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ON SOME SEQUENCES DERIVED FROM THE POISSON
DISTRIBUTION

N. SURULESCU

Abstract. In this note we give a new solution and some generalizations of the

problem raised by Professor Zoltán László concerning the limit of the sequence
(an)n≥1 with an = P (Un ≤ n), n ∈ N and Un ∼ Po(n).

1. Introduction

In their paper [2], László and Vörös consider the sequence

an :=

n∑
i=0

ni

i!

en

as a reformulation of the case θ = x in the following result concerning the Poisson
distribution which can be found in the book of Feller [1] on p. 229 (or p. 288 for
the Russian edition from 1967):

(1) lim
λ→∞

e−λθ
∑
k≤λx

(λθ)k

k!
=
{

0, if θ > x
1, if θ < x,

∀ θ, x > 0.

They were the firsts to show that for θ = x the above limit is 1
2 . This problem was

raised by Professor Zoltán László a few years ago. The proof in [2] uses analytical
means.

More appropriate seems to be for such a problem the framework of classical
theory of probability and we shall show that it is very easy to derive this limit from
the Central Limit Theorem. In this way we can also give some other generalizations
of this problem.

A reformulation of the result obtained by László and Vörös is the following

Theorem 1.1. If (Un)n≥1 is a sequence of random variables on the field of proba-
bility (Ω,K, P ), with Un ∼ Po(n), ∀n ∈ N, then

(2) lim
n→∞

P (Un ≤ n) = lim
n→∞

n∑
i=0

ni

i!

en
=

1
2
.

Using the fact that

(3)

n∑
i=0

ni

i!

en
= 1− 1

n!

n∫
0

e−xxndx,
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which is easy to obtain on integrating by parts, we see that the Gamma distribution
has a similar property. Using this observation, we will give in the next section a
result for the Gamma distribution which generalizes the above theorem. Finally,
we extend this result to a larger class of distributions.

2. Main results

For b ∈ R = R ∪ {−∞,∞} and β > 0, let us define the sequence (cn(b))n≥1 as
follows:

• if b ∈ R, then

(4) cn(b) =
2(n− β) + b2β − b

√
β(b2β + 4n)

2β
, ∀n ∈ N∗;

• if b = ∞, we take cn(∞) = C1n + D1, ∀n ≥ 1, where C1, D1 ∈ R with
0 < C1 <

1
β ;

• if b = −∞, we take cn(−∞) = C2n+D2, ∀n ≥ 1, where C2, D2 ∈ R with
C2 >

1
β ;

We define now (dn(b))n≥1 to be the sequence given by

(5) dn(b) = [cn(b)], ∀n ∈ N∗,

where by [ . ] we denote the integer part of a real number. Obviously, lim
n→∞

cn(b) =

∞, for all b ∈ R, so there is an n0(b) ∈ N∗ such that for n ≥ n0(b), dn(b) ∈ N∗.
We will show that in fact we have

Theorem 2.1. If (Un)n≥n0(b) is a sequence of random variables on the field of
probability (Ω,K, P ), with Un ∼ Gamma(1 + dn(b), β), ∀n ≥ n0(b), then

(6) lim
n→∞

P (Un ≤ n) = lim
n→∞

1
β1+dn(b)dn(b)!

n∫
0

e−
x
β xdn(b)dx = Φ(b),

for all b ∈ R, where Φ(x) = 1√
2π

x∫
−∞

e−
t2
2 dt, ∀x ∈ R is the Laplace function.

For β = 1 and b = 0 we reobtain the Theorem 1.1.
This result can be generalized to the case of other distributions G(n), n ∈ N∗,

which have finite moments up to order 2 and for every n ∈ N∗ the characteristic
function of the distribution G(n) is absolutely integrable on R and has the form
(ϕ(t))n, where ϕ(t) is the characteristic function of G(1) and we assume that it has
the property that µ not= ϕ′(0)

i ∈ (0,
√
−ϕ′′(0)).

In such cases, for all b ∈ R we may consider the sequences defined in a similar
way with (cn(b))n≥1 and (dn(b))n≥1:

• if b ∈ R then

(7) c̃n(b) =
2nµ+ b2σ2 − bσ

√
b2σ2 + 4nµ

2µ2
, ∀n ∈ N∗

• if b = ∞, we take c̃n(∞) = C̃1n + D̃1, ∀n ≥ 1, where C̃1, D̃1 ∈ R with
0 < C̃1 <

1
µ ;

• if b = −∞, we take c̃n(−∞) = C̃2n+ D̃2, ∀n ≥ 1, where C̃2, D̃2 ∈ R with
C̃2 >

1
µ ;

and

(8) d̃n(b) = [c̃n(b)], ∀n ∈ N∗,
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where σ =
√

(ϕ′(0))2 − ϕ′′(0) > 0. Obviously, lim
n→∞

c̃n(b) =∞, ∀b ∈ R, so there is

an ñ0(b) ∈ N∗ such that for n ≥ ñ0(b), d̃n(b) ≥ 2.
With these notations we have

Theorem 2.2. If (Un)n≥1 is a sequence of random variables on the field of proba-
bility (Ω,K, P ), with Un ∼ G(n), ∀n ∈ N∗, then

(9) lim
n→∞

P (Ud̃n(b) ≤ n) = lim
n→∞

1
2π

n∫
−∞

∫ ∞
−∞

e−itxϕ(t)d̃n(b)dt dx = Φ(b),

for all b ∈ R.

Remark 2.3. The repartitions appearing in the Theorems 2.1 and 2.2 above are of
continuous type. Of course, for discrete repartitions with properties similar to the
above ones for G(n), there also can be stated an analogous result to the Theorem
2.2., which generalizes in a natural way the Theorem 1.1 and in the final part of
our paper we shall give another illustration of this result in the particular case of
the binomial distribution.

3. Proofs

For b ∈ R let us now define the sequence (xn(b))n≥n0(b) by

(10) xn(b) =
n− β(1 + dn(b))
β
√

1 + dn(b)
, ∀n ≥ n0(b).

We will need in the sequel the following

Lemma 3.1. For the sequence (xn(b))n≥1 defined by (10) we have

(11) b ≤ xn(b), ∀n ≥ n0(b) and lim
n→∞

xn(b) = b if b ∈ R

and

(12) lim
n→∞

xn(b) = b if b ∈ {−∞,∞}.

Proof. Using the fact that x− 1 < [x] ≤ x, ∀x ∈ R, we have that

(13)
n− β(1 + cn(b))
β
√

1 + cn(b)
≤ xn(b) ≤ n− βcn(b)

β
√
cn(b)

, ∀n ≥ n0(b),

for all b ∈ R. If b ∈ {−∞,∞} it is easy to see that

(14) lim
n→∞

n− β(1 + cn(b))
β
√

1 + cn(b)
= lim
n→∞

n− βcn(b)
β
√
cn(b)

= b

and if b ∈ R we have

(15)
n− β(1 + cn(b))
β
√

1 + cn(b)
= b, ∀n ≥ n0(b).

and

(16)
n− βcn(b)
β
√
cn(b)

= b

√
1 +

1
cn(b)

+
1√
cn(b)

, ∀n ≥ n0(b).

Thus we obtain the result by passing to the limit. �

Now we give the proof of the Theorem 2.1:
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Proof. Let now (Xn)n≥1 be a sequence of independent random variables with the

distribution Xn ∼ Gamma(1, β), ∀n ∈ N∗. We will denote by Sn =
n∑
i=1

Xi,

∀n ∈ N∗ and it is well known that Sn ∼ Gamma(n, β), ∀n ∈ N∗.
Thus

(17) P (
1+dn(b)∑
i=1

Xi ≤ n) =
1

βdn(b)+1Γ(1 + dn(b))

∫ n

0

e−
x
β xdn(b)dx,

for all n ≥ n0(b). From Xn ∼ Gamma(1, β) we know that E(Xn) = β and
V ar(Xn) = β2. It follows that E(Sn) = nβ and V ar(Sn) = nβ2 and by the
Central Limit Theorem we have that

(18) lim
n→∞

P
(Sn − nβ

β
√
n
≤ x

)
= Φ(x) =

1√
2π

∫ x

−∞
e−

t2
2 dt,

for all real x.
We treat only the case where b is real. The cases b = ±∞ are analogous. Let now

ε > 0. Then from Lemma 3.1 it follows that there is an n1(b) ∈ N, n1(b) ≥ n0(b),
such that b ≤ xn(b) ≤ b+ ε, ∀n ≥ n1(b), thus

P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ b
)

(19)

≤ P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ xn(b)

)
≤ P

(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ b+ ε

)
, ∀n ≥ n1(b)

It follows that

Φ(b) = lim
n→∞

P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ b
)

(20)

≤ lim inf
n→∞

P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ xn(b)

)
≤ lim sup

n→∞
P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ xn(b)

)
≤ lim
n→∞

P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ b+ ε

)
= Φ(b+ ε)

and taking ε→ 0 we have

(21) lim
n→∞

P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ xn(b)

)
= Φ(b).

Observing now that

(22) P
(S1+dn(b) − β(1 + dn(b))

β
√

1 + dn(b)
≤ xn(b)

)
= P

(
S1+dn(b) ≤ n

)
,

we get the desired conclusion. �

The Theorem 2.2 can be proved in a way similar to the previous theorem:

Proof. We may consider in this case, too a sequence (x̃n(b))n≥ñ0(b) defined by

(23) x̃n(b) =
n− µd̃n(b)

σ
√
d̃n(b)

, ∀n ≥ ñ0(b), ∀b ∈ R,
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which has similar properties with the sequence defined in ( 10), namely:

• n−µc̃n(b)

σ
√
c̃n(b)

≤ x̃n(b) ≤ n+µ−µc̃n(b)

σ
√
c̃n(b)−1

, ∀n ≥ ñ0(b), ∀b ∈ R.

• for b = ±∞ we have

lim
n→∞

n− µc̃n(b)
σ
√
c̃n(b)

= lim
n→∞

n+ µ− µc̃n(b)
σ
√
c̃n(b)− 1

= b

• for b ∈ R we have
n− µc̃n(b)
σ
√
c̃n(b)

= b,∀n ≥ ñ0(b)

n+ µ− µc̃n(b)
σ
√
c̃n(b)− 1

= b
1√

1− 1
c̃n(b)

+
µ

σ
√
c̃n(b)− 1

, ∀n ≥ ñ0(b).

Thus in this case we also get lim
n→∞

x̃n(b) = b, ∀b ∈ R. With the same arguments as
in the previous proof we obtain the conclusion. �

4. Concluding Remarks

If we choose b = −∞, C2 = 2, D2 = 0, β = 1 in the Theorem 2.1, we obtain
that

(24) lim
n→∞

2n∑
i=0

ni

i!

en
= 1− lim

n→∞

1
(2n)!

n∫
0

e−xx2ndx = 1,

and if we choose b =∞, C1 = 1
2 , D1 = 0, β = 1 we have

(25) lim
n→∞

[
n
2

]
∑
i=0

ni

i!

en
= 1− lim

n→∞

1[
n
2

]
!

n∫
0

e−xx

[
n
2

]
dx = 0.

In fact, Theorem 2.1 expresses the fact that, by appropriately modifying the
summation limit in the first sum above, one can obtain as limit any value in [0, 1].
This remark was first made in [2].

Let us now give an illustration of how this method works in the case of the
binomial distribution.

Proposition 4.1. For all b ∈ R and p ∈ (0, 1),

(26) lim
n→∞

min{n,d̃n(b)}∑
k=0

(
d̃n(b)
k

)
pkqd̃n(b)−k = Φ(b),

where q = 1− p and d̃n(b) is given by

d̃n(b) = [c̃n(b)], ∀n ∈ N∗

with c̃n(b) having in this case the following characterization
• for b ∈ R,

(27) c̃n(b) =
2n+ b2q − b

√
q(b2q2 + 4n)

2p
, ∀n ∈ N∗

• if b = ∞, we may choose c̃n(∞) = C̃1n + D̃1, ∀n ≥ 1, where C̃1, D̃1 ∈ R
with 0 < C̃1 <

1
p ;

• if b = −∞, we may choose c̃n(−∞) = C̃2n+D̃2, ∀n ≥ 1, where C̃2, D̃2 ∈ R
with C̃2 >

1
p .
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In particular, from the above proposition we have

(28) lim
n→∞

min{n,
[
n
2p

]
}∑

k=0

( [
n
2p

]
k

)
pkq

[
n
2p

]
−k

= 1,

(29) lim
n→∞

n∑
k=0

( [
n
p

]
k

)
pkq

[
n
p

]
−k

=
1
2
,

(30) lim
n→∞

n∑
k=0

( [
2n
p

]
k

)
pkq

[
2n
p

]
−k

= 0,

for all p ∈ (0, 1).
Finally, such properties may be used in statistics, in order to find some estimates

for the quantiles of the corresponding distributions.
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