{2}^{4} .
$$

ε	ε^{-1}	$\varepsilon^{-1}+\varepsilon$
1	1	2
i	$-i$	0
-1	-1	-2
$-i$	i	0

Table 3

If $4 r-4=0$, then this reduces to

$$
-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)
$$

But this is not possible as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. Thus $4 r-4 \neq 0$. Now

$$
-i \equiv \varepsilon \quad\left(\bmod \omega^{2}\right)
$$

From this it follows that $\varepsilon= \pm i$. By multiplying by ε^{-1} we get

$$
\left(-i \varepsilon^{-1}\right) x_{1}^{2}=\left(\varepsilon^{-2}\right) b_{2}^{4}+\omega^{4 r-4}\left(\varepsilon^{-1} \varepsilon\right) a_{2}^{4} .
$$

Note that $-i \varepsilon^{-1}$ is a square of an element of $Z[i]$, say $-i \varepsilon^{-1}=\sigma^{2}$. Thus

$$
\left(\omega^{r-1} a_{2}, b_{2}, \sigma x_{1}\right), \quad r \geq 2
$$

is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$.
(5) In case 4 let $\left(x_{1}, y_{1}, \omega^{s} z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $s \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1(\bmod \omega)$ and either $\left(\omega^{s-2} x_{2}, y_{2}, z_{2}\right)$ or $\left(x_{2}, \omega^{s-2} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.

In order to verify the claim write the equation $x_{1}^{4}-y_{1}^{4}=\omega^{2 s} z_{1}^{2}$ in the form $\omega^{2 s} z_{1}^{2}=\left(x_{1}^{2}-y_{1}^{2}\right)\left(x_{1}^{2}+y_{1}^{2}\right)$ and compute the greatest common divisor of $\left(x_{1}^{2}-y_{1}^{2}\right)$ and $\left(x_{1}^{2}+y_{1}^{2}\right)$. Let g be this greatest common divisor. As $g \mid \omega^{2 s} z_{1}^{2}$ it follows that $g \neq 0$. $g\left|\left(x_{1}^{2}-y_{1}^{2}\right), g\right|\left(x_{1}^{2}+y_{1}^{2}\right)$ implies that $g\left|2 x_{1}^{2}, g\right| 2 y_{1}^{2}$. If q is a prime divisor of g with $q \nmid \omega$, then we get $q\left|x_{1}, q\right| y_{1}$. But we know that this is not the case as x_{1} and y_{1} are relatively primes. Thus $g=\omega^{s}$ and $0 \leq s \leq 2$ since $g \mid 2$. As $\left(x_{1}^{2}-y_{1}^{2}\right) \equiv 0$ $\left(\bmod \omega^{2}\right),\left(x_{1}^{2}+y_{1}^{2}\right) \equiv 0\left(\bmod \omega^{2}\right)$. It follows that $g=\omega^{2}$. The unique factorization property in $Z[i]$ gives that there are relatively prime elements $a, b \in Z[i]$ such that

$$
x_{1}^{2}-y_{1}^{2}=\omega^{2} a, \quad x_{1}^{2}+y_{1}^{2}=\omega^{2} b .
$$

Let $a=\omega^{u} a_{1}, b=\omega^{v} b_{1}$. So $\omega^{2 s} z_{1}^{2}=\omega^{u+v+4} a_{1} b_{1}$. By the unique factorization property in $Z[i]$ there are elements a_{2}, b_{2} and a unit ε in $Z[i]$ for which

$$
\begin{gathered}
x_{1}^{2}-y_{1}^{2}=\omega^{u+2} \varepsilon a_{2}^{2}, \quad x_{1}^{2}+y_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{2} \\
2 s=u+v+4, \quad a_{2}^{2} b_{2}^{2}=z_{1}^{2}
\end{gathered}
$$

Here a_{2}, b_{2} are prime to ω. It follows that $a_{2} \equiv b_{2} \equiv 1(\bmod \omega)$. By addition and subtraction we get

$$
\begin{aligned}
& 2 x_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{2}+\omega^{u+2} \varepsilon a_{2}^{2}, \\
& 2 y_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{2}-\omega^{u+2} \varepsilon a_{2}^{2} .
\end{aligned}
$$

After dividing by ω^{2} it gives

$$
\begin{aligned}
& \mu x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{2}+\omega^{u} \varepsilon a_{2}^{2}, \\
& \mu y_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{2}-\omega^{u} \varepsilon a_{2}^{2},
\end{aligned}
$$

where $\mu=-i$. By multiplying the two equations together and multiplying by ε^{2} we get

$$
\mu^{2} \varepsilon^{2} x_{1}^{2} y_{1}^{2}=\omega^{2 v} b_{2}^{4}-\omega^{2 u} \varepsilon^{4} a_{2}^{4}
$$

We distinguish two cases depending on either $u=0, v=2 s-4$ or $v=0, u=2 s-4$. When $u=0, v=2 s-4$ we get

$$
\mu^{2} \varepsilon^{2} x_{1}^{2} y_{1}^{2}=\omega^{4 s-8} b_{2}^{4}-\varepsilon^{4} a_{2}^{4}
$$

Thus ($\omega^{s-2} b_{2}, \varepsilon a_{2}, \mu \varepsilon x_{1} y_{1}$), is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$.
When $v=0, u=2 s-4$ we get

$$
\mu^{2} \varepsilon^{2} x_{1}^{2} y_{1}^{2}=b_{2}^{4}-\omega^{4 s-8} \varepsilon^{4} a_{2}^{4}
$$

Thus $\left(b_{2}, \omega^{s-2} \varepsilon a_{2}, \mu \varepsilon x_{1} y_{1}\right)$, is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$.
(6) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[i]$. Either $y_{0} \equiv 0(\bmod \omega)$ or $z_{0} \equiv 0(\bmod \omega)$. In other words there is a solution $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ or $\left(x_{1}, y_{1}, \omega^{s} z_{1}\right)$ with $x_{1}, y_{1}, z_{1} \equiv 1(\bmod \omega), r, s \geq 1$. By step (5) the second case reduces to the first one. In the first case choose a solution for which r is minimal. According to step (4) there is a solution $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$, where $x_{2}, y_{2}, z_{2} \equiv 1(\bmod \omega), r \geq 2$. This contradicts the choice of r and so completes the proof.

3. The equation in $Q(\sqrt{-2})$

Let $\omega=\sqrt{-2}$. The ring of integers of $Q(\sqrt{-2})$ is $Z[\omega]=\{u+v \omega: u, v \in Z\}$ and $Z[\omega]$ is a unique factorization domain. The units in $Z[\omega]$ are $-1,1$. The prime factorization of 2 is $2=(-1) \omega^{2}$.
Theorem 2. The equation $x^{4}-y^{4}=z^{2}$ has only trivial solutions in $Z[\sqrt{-2}]$.
Proof. We divide the proof into (7) steps many of them similar to the corresponding steps in the proof of Theorem 1.
(1) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$, then we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively primes.
(2) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[\omega]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively primes. We face with four cases listed in Table 2.

In case 1 the equation $x_{0}^{4}-y_{0}^{4}=z_{0}^{2}$ gives the contradiction $1-1 \equiv 1(\bmod \omega)$.
Next we show that case 2 is not possible either. From the equation $x_{0}^{4}-y_{0}^{4}=z_{0}^{2}$ it follows that $-1 \equiv z_{0}\left(\bmod \omega^{4}\right)$. Writing z_{0} in the form $z_{0}=k \omega^{2}+l, k, l \in Z[\omega]$ and computing z_{0}^{2}

$$
z_{0}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2}
$$

we can see that $z_{0}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$. Note that $0,1, \omega, 1+\omega$ is a complete set of representatives modulo ω^{2} and $z_{0} \equiv 1(\bmod \omega)$ we can choose l to be either 1 or $1+\omega$. These lead to the following contradictions

$$
\begin{gathered}
-1 \equiv 1 \quad\left(\bmod \omega^{4}\right) \\
-1 \equiv(1+\omega)^{2} \equiv-1+2 \omega \quad\left(\bmod \omega^{4}\right)
\end{gathered}
$$

respectively.
(3) In case 3 let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.

The equation $x_{1}^{4}-\omega^{4 r} y_{1}^{4}=z_{1}^{2}$ gives that $1 \equiv z_{1}^{2}\left(\bmod \omega^{4}\right)$ and so $z_{1} \equiv 1$ $\left(\bmod \omega^{2}\right)$. From step (2) we know that if z_{1} is in the form $z_{1}=k \omega^{2}+l, k, l \in Z[\omega]$, then $z_{1}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$ and we may choose l to be 1 or $1+\omega$. Since the second choice leads to the contradiction $1 \equiv(1+\omega)^{2} \equiv-1+2 \omega\left(\bmod \omega^{4}\right)$ we left with the $l=1$ possibility and so $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.
(4) In case 3 let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[\omega]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1(\bmod \omega)$ and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}+y^{4}=z^{2}$.

A similar argument we used in the proof of Theorem 1 gives that from $x_{1}^{4}-$ $\omega^{4 r} y_{1}^{4}=z_{1}^{2}$ it follows that

$$
\mu x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4}+\omega^{u} \varepsilon a_{2}^{4},
$$

where $\mu=-1$. We distinguish two cases depending on either $u=0, v=4 r-4$ or $v=0, u=4 r-4$. When $u=0, v=4 r-4$ we get

$$
-x_{1}^{2}=\omega^{4 r-4} \varepsilon^{-1} b_{2}^{4}+\varepsilon a_{2}^{4}
$$

If $4 r-4=0$, then this reduces to

$$
-1 \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)
$$

But this is not possible as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. Thus $4 r-4 \neq 0$. Now

$$
x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}+a_{2}^{4}
$$

or

$$
-x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}+a_{2}^{4}
$$

depending on $\varepsilon=-1$ or $\varepsilon=1$. The second alternative is impossible modulo ω^{4} and so $\left(a_{2}, \omega^{r-1} b_{2}, x_{1}\right), r \geq 2$ is a nontrivial solution of the equation $x^{4}+y^{4}=z^{2}$ in $Z[\omega]$.

When $v=0, u=4 r-4$ we get

$$
-x_{1}^{2}=\varepsilon^{-1} b_{2}^{4}+\omega^{4 r-4} \varepsilon a_{2}^{4} .
$$

If $4 r-4=0$, then this reduces to

$$
-1 \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right) .
$$

But clearly this is not the case.
Thus $4 r-4 \neq 0$. Now

$$
x_{1}^{2}=b_{2}^{4}+\omega^{4 r-4} a_{2}^{4}
$$

or

$$
-x_{1}^{2}=b_{2}^{4}+\omega^{4 r-4} a_{2}^{4}
$$

depending on $\varepsilon=-1$ or $\varepsilon=1$. The second alternative is impossible modulo ω^{4} and so $\left(b_{2}, \omega^{r-1} a_{2}, x_{1}\right), r \geq 2$ is a nontrivial solution of the equation $x^{4}+y^{4}=z^{2}$ in $Z[\omega]$.
(5) If $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ is a solution of the equation $x^{4}+y^{4}=z^{2}$, where $r \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes, then there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[\omega]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1$ $(\bmod \omega)$ and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.

From the equation $\omega^{4 r} y_{1}^{4}=\left(z_{1}-x_{1}^{2}\right)\left(z_{1}+x_{1}^{2}\right)$ by the standard argument it follows that

$$
-x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4}-\omega^{u} \varepsilon a_{2}^{4}
$$

We distinguish two cases according to $u=0, v=4 r-4$ or $v=0, u=4 r-4$. When $u=0, v=4 r-4$ we have

$$
-x_{1}^{2}=\omega^{4 r-4} \varepsilon^{-1} b_{2}^{4}-\varepsilon a_{2}^{4}
$$

If $4 r-4=0$, then $-1 \equiv \varepsilon^{-1}-\varepsilon\left(\bmod \omega^{2}\right)$ follows which is not possible so $4 r-4 \neq 0$. Now

$$
x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}-a_{2}^{4} \quad \text { or } \quad x_{1}^{2}=-\omega^{4 r-4} b_{2}^{4}+a_{2}^{4}
$$

depending on $\varepsilon=-1$ or $\varepsilon=1$. In the first case $\left(\omega^{r-1} b_{2}, a_{2}, x_{1}\right)$ is a solution of $x^{4}-y^{4}=z^{2}$ which is not possible modulo ω^{4}. In the second case ($a_{2}, \omega^{r-1} b_{2}, x_{1}$) is a solution of $x^{4}-y^{4}=z^{2}$.

Let us turn to the $v=0, u=4 r-4$ case when we have

$$
-x_{1}^{2}=\varepsilon^{-1} b_{2}^{4}-\omega^{4 r-4} \varepsilon a_{2}^{4}
$$

The $4 r-4=0$ subcase leads to the $-1 \equiv \varepsilon^{-1}-\varepsilon\left(\bmod \omega^{2}\right)$ contradiction and so $4 r-4 \neq 0$. Now

$$
x_{1}^{2}=b_{2}^{4}-\omega^{4 r-4} a_{2}^{4} \quad \text { or } \quad x_{1}^{2}=-b_{2}^{4}+\omega^{4 r-4} a_{2}^{4}
$$

depending on $\varepsilon=-1$ or $\varepsilon=1$. In the first case $\left(b_{2}, \omega^{r-1} a_{2}, x_{1}\right)$ is a solution of $x^{4}-y^{4}=z^{2}$. In the second case ($\omega^{r-1} a_{2}, b_{2}, x_{1}$) is a solution of $x^{4}-y^{4}=z^{2}$ which is not possible modulo ω^{4}.
(6) In case 4 let $\left(x_{1}, y_{1}, \omega^{s} z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $s \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. It follows that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[\omega]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1(\bmod \omega)$ and either $\left(\omega^{s-2} x_{2}, y_{2}, z_{2}\right)$ or $\left(x_{2}, \omega^{s-2} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.

The proof of this claim can follow the same lines as step 5 in the proof of Theorem 1.
(7) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[\omega]$. Either $y_{0} \equiv 0(\bmod \omega)$ or $z_{0} \equiv 0(\bmod \omega)$. It means that there is a solution in one of the forms $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ or ($x_{1}, y_{1}, \omega^{s} z_{1}$), where $r, s \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1$ $(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. By step (6) the second case reduces to the first one. In the first case choose a solution for which r is minimal. By step (4) this leads to a solution $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right), r \geq 2$ of the equation $x^{4}+y^{4}=z^{2}$. By step (5) there is a solution $\left(x_{2}, \omega^{r-2} y_{2}, z_{2}\right), r \geq 2$ of the equation $x^{4}-y^{4}=z^{2}$. This contradicts the minimality of r and so completes the proof.

4. The equation in $Q(\sqrt{2})$

Let $\omega=\sqrt{2}$. The ring of integers of $Q(\sqrt{-2})$ is $Z[\omega]=\{u+v \omega: u, v \in Z\}$ and $Z[\omega]$ is a unique factorization domain. The units in $Z[\omega]$ are $\pm \eta^{n}$, where $\eta=1+\omega$ and $n \in Z$. The prime factorization of 2 is $2=\omega^{2}$. Setting $\eta^{n}=a_{n}+b_{n} \omega$, $\eta^{-n}=A_{n}+B_{n} \omega$ we can see that $a_{n}, b_{n}, A_{n}, B_{n}$ can be computed using the formulas

$$
\begin{array}{cc}
a_{0}=1, & b_{0}=0 \\
a_{n}=a_{n-1}+2 b_{n-1}, & b_{n}=a_{n-1}+b_{n-1} \\
A_{0}=1, & B_{0}=0 \\
A_{n}=-A_{n-1}+2 B_{n-1}, & B_{n}=A_{n-1}-B_{n-1} .
\end{array}
$$

The sequences η^{-n}, η^{n} are periodic modulo ω^{2} and the length of the period is 4 . It follows that $\varepsilon+\varepsilon^{-1} \equiv 0\left(\bmod \omega^{2}\right)$ for each unit of $Z[\omega]$ and if $\varepsilon \equiv 1\left(\bmod \omega^{2}\right)$, then $\varepsilon=\eta^{2 n}$ or $\varepsilon=-\eta^{2 n}$ for some $n \in Z$.
Theorem 3. The equation $x^{4}-y^{4}=z^{2}$ has only trivial solutions in $Z[\sqrt{2}]$.
Proof. We divide the proof into (7) steps many of them similar to the corresponding steps in the proof of Theorem 2.
(1) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$, then we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively primes.
(2) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[\omega]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively primes. We face with four cases listed in Table 2.

In case 1 the equation $x_{0}^{4}-y_{0}^{4}=z_{0}^{2}$ gives the contradiction $1-1 \equiv 1(\bmod \omega)$.

We claim that case 2 is not possible either. From the equation $x_{0}^{4}-y_{0}^{4}=z_{0}^{2}$ it follows that $-1 \equiv z_{0}\left(\bmod \omega^{4}\right)$. Writing z_{0} in the form $z_{0}=k \omega^{2}+l, k, l \in Z[\omega]$ and computing z_{0}^{2}

$$
z_{0}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2}
$$

we can see that $z_{0}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$. Note that $0,1, \omega, 1+\omega$ is a complete set of representatives modulo ω^{2} and $z_{0} \equiv 1(\bmod \omega)$ we can choose l to be either 1 or $1+\omega$. These lead to the following contradictions

$$
\begin{gathered}
-1 \equiv 1 \quad\left(\bmod \omega^{4}\right) \\
-1 \equiv(1+\omega)^{2} \equiv 3+2 \omega \quad\left(\bmod \omega^{4}\right)
\end{gathered}
$$

respectively.
(3) In case 3 let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.

The equation $x_{1}^{4}-\omega^{4 r} y_{1}^{4}=z_{1}^{2}$ gives that $1 \equiv z_{1}^{2}\left(\bmod \omega^{4}\right)$ and so $z_{1} \equiv 1$ $\left(\bmod \omega^{2}\right)$. From step (2) we know that if z_{1} is in the form $z_{1}=k \omega^{2}+l, k, l \in Z[\omega]$, then $z_{1}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$ and we may choose l to be 1 or $1+\omega$. Since the second choice leads to the contradiction $1 \equiv(1+\omega)^{2} \equiv 3+2 \omega\left(\bmod \omega^{4}\right)$ we left with the $l=1$ possibility and so $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.
(4) In case 3 let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[\omega]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1(\bmod \omega)$ and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}+y^{4}=z^{2}$.

A similar argument we used in the proof of Theorem 1 gives that from $x_{1}^{4}-$ $\omega^{4 r} y_{1}^{4}=z_{1}^{2}$ it follows that

$$
\mu x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4}+\omega^{u} \varepsilon a_{2}^{4}
$$

where $\mu=1$. We distinguish two cases depending on either $u=0, v=4 r-4$ or $v=0, u=4 r-4$. When $u=0, v=4 r-4$ we get

$$
x_{1}^{2}=\omega^{4 r-4} \varepsilon^{-1} b_{2}^{4}+\varepsilon a_{2}^{4} .
$$

If $4 r-4=0$, then this reduces to

$$
1 \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)
$$

But this is not possible as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. Thus $4 r-4 \neq 0$. Now

$$
1 \equiv \varepsilon \quad\left(\bmod \omega^{2}\right)
$$

and so $\varepsilon=\eta^{2 n}$ or $\varepsilon=-\eta^{2 n}$. In the first case

$$
x_{1}^{2}=\omega^{4 r-4} \eta^{-2 n} b_{2}^{4}+\eta^{2 n} a_{2}^{4} .
$$

Multiplying by $\eta^{2 n}$ we get

$$
\eta^{2 n} x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}+\eta^{4 n} a_{2}^{4}
$$

Therefore ($\eta^{n} a_{2}, \omega^{r-1} b_{2}, \eta^{n} x_{1}$) is a solution of the equation $x^{4}-y^{4}=z^{2}$ and $r \geq 2$. In the second case we get

$$
x_{1}^{2}=\omega^{4 r-4}\left(-\eta^{-2 n}\right) b_{2}^{4}+\left(-\eta^{2 n}\right) a_{2}^{4} .
$$

Then

$$
-\eta^{2 n} x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}+\eta^{4 n} a_{2}^{4}
$$

Hence $\left(\eta^{n} a_{2}, \omega^{r-1} b_{2}, \eta^{n} x_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=-z^{2}$ and $r \geq 2$. But this is impossible modulo ω^{4}.

When $v=0, u=4 r-4$ we get

$$
x_{1}^{2}=\varepsilon^{-1} b_{2}^{4}+\omega^{4 r-4} \varepsilon a_{2}^{4} .
$$

If $4 r-4=0$, then this reduces to

$$
1 \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)
$$

which is not the case. Thus $4 r-4 \neq 0$. Now

$$
1 \equiv \varepsilon^{-1} \quad\left(\bmod \omega^{2}\right)
$$

and so $\varepsilon=\eta^{2 n}$ or $\varepsilon=-\eta^{2 n}$. In the first case

$$
x_{1}^{2}=\omega^{4 r-4} \eta^{-2 n} b_{2}^{4}+\eta^{2 n} a_{2}^{4}
$$

Multiplying by $\eta^{2 n}$ we get

$$
\eta^{2 n} x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}+\eta^{4 n} a_{2}^{4}
$$

Therefore $\left(\eta^{n} a_{2}, \omega^{r-1} b_{2}, \eta^{n} x_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$ and $r \geq 2$. In the second case we get

$$
x_{1}^{2}=\omega^{4 r-4}\left(-\eta^{-2 n}\right) b_{2}^{4}+\left(-\eta^{2 n}\right) a_{2}^{4}
$$

Then

$$
-\eta^{2 n} x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}+\eta^{4 n} a_{2}^{4}
$$

Hence ($\eta^{n} a_{2}, \omega^{r-1} b_{2}, \eta^{n} x_{1}$) is a solution of the equation $x^{4}-y^{4}=-z^{2}$ and $r \geq 2$. But this is impossible modulo ω^{4}.
(5) If $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ is a solution of the equation $x^{4}+y^{4}=z^{2}$, where $r \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes, then there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[\omega]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1$ $(\bmod \omega)$ and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.

From the equation $\omega^{4 r} y_{1}^{4}=\left(z_{1}-x_{1}^{2}\right)\left(z_{1}+x_{1}^{2}\right)$ in the known way we can deduce

$$
x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4}-\omega^{u} \varepsilon a_{2}^{4}
$$

and in the usual way we distinguish two cases depending on either $u=0, v=4 r-4$ or $v=0, u=4 r-4$. In the $u=0, v=4 r-4$ case

$$
x_{1}^{2}=\omega^{4 r-4} \varepsilon^{-1} b_{2}^{4}-\varepsilon a_{2}^{4}
$$

If $4 r-4=0$ we get the $1 \equiv \varepsilon^{-1}-\varepsilon\left(\bmod \omega^{2}\right)$ contradiction. Thus $4 r-4 \neq 0$ and we get $1 \equiv-\varepsilon\left(\bmod \omega^{2}\right)$ which in turn implies that $\varepsilon=\eta^{2 n}$ or $\varepsilon=-\eta^{2 n}$. In the first subcase

$$
\eta^{2 n} x_{1}^{2}=\omega^{4 r-4} b_{2}^{4}-\eta^{4 n} a_{2}^{4}
$$

shows that $\left(\omega^{r-1} b_{2}, \eta^{n} a_{2}, \eta^{n} x_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$. This is impossible modulo ω^{4} as $r \geq 2$. In the second subcase

$$
\eta^{2 n} x_{1}^{2}=-\omega^{4 r-4} b_{2}^{4}+\eta^{4 n} a_{2}^{4}
$$

shows that $\left(\eta^{n} a_{2}, \omega^{r-1} b_{2}, \eta^{n} x_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.
Let us turn to the $v=0, u=4 r-4$ case. Now

$$
x_{1}^{2}=\varepsilon^{-1} b_{2}^{4}-\omega^{4 r-4} \varepsilon a_{2}^{4}
$$

If $4 r-4=0$ we get the $1 \equiv \varepsilon^{-1}-\varepsilon\left(\bmod \omega^{2}\right)$ contradiction and so $4 r-4 \neq 0$. Consequently we get $1 \equiv \varepsilon^{-1}\left(\bmod \omega^{2}\right)$ which gives that $\varepsilon=\eta^{2 n}$ or $\varepsilon=-\eta^{2 n}$. In the first subcase

$$
\eta^{2 n} x_{1}^{2}=b_{2}^{4}-\omega^{4 r-4} \eta^{4 n} a_{2}^{4}
$$

shows that $\left(b_{2}, \omega^{r-1} \eta^{n} a_{2}, \eta^{n} x_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$ and $r \geq 2$.
This is impossible modulo ω^{4} as $r \geq 2$. In the second subcase

$$
\eta^{2 n} x_{1}^{2}=-b_{2}^{4}+\omega^{4 r-4} \eta^{4 n} a_{2}^{4}
$$

shows that $\left(\omega^{r-1} \eta^{n} a_{2}, b_{2}, \eta^{n} x_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$. But this is impossible modulo ω^{4} as $r \geq 2$.
(6) In case 4 let $\left(x_{1}, y_{1}, \omega^{s} z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=z^{2}$, where $s \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes.

It follows that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[\omega]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1(\bmod \omega)$ and either $\left(\omega^{s-2} x_{2}, y_{2}, z_{2}\right)$ or $\left(x_{2}, \omega^{s-2} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=z^{2}$.

The proof of this claim can follow the same lines as step 5 in the proof of Theorem 1.
(7) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=z^{2}$ in $Z[\omega]$. Either $y_{0} \equiv 0(\bmod \omega)$ or $z_{0} \equiv 0(\bmod \omega)$. It means that there is a solution in one of the forms $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ or ($x_{1}, y_{1}, \omega^{s} z_{1}$), where $r, s \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1$ $(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively primes. By step (6) the second case reduces to the first one. In the second case choose a solution for which r is minimal. By step (4) this leads to a solution $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right), r \geq 2$ of the equation $x^{4}+y^{4}=z^{2}$. By step (5) there is a solution $\left(x_{2}, \omega^{r-2} y_{2}, z_{2}\right), r \geq 2$ of the equation $x^{4}-y^{4}=z^{2}$. This contradicts the minimality of r and so completes the proof.

References

[1] J. T. Cross. In the Gaussian integers, $\alpha^{4}+\beta^{4} \neq \gamma^{4}$. Math. Mag., 66(2):105-108, 1993.
[2] L. J. Mordell. Diophantine equations. Pure and Applied Mathematics, Vol. 30. Academic Press, London, 1969.
[3] T. Nagell. Introduction to Number Theory. John Wiley \& Sons Inc., New York, 1951.
Received September 05, 2003.

Department of Mathematics,
University of Bahrain,
P.O. Box 32038

State of Bahrain
E-mail address: sszabo7@hotmail.com

[^0]: 2000 Mathematics Subject Classification. Primary 11F06; Secondary 11E08.
 Key words and phrases. Diophantine equations, Quadratic fields.

