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ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN L2(]0, 1[)

J. TÚRI

Abstract. The almost sure version of Donsker’s theorem is proved in L2(]0, 1[).

The almost sure functional limit theorem is obtained for the empirical process
in L2(]0, 1[).

1. Introduction

The simplest form of the central limit theorem (CLT) is 1
σ
√
n
Sn ⇒ C(0, 1), as

n → ∞, if Sn is the nth partial sum of independent, identically distributed (i.i.d.)
random variables with mean zero and variance σ2. Here ⇒ denotes convergence in
distribution, while C(0, 1) is the standard normal law. The functional CLT, proved
by Donsker, states that the broken line process connecting the points ( in ,

1
σ
√
n
Si),

i = 0, 1, . . . , n, converges weakly to the standard Wiener process W in the space
C([0, 1]), see Billingsley [3].

A relatively new version of the CLT is the so called almost sure (a.s.) CLT, see
Brosamler [4], Schatte [11], Lacey and Philipp [7]. The simplest form of the a.s. CLT
is the following. Drop 1

logn
1
k weight to the point 1

σ
√
k
Sk(ω), k = 1, . . . , n. Then

this discrete measure weakly converges to C(0, 1) for P-almost every ω ∈ Ω. (Here
(Ω,A,P) is the underlying probability space.) The almost sure version of Donsker’s
theorem is also known, see e.g. Fazekas and Rychlik [6] and the references there.

In this paper our first aim (Theorem 2.1) is to prove the a.s. version of Donsker’s
theorem in L2(]0, 1[). In this space, despite the case of C([0, 1]), we can manage
without any maximal inequality. Using elementary facts of probability theory, we
derive our result from the general a.s. limit theorem in Fazekas and Rychlik [6].

A basic result in statistics is that the uniform empirical process converges to
the Brownian bridge B in the space D([0, 1]), see Billingsley [3]. The almost sure
version of this theorem is also known, see e.g. Fazekas and Rychlik [6]. The proof
of that theorem is based on a sophisticated inequality of Dvoretzky, Kiefer and
Wolfowitz.

In this paper we show that the a.s. version of the limit theorem for the empirical
process is valid in L2(]0, 1[), see Theorem 3.1. Our proof relies only on simple facts
from probability theory.

To produce a self contained paper, we also prove the (non a.s.) functional limit
theorems in L2(]0, 1[). Proposition 2.1 is the Donsker theorem, Proposition 3.1
contains the convergence of the empirical process. The proof of these propositions
are straightforward calculations to check the tightness conditions given in Oliveira
and Suquet [10].
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2. The almost sure Donsker theorem in L2(]0, 1[)

In this part we consider the process

(1) Yn(t) =
1

σ
√
n
S[nt], if t ∈ [0, 1],

where S0 = 0, Sk = X1 +X2 +· · ·+Xk, k ≥ 1, and X1, X2, . . . are i.i.d. real random
variables with EX1 = 0 and D2X1 = σ2. Here [·] denotes the integer part. We shall
prove a.s. limit theorem for Yn(t) in L2(]0, 1[). For the sake of completeness first
we prove the usual limit theorem.

We need the result below due to Oliveira and Suquet [10].

Remark 2.1. Let (Xn(t), n ≥ 1) be a sequence of random elements in L2(]0, 1[).
Assume that

(i) for some γ > 1, supn≥1 E‖Xn‖γ1 <∞,
(ii) limh→0 supn≥1 E‖Xn(·+ h)−Xn(·)‖22 = 0.

Then (Xn(t), n ≥ 1) is tight in L2(]0, 1[). �

Proposition 2.1. The sequence of processes (Yn(t), n ≥ 1) converges weakly to the
standard Wiener process W in L2(]0, 1[).

Proof. It is enough to prove that the finite dimensional distributions of the process
Yn(t) converge to those of the Wiener process and that the family (Yn(t), n ≥ 1)
is tight in L2(]0, 1[).

The convergence of the finite dimensional distributions to those of the Wiener
process is an elementary fact, see [3], so it is enough to prove the tightness.

For this aim, we prove that the conditions (i) and (ii) of Remark 2.1 are satisfied.
First we show that (i) is fulfilled with γ = 2, i.e. supn≥1 E‖Yn‖21 <∞ is satisfied.

This is implied by the following calculation.

sup
n≥1

E‖Yn‖21 = sup
n≥1

E

∥∥∥∥ 1
σ
√
n
S[nt]

∥∥∥∥2

1

= sup
n≥1

E

(∫ 1

0

∣∣∣∣ 1
σ
√
n
S[nt]

∣∣∣∣ dt)2

= sup
n≥1

E

(
n−1∑
i=0

∫ (i+1)/n

i/n

∣∣∣∣ Siσ
√
n

∣∣∣∣ dt
)2

= sup
n≥1

E

(
1

σ
√
n

1
n

n−1∑
i=0

|Si|

)2

≤ sup
n≥1

1
σ2n

1
n
E

(
n−1∑
i=0

|Si|2
)

= sup
n≥1

1
σ2n2

n−1∑
i=0

E|Si|2

= sup
n≥1

1
σ2n2

σ2
n−1∑
i=0

i = sup
n≥1

(
1
n2

n(n− 1)
2

)
= sup
n≥1

(
n− 1

2n

)
<∞.

Now we prove condition (ii). (We mention that in [10] any process outside the
interval [0, 1] is considered to be 0.) Below {·} denotes the fractional part.

E‖Yn(t+ h)− Yn(t)‖22 = E

∫ 1

0

|Yn(t+ h)− Yn(t)|2 dt
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= E

∫ 1−h

0

(
1

σ
√
n
S[n(t+h)] −

1
σ
√
n
S[nt]

)2

dt

+ E
∫ 1

1−h

(
1

σ
√
n
S[nt]

)2

dt

=
∫ 1−h

0

E

(
1

σ
√
n

(
X[nt]+1 + · · ·+X[n(t+h)]

))2

dt

+
∫ 1

1−h
E

(
1

σ
√
n
S[nt]

)2

dt

=
1
σ2n

∫ 1−h

0

σ2([n(t+ h)]− [nt]) dt+
1
σ2n

∫ 1

1−h
σ2[nt] dt

≤ 1
n

∫ 1

0

([{nt}+ {nh}] + [nh]) dt+
1
n
hn ≤ 2h→ 0,

as h→ 0. The proof of Proposition 2.1 is complete. �

To prove a.s. Donsker’s theorem we shall need the next result due to Fazekas and
Rychlik [6] (see also Chuprunov and Fazekas [5]). Let µX denote the distribution
of X. Let δx be the point mass at x.

Remark 2.2. Let (M,ρ) be a complete separable metric space and Xn, n ∈ N, be
a sequence of random elements in M . Assume that there exist C > 0, ε > 0 and
an increasing sequence of positive numbers Cn with limn→∞ Cn =∞, Cn+1/Cn =
O(1), and M -valued random elements Xk,l, k, l ∈ N, k < l, such that the random
elements Xk and Xk,l are independent for k < l and

(2) Eρ(Xk,l, Xl) ≤ C
(
Ck
Cl

)β
for k < l, where β > 0. Let 0 ≤ dk ≤ log(Ck+1/Ck), assume that

∑∞
k=1 dk = ∞.

Let Dn =
∑n
k=1 dk. Then, for any probability distribution µ on the Borel σ-algebra

of M , the following two statements are equivalent

1
Dn

n∑
k=1

dkδXk(ω) ⇒ µ, as n→∞ for almost every ω ∈ Ω;

1
Dn

n∑
k=1

dkµXk ⇒ µ, as n→∞.

The following result is the a.s. Donsker’s theorem in L2(]0, 1[).

Theorem 2.1.
1

log n

n∑
k=1

1
k
δYk(·,ω) ⇒ µW ,

in L2(]0, 1[), as n→∞, for almost every ω ∈ Ω, where W is the standard Wiener
process and Yk(t, ω) = Yk(t) is defined in (1).

Proof. We shall prove that the conditions of Remark 2.2 are fulfilled. The separa-
bility and completeness of space L2(]0, 1[) are well-known facts.

Let us define the process

Yk,n(t) =
(
Yn(t)− Sk

σ
√
n

)
I]k/n,1](t), k = 1, 2, . . . , n− 1, t ∈ [0, 1],

where IA denotes the indicator function of the set A. Then Yk,n and Yk are inde-
pendent for k < n.
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Eρ(Yn, Yk,n) = E

√∫ 1

0

∣∣∣∣Yn(t)−
(
Yn(t)− Sk

σ
√
n

)
I]k/n,1](t)

∣∣∣∣2 dt
≤

√
E

∫ 1

0

∣∣∣∣Yn(t)−
(
Yn(t)− Sk

σ
√
n

)
I]k/n,1](t)

∣∣∣∣2 dt
=

√√√√
E

n−1∑
i=0

∫ (i+1)/n

i/n

[
Yn(t)−

(
Yn(t)− Sk

σ
√
n

)
I[k/n,1](t)

]2

dt

=

√√√√
E

((
S1

σ
√
n

)2 1
n

+
(

S2

σ
√
n

)2 1
n

+ · · ·+
(
Sk−1

σ
√
n

)2 1
n

+
(

Sk
σ
√
n

)2
n− k
n

)

=

√
1

σ2n2
[σ2 + 2σ2 + · · ·+ (k − 1)σ2 + k(n− k)σ2]

=

√
1
n2

((1 + 2 + · · ·+ (k − 1)) + k(n− k)) =

√
1
n2

[(
k(k − 1)

2
+ k(n− k)

)]
=

√
k

n2

2n− k − 1
2

≤
√
k

n
.

So condition (2) of Remark 2.2 holds and the proof of Theorem 2.1 is complete. �

3. The empirical process in L2(]0, 1[)

In this section, we consider the empirical process

Zn(t) =
1√
n

n∑
i=1

(I[0,t](Ui)− t), t ∈ [0, 1],

where Ui (i = 1, 2, . . . ) are independent random variables with uniform distribution
on the interval [0, 1].

For the sake of completeness we prove the weak convergence of Zn.

Proposition 3.1. The process (Zn(t), n ≥ 1) weakly converges to the Brownian
bridge B in space L2(]0, 1[).

Proof. It is enough to prove that the finite dimensional distributions of the pro-
cess Zn(t) converge to those of the Brownian bridge and that the sequence of the
processes is tight in space L2(]0, 1[).

The first fact is elementary and well-known (see for example in [3]) so it is enough
to show the tightness.

Now we prove that the condition (i) of Remark 2.1 is fulfilled with γ = 2. Since
‖ · ‖1 ≤ ‖ · ‖2 this will be done if we show supn≥1 E‖Zn‖22 <∞.

E‖Zn‖22 = E

∥∥∥∥∥ 1√
n

n∑
i=1

(I[0,t](Ui)− t)

∥∥∥∥∥
2

2

= E

∫ 1

0

∣∣∣∣∣ 1√
n

n∑
i=1

(I[0,t](Ui)− t)

∣∣∣∣∣
2

dt

=
1
n
E

∫ 1

0

∣∣∣∣∣
n∑
i=1

(I[0,t](Ui)− t)

∣∣∣∣∣
2

dt

=
1
n

∫ 1

0

E(ξ − nt)2 dt =
1
n

∫ 1

0

nt(1− t) dt =
1
6
,

where ξ is a binomial random variable with parameters t and n.
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Now, we will show that condition (ii) of Remark 2.1 is fulfilled.

E‖Zn(·+h)− Zn(t)‖22 =

= E

∫ 1

0

|Zn(t+ h)− Zn(t)|2 dt

= E

∫ 1−h

0

|Zn(t+ h)− Zn(t)|2 dt+ E
∫ 1

1−h
|Zn(t)|2 dt

= E

∫ 1−h

0

∣∣∣∣∣ 1√
n

n∑
i=1

(
I[0,t+h](Ui)− (t+ h)

)
− 1√

n

n∑
i=1

(
I[0,t](Ui)− t

)∣∣∣∣∣
2

+ E
∫ 1

1−h

∣∣∣∣∣ 1√
n

n∑
i=1

(
I[0,t](Ui)− t

)∣∣∣∣∣
2

dt

= E
1
n

∫ 1−h

0

∣∣∣∣∣
n∑
i=1

(
I]t,t+h](Ui)− h

)∣∣∣∣∣
2

dt

+ E
1
n

∫ 1

1−h

∣∣∣∣∣
n∑
i=1

(
I[0,t](Ui)− t

)∣∣∣∣∣
2

dt

=
1
n

∫ 1−h

0

E

(
n∑
i=1

I]t,t+h](Ui)− nh

)2

dt

+
1
n

∫ 1

1−h
E

(
n∑
i=1

I[0,t](Ui)− nt

)2

dt

=
1
n

∫ 1−h

0

E(ξ − nh)2 dt+
1
n

∫ 1

1−h
E(η − nt)2 dt

=
1
n

∫ 1−h

0

nh(1− h) dt+
1
n

∫ 1

1−h
nt(1− t) dt

= h(1− h)2 +
(

1
2
− 1

3

)
−
(

(1− h)2

2
− (1− h)3

3

)
→ 0, as h→ 0,

where ξ is a binomial random variable with parameters h and n, and η is binomial
with parameters t and n.

This completes the proof of the Proposition 3.1. �

Theorem 3.1.

1
log n

n∑
k=1

1
k
δZk(·,ω) ⇒ µB ,

in L2(]0, 1[), as n→∞, for almost every ω ∈ Ω, where B is the Brownian bridge.

Proof. We shall prove that the conditions of Remark 2.2 are fulfilled.
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The separability and completeness of L2(]0, 1[) are well-known facts. Let us
define the process

Zk,n(t) =
1√
n

n∑
i=1

(I[0,t](Ui)− t)−
1√
n

k∑
i=1

(I[0,t](Ui)− t).

Then Zk,n and Zk are independent for k < n.
Condition (2) is valid because

Eρ(Zn, Zk,n) = E

√√√√∫ 1

0

∣∣∣∣∣ 1√
n

k∑
i=1

(I[0,t](Ui)− t)

∣∣∣∣∣
2

dt

=
1√
n
E

√√√√∫ 1

0

(
k∑
i=1

(I[0,t](Ui)− t

)2

dt

=
1√
n

√√√√∫ 1

0

E

(
k∑
i=1

(I[0,t](Ui)− t)

)2

dt

=
1√
n

√∫ 1

0

E(ξ − kt)2 dt =
1√
n

√∫ 1

0

kt(1− t) dt =
1√
6

√
k√
n
,

where ξ has binomial distribution with parameters t and k.
This completes the proof of the Theorem 3.1. �
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