Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 18 (2002), 67-70 www.emis.de/journals

A SHORT REMARK ON KOLMOGOROFF NORMABILITY THEOREM

A. CARUSO

ABSTRACT. Kolmogoroff normability theorem turns to be a characterization for the complete normability of a topological vector space by replacing the convexity hypothesis with the $\sigma\text{-convexity}$ one. In particular, the well known theorem that characterizes completeness of a normed vector spaces by means of absolutely convergent series, is obtained as an easy consequence of the Theorem below.

In what follows E will denote a topological vector space (t.v.s. for short) on a field $K(=\mathbb{R} \text{ or } \mathbb{C})$. Kolmogoroff theorem about normability asserts that a t.v.s. is normable if and only if E is Hausdorff and there exists a convex bounded neighborhood U of θ_E (θ_E denotes the zero of E). By requiring that U is more than a convex bounded set, i.e. a σ -convex set, we actually obtain a characterization for the completeness; precisely we prove the following theorem.

Theorem. Let E be a t.v.s. Then E is a Banach space if and only if E is Hausdorff and there exists a σ -convex neighborhood U of θ_E .

So what we need is the following definition.

Definition. Let E be an Hausdorff t.v.s. and $C \subseteq E$. The set C is said to be σ -convex provided that the following condition hold:

 $\forall \{x_n\} \subseteq C, \ \forall \{\lambda_n\} \subseteq [0,1] \text{ such that } \sum_{n=1}^{+\infty} \lambda_n = 1, \implies \sum_{n=1}^{+\infty} \lambda_n x_n \in C.$

It is apparent that if C is a σ -convex set then also C + a ($a \in E$) and αC ($\alpha \in K$) are σ -convex.

Proposition 1. Let E be an Hausdorff t.v.s., and $C \subseteq E$. Then

- (i) if C is σ -convex then is convex and bounded;
- (ii) if C is σ -convex and $B \subseteq C$ is convex and closed, then B is σ -convex too;
- (iii) if C is σ -convex then int(C) is too;
- (iv) let C be convex and bounded. If E (respectively C) is sequentially complete then \overline{C} (respectively C) is σ -convex;

Proof. (i) C is obviously convex. Observe now that in any t.v.s. the condition $B \subseteq E \text{ bounded is equivalent to requiring that for any } \{\alpha_n\} \subseteq [0,1], \ \alpha_n \longrightarrow 0, \ \sum_{n=1}^{\infty} \alpha_n \leq 1, \text{ and for any } \{x_n\} \subseteq B, \text{ then } \alpha_n x_n \longrightarrow \theta_E. \text{ So chosen } \{x_n\} \subseteq C \text{ and } \{\alpha_n\} \text{ as above, set } \alpha_0 = 1 - \sum_{n=1}^{\infty} \alpha_n \text{ and fix } x_0 \in C \text{ arbitrarily: the convergence of the series } \sum_{n=0}^{\infty} \alpha_n x_n \text{ concludes the argument.}$ $(ii) \text{ Take } \{x_n\} \subseteq B \text{ and } \{\lambda_n\} \subseteq [0,1] \text{ with } \sum_{n=1}^{\infty} \lambda_n = 1. \text{ Then } T_n = S_n + (1 - \sum_{i=1}^n \lambda_i) x_1 \in B \ \forall n \in \mathbb{N}. \text{ But } S_n = \sum_{i=1}^n \lambda_i x_i \longrightarrow \sum_{i=1}^{\infty} \lambda_i x_i \in C, \ (1 - \sum_{i=1}^n \lambda_i) x_1 \longrightarrow \theta_E, \text{ so } T_n \text{ does converges in } B \text{ to the same limit of } S_n.$

²⁰⁰⁰ Mathematics Subject Classification. 46A03, 46B20.

Key words and phrases. Topological Vector Spaces, Normability Criteria, Completeness.

A. CARUSO

(iii) Suppose that $\operatorname{int}(C) \neq \emptyset$. Take $\{x_n\} \subseteq \operatorname{int}(C), \{\lambda_n\} \subseteq [0,1]$ such that $\sum_{n=1}^{+\infty} \lambda_n = 1$ and set $\sum_{n=1}^{+\infty} \lambda_n x_n = \overline{x} \in C$. If $\overline{x} \notin \operatorname{int}(C)$ then, by a consequence of the Hahn-Banach Theorem (see Theorem 3.4, (a), of [4], p.58) there exist $T \in E^*$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re} T(x_n) < \alpha \leq \operatorname{Re} T(\overline{x})$ for each $n \in \mathbb{N}$. It follows that $\alpha \leq \operatorname{Re} T(\overline{x}) = \sum_{n=1}^{+\infty} \lambda_n \operatorname{Re} T(x_n) < \alpha$. So $\overline{x} \in \operatorname{int}(C)$.

 $\begin{array}{l} (iv) \quad & \text{Let } F(w) \quad & \text{L}_{n=1}^{n+1} \forall_{n} \text{ter } (w_{n}) \quad \text{cut be } w \in \operatorname{Int}(\mathbb{C}), \\ (iv) \text{ Let } E \text{ be sequentially complete. Set } \{x_{n}\} \subseteq \overline{C}, \; \{\lambda_{n}\} \subseteq [0,1] \text{ such that } \\ & \sum_{n=1}^{+\infty} \lambda_{n} = 1. \quad \text{If } \; S_{n} = \lambda_{1}x_{1} + \dots + \lambda_{n}x_{n} = (\sum_{i=1}^{n} \lambda_{i}x_{i} + \sum_{i=n+1}^{+\infty} \lambda_{i}x_{1}) - \\ & \sum_{i=n+1}^{+\infty} \lambda_{i}x_{1} \text{ does converge, its limit must belong to } \overline{C} \text{ because } \sum_{i=n+1}^{+\infty} \lambda_{i}x_{1} \text{ goes } \\ \text{to zero and } (\sum_{i=1}^{n} \lambda_{i}x_{i} + \sum_{i=n+1}^{+\infty} \lambda_{i}x_{1}) \in C \text{ converges too. So it is enough to verify } \\ \text{that } \{S_{n}\} \text{ is a Cauchy sequence. Fixed a neighborhood } U \text{ of } \theta_{E}, \text{ choose } V \subseteq U \\ \text{ balanced neighborhood of } \theta_{E} \text{ and } \alpha > 0 \text{ such that } \overline{C} \subseteq \alpha V. \text{ Moreover choose } k \\ \text{ large enough such that } (\lambda_{k+1} + \lambda_{k+2} + \cdots)\alpha \leq 1. \text{ Then for each } n > m \geq k \text{ we have } \\ S_{n} - S_{m} = \lambda_{m+1}x_{m+1} + \cdots + \lambda_{n}x_{n} = (\lambda_{m+1} + \cdots + \lambda_{n})\left(\frac{\lambda_{m+1}}{(\lambda_{m+1} + \cdots + \lambda_{n})}x_{m+1} + \cdots + \frac{\lambda_{n}}{(\lambda_{m+1} + \cdots + \lambda_{n})}x_{n}\right) \in (\lambda_{m+1} + \cdots + \lambda_{n})\overline{C} \subseteq (\lambda_{m+1} + \cdots + \lambda_{n})\alpha V \subseteq V. \text{ Let now } C \text{ be sequentially complete: in a similar way one can prove that } \sum_{i=1}^{n} \lambda_{i}x_{i} + \sum_{i=n+1}^{+\infty} \lambda_{i}x_{1} \\ \text{ is a Cauchy sequence in } C \text{ so that } S_{n} \text{ does converge to some element of } C. \end{array}$

Remark. Relatively to (i) note that not every convex bounded set is σ -convex: the set C of all complex sequences $\{x_n\}$ in the unit ball of l_{∞} such that $|x_n| \leq 1$ for each $n \in \mathbb{N}$ and $x_n = 0$ for all but finitely many $n \in \mathbb{N}$, is convex and bounded, but evidently C is not σ -convex in l_{∞} . Moreover, in the assertion (ii), the assumption B closed cannot be removed: the set $C = C_0^{\infty}(\mathbb{R}) \cap B$, being B the closed unit ball in $L^1(\mathbb{R})$, is convex bounded and dense in B, but C is not σ -convex in $L^1(\mathbb{R})$.

Proof of Theorem. By (iv) the closed unit ball is a σ -convex neighborhood of θ_E whenever E is Banach space. Let assume now that U is a σ -convex neighborhood of θ_E . By (i) of Proposition 1 and Kolmogoroff theorem we can find a norm $||\cdot||$ on E whose topology coincides with the given one. Let $B \subseteq U$ be a closed ball. By (ii) of Proposition 1 B is σ -convex, consequently by (iii) and translations argument, so is any other ball in E. Let $\{x_n\}$ be a Cauchy sequence and $\{x_{n_k}\}$ a subsequence such that $||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k} \forall k \in \mathbb{N}$: it is enough to prove that such a sequence converges to some element of E. Set $y_k = 2^k(x_{n_{k+1}} - x_{n_k}) \forall k \in \mathbb{N}$. It results $\{y_k\} \subseteq B$, B the open unit ball in E. By construction there exists $y \in B$ such that $y = \sum_{k=1}^{+\infty} \frac{y_k}{2^k} = \lim_k \sum_{i=1}^k (x_{n_{i+1}} - x_{n_i})$. This implies that $x_{n_k} \longrightarrow y + x_{n_1} \in E$, and the proof is complete.

It is known that if E is a finite dimensional vector space a set C is σ -convex if and only if it is convex and bounded (the if part follows by Example 1.6, iv), of [2], p.84). This is false in general as showed in the Remark. If E is a normed space, next Proposition 2 will give us a similar characterization. Recall that a set $B \subseteq E$ containing θ_E is said to be *absorbing* if for any $x \in E$ is possible to find a number t > 0, depending on x, such that $x \in tB$; moreover B is said to be *radial* $at \theta_E$ if for any $x \in E$ there is a number $\delta > 0$, depending on x, such that $\lambda x \in B$ for any $\lambda \in [0, \delta]$. Clearly any set B radial at θ_E is an absorbing set and it is easy to verify that any neighborhood of θ_E is radial at θ_E . Finally recall that to any absorbing set B we can associate the *Minkowski functional* p_B defined by the position $p_B(x) = \inf\{t > 0 : x \in tB\}$.

Lemma. Let E be an Hausdorff t.v.s. and $A \subseteq E$ an open convex set. Then $A = int(\overline{A})$.

Proof. It is enough to verify that $int(\overline{A}) \subseteq A$, i.e., $\overline{A} \setminus A \subseteq \overline{A} \setminus int(\overline{A})$. Without loss of generality we can suppose that $\theta_E \in A$. A is an open convex neighborhood

68

of θ_E , so the equalities $A = \{x \in E : p_A(x) < 1\}$ and $\overline{A} = \{x \in E : p_A(x) \le 1\}$ hold (see Lemma 3.5.5, (d), of [1], p.154). Choose $c \in \overline{A} \setminus A$: it results $p_A(c) = 1$. Arguing by contradiction, suppose that $c \in \operatorname{int}(\overline{A})$. So we can find a neighborhood U of c, $U \subseteq \overline{A}$, such that $p_A(x) \le 1$ for any $x \in U$. Let $g:]0, +\infty[\longrightarrow E$ be the function defined by the formula $g(t) = \frac{c}{t}$. It is g(1) = c. By the continuity of g we can find $0 < \epsilon < 1$ such that $g([1 - \epsilon, 1 + \epsilon]) \subseteq U$. It follows that $c \in (1 - \epsilon)\overline{A}$, so $p_{\overline{A}}(c) \le 1 - \epsilon$. But $p_{\overline{A}} = p_A$ (see Theorem 1.35, (d), of [4], p.25): this contradiction concludes the argument.

Proposition 2. Let E be a normed space. Then the following facts are equivalent:

- (a) E is a Banach space;
- (b) For any open set, convex and bounded means σ -convex;
- (c) The open unit ball B, or equivalently any other open ball in E, is σ -convex.

Proof. $(a) \Longrightarrow (b)$ Let $A \neq \emptyset$ be any open convex bounded set in E. By (iv) of Proposition 1, \overline{A} is σ -convex and, by (iii) and the previous Lemma, so is $A = int(\overline{A})$. $(b) \Longrightarrow (c)$ It is trivial.

 $(c) \Longrightarrow (a)$ Following the notations of the proof of the Theorem (the only if part), if $\{x_n\}$ is Cauchy sequence, then $\{y_k\}$ belongs to the open unit ball B of E. By the hypothesis B is σ -convex: this concludes the proof.

The following two corollaries to Theorem are immediate consequences, so their easy proofs are left to the reader.

Corollary 1. Let $(E, \|\cdot\|)$ be a normed space and B its closed unit ball centered in θ_E . Then E is complete if and only if

$$\forall \{x_n\} \subseteq B, \ \forall \{\lambda_n\} \subseteq [0,1] \ such \ that \ \sum_{n=1}^{+\infty} \lambda_n = 1 \implies \sum_{n=1}^{+\infty} \lambda_n x_n \in B.$$

Corollary 2. Let $(E, \|\cdot\|)$ be a normed space. Then E is complete if and only if every absolutely convergent series is convergent.

Sketch. Apply Corollary 1.

We conclude the present note giving some easy application of the previous results.

Example. Let $(\Omega, \mathcal{A}, \mu)$ be an arbitrary measure space. Consider the vector space $L^p(\mu), 1 \leq p < \infty$, consisting of all (classes of equivalence of) measurable functions f such that $|f|^p$ is summable over Ω with respect to the measure μ . The formula $||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}$ defines a norm on $L^p(\mu)$ which so becomes an Hausdorff t.v.s.. In order to verify the completeness of the space we can directly apply the Theorem and verify that the closed ball B with radius one, centered at zero is actually σ -convex. Take $\{f_n\} \subset B$ and $\{\lambda_n\} \subseteq [0,1]$ such that $\sum_{n=1}^{+\infty} \lambda_n = 1$. By Minkowski inequality it results $\left(\int_{\Omega} |\sum_{n=1}^k \lambda_n|f_n| |^p d\mu\right)^{\frac{1}{p}} \leq \sum_{n=1}^k \lambda_n \leq 1 \ \forall k \in \mathbb{N}$, so, by the Monotone Convergence theorem, $\left(\int_{\Omega} |\sum_{n=1}^\infty \lambda_n|f_n| |^p d\mu\right)^{\frac{1}{p}} \leq 1$. Thus the function $\sum_{n=1}^{+\infty} \lambda_n f_n$, defined a.e. on Ω , belongs to B.

Analogous considerations, based on the convexity property of a Young function M, hold if we want to prove the completeness of the more general Orlicz Spaces L_M (see for instance [3]).

A. CARUSO

References

- [1] R.B. Ash. Measure, Integration, and Functional Analysis. Academic Press, Inc., 1972.
- R. Nagel, U. Schlotterbeck, and M.P.H. Wolf. Aspects of Positivity in Functional Analysis. North-Holland Mathematics Studies 122, Notas de Matemática. Elsevier Science Publisher B.V., 1986.
- [3] M.M. Rao and Z.D Ren. Theory of Orlicz Spaces. Marcel Dekker Inc., 1991.
- [4] W. Rudin. Functional Analysis. McGraw-Hill, Inc., 1973.

Received June 18, 2002.

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÁ DI CATANIA, VIALE ANDREA DORIA 6, 95125 CATANIA, ITALY *E-mail address:* aocaruso@dmi.unict.it