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17 (2001), 37–46
www.emis.de/journals

ON THE COMPRESSED DESCARTES-PLANE AND ITS
APPLICATIONS

I. SZALAY

Dedicated to Professor Á. Varecza on his 60th birthday

Abstract. The open interval R = (−1, 1) with the sub-addition ⊕ and sub-

multiplication � is considered as a compressed model of the set of real numbers
R. The paper contains the discussion of sub-linear function y = (m ⊗ x) ⊕ b

and shows its graph in the compressed Descartes-plane R2 = {(x, y) ∈ R2 :

−1 < x < 1 and −1 < y < 1}.

Introduction

The set of compressed real numbers R can be introduced such that the set of
real numbers is isomorphic with it. The isomorphism is given by the compression
function defined by the equation

(0.1) x = th u, u ∈ R.

Moreover, the operations working on R are: the sub-addition

(0.2) x⊕ y =
x + y

1 + x · y
, x, y ∈ R

and the sub-multiplication

(0.3) x� y = th((area thx)(area th y)), x, y ∈ R.

Of course, we have the identities

(0.4) u + v = u⊕ v, u, v ∈ R

and

(0.5) u · v = u� v, u, v ∈ R.

The number
u = th u, u ∈ R

is called the compressed of u. On the other hand, the number

x = area thx, x ∈ R

is called the exploded of x.
The inverse of sub-addition is sub-subtraction

(0.6) x	 y =
x− y

1− x · y
, x, y ∈ R
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and the inverse of sub-multiplication is sub-division

(0.7) x©: y =

(
x

y

)
, x, y ∈ R, y 6= 0.

The arrangement on R gives the arrangement on R too. Namely, for any pair
x, y ∈ R, x < y if and only if x < y.

If a real function f is given by the equation

(0.8) v = f(u), u, v ∈ R

then we define

(0.9) sub f(x) = f(x), x ∈ R

and sub f is called the sub-function of the function f . Of course, for a compressed
real number x the function sub f is determined if and only if x belongs to the
definition-domain of function f . Now we have the following obvious fact as a
Lemma 0.10. If function f is monotonic on the interval (α, β) ⊂ R, where α =
−∞ and β = ∞ are allowed then the sub-function sub f is monotonic in the same
sense on the interval (α, β).

By Lemma 0.10. we obtain the next corollaries.
Corollary 0.11. For any x, y, z ∈ R, if x < y then

x⊕ z < y ⊕ z

holds.
Corollary 0.12. For any x, y, z ∈ R, if x < y and z > 0 then

x� z < y � z

holds.
The compressed Descartes-plane is

R2 = {(x, y) : x, y ∈ R}
that is, the set of arranged pairs of compressed real numbers.

1. The sub-linear function

Considering the linear function, given by the equation

(1.1) v = µu + β, u, v ∈ R

where µ and β are fixed real numbers, we have that its sub-function

(1.2) y = (m� x)⊕ b, x = u, y = v

with

(1.3) m = µ

and

(1.4) b = β

because by (1.1), (0.9), (0.1), (0.4), (0.5), (1.4) and (1.3)

µx + β = µx⊕ β = (µ� (x))⊕ b = (m� x)⊕ b

is obtained. So, the sub-function defined by the equation (1.2) is called sub-linear
function.

Introducing the compression-transformation

(u, v) →−(u, v), (u, v) ∈ R2
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and the explosion-transformation

(x, y) →−(x, y), (x, y) ∈ R2

we say that the sub-linear function is the compressed of the linear function. Con-
versely, the linear function is the exploded of the sub-linear function.

Our aim is to discuss the graph of sub-linear function under (1.2). First of all we
remark, that the sub-linear function is defined on the whole R. Moreover, Lemma
0.10 says that it is monotonic increasing if m > 0 and decreasing if m < 0. If
m = 0 then the sub-linear function is constant.

Using (0.2), (0.3) and (1.3) we have that the equation (1.2) is equivalent with
the equation

(1.5) y(x) =
b + th(µ area thx)

1 + b th(µ area thx)
, −1 < x < 1.

Hence,

(1.6) lim
x→1
x<1

((m� x)⊕ b) =

{
1 if µ > 0
−1 if µ < 1

, (see(1.3))

and

(1.7) lim
x→−1
x>−1

((m� x)⊕ b) =

{
−1 if µ > 0
1 if µ < 1

, (see(1.3))

hold. By the equation

(1.8) y′(x) =
µ(1− b2)

(1− x2)(ch(µ area thx) + b sh(µ area thx))2
, −1 < x < 1,

we can compute that

(1.9) lim
x→1
x<1

((m� x)⊕ b)′ =


0 if µ > 1,

∞ if 0 < µ < 1
−∞ if − 1 < µ < 0,

0 if µ < −1

(see(1.3))

and

(1.10) lim
x→−1
x>−1

((m� x)⊕ b)′ =


0 if µ > 1,

∞ if 0 < µ < 1
−∞ if − 1 < µ < 0,

0 if µ < −1

, (see(1.3))

Now we will consider the special case b = 0, that is

(1.11) y = m� x, x ∈ R.

This sub-linear function is the compressed of linear function

(1.12) v = µ · u, u ∈ R.

On the other hand (1.8) shows, that

(m� x)′
∣∣∣

x=0

= µ.

This means that the tangent of the curve (1.11) at the point O = (0, 0) is the line
with the equation

(1.13) y = µx.

So, the exploded of (1.11) is the tangent of (1.11), too.
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The cases m = 1, m = 0 and m = −1 are trivial, because by (0.3) we have

m� x =


x if m = 1, (µ = 1)
0 if m = 0, (µ = 0)
−x if m = −1, (µ = −1)

, (see (1.3)).

For the other cases we have
Theorem 1.14. If m ∈ R such that m 6= 1, 0,−1 then the curve of sub-linear
function defined by the equation (1.11) has a unique inflexion-point at x = 0.

Proof. Considering (1.5) and (1.8) in the special case b = 0, we have

(1.15) y(x) = th(µ area thx), µ ∈ R, µ 6= 1, 0,−0

and

(1.16) y′(x) =
µ

(1− x2) ch2(µ(area th x))
, −1 < x < 1,

respectively. By (1.16) we get

(1.17) y
′′
(x) = −µ((1− x2) ch2(µ(area th x)))′

((1− x2) ch2(µ(area th x)))2
, µ 6= 1, 0,−0.

A usual computation gives that y
′′
(x) = 0 if and only if

(1.18) th(µ area thx) =
x

µ
, µ 6= 1, 0,−1.

Clearly, if x = 0, then (1.18) is fulfilled. We will show that this is the unique
case. Considering that the functions standing on both sides of the equation (1.18)
are odd we can assume that

(1.19) 0 < x < 1.

Now, let us consider the following four cases:
(i) Case µ > 1. By (1.19) we have

x

µ
< x = th(area th x) < th(µ(area th x).

(ii) Case 0 < µ < 1. By (1.19) we have
x

µ
> x = th(area th x) > th(µ(area th x)).

(iii) Case −1 < µ < 0. By (1.19) we have
x

µ
< −x = th(− area thx) < th(µ area thx).

(iv) Case µ < −1. By (1.19) we have
x

µ
> −x = th(− area thx) > th(µ area thx.

Our proof is complete. �

Collecting the results mentioned above we have Figure 1.20.
After Theorem 1.14, the graph of the special sub-linear function (1.11) is already

known. (See Fig. 1.20.) The hyperbola

(1.21) y =
x− bµ

µ− bx
, µ ∈ R, b ∈ R, µ, b 6= 0

has the definition-domain

(1.22) R\{µ

b
}.

We need
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Fig. 1.20.

Lemma 1.23. If µ ∈ R such that

(1.24) µ > 1

and b ∈ R such that

(1.25) b > 0

then the graphs of the sub-linear function defined under (1.11) and the hyperbola
(1.21) have a unique common point.

Proof. Considering (1.6) and (1.7) we have that the y-domain of the sub-linear
function defined under (1.11) is the interval (-1, 1). On the other hand, in the case
of hyperbola (1.21), by (1.24) and (1.25)

y(−1) =
−1− bµ

µ + b
> −1 and y(1) =

1− bµ

µ− b
< 1.

Moreover, (1.21), (1.22), (1.24) and (1.25) show that R is a subset of the definition
domain of the hyperbola which is strictly monotonic in it. So, the graphs intersect
each other by the Bolzano–Darboux property. Our task is to sow that their inter-
section has only one point in R2. Clearly, the abscissas of common points belong
to R.

By (1.24) we have that for any x ∈ R the number x
µ ∈ R, too. So, by (0.6) we

can write for any x ∈ R, that

x− bµ

µ− bx
=

x
µ − b

1− b x
µ

=
x

µ
	 b, (x ∈ R).

Hence, the hyperbola graph above the interval (-1, 1) has the equation

y =
x

µ
	 b, x ∈ R

Casting a glance at (1.11) for the abscissas of the common points we have the
equation:

(1.26)
x

µ
	 b = m� x.
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Hence,

(1.27)
x

µ
= (m� x)⊕ b.

Exploding both sides of equation (1.27), by (0.4), (0.5), (1.3) and (1.4) we have

(1.28) area th
x

µ
= µ · area th+β.

It is sufficient to show, that the equation (1.28) which is equivalent to (1.27) and
(1.26) has only one solution. To prove this fact we consider the function

(1.29) d(x) = (µ area thx + β)− area th
x

µ
, −1 < x < 1.

Hence,

d′(x) = µ
( 1

1− x2
− 1

µ2 − x2

)
, −1 < x < 1.

By (1.24)we have that for any x ∈ (−1, 1), d′(x) > 0. So, the function (1.29) is
strictly increasing on the interval (-1, 1). This means that the equation

(µ area thx + β)− area th
x

µ
= 0

together with the equation (1.28) has only one solution. �

By Lemma 1.23. we have
Definition 1.30. Let µ ∈ R, b ∈ R, µ 6= 1, 0,−1; b 6= 0. The solution of equation

x− µb

µ− bx
= m� x, (m = µ)

is denoted by xm,b and called inflexion-abscissa.
Returning to the general sub-linear function (1.2) the cases m = 0 and b 6= 0 are

trivial because in these cases the sub-linear functions are constant:

y = b, (b ∈ R).

Now we are turning to the interesting special cases when

|m| = 1 and b 6= 0

are fulfilled.
In the case

(1.31) m = 1 and 0 < b < 1

the equation (1.5) gives the special case

y =
b + x

1 + bx
, −1 < x < 1.

It is a piece of the hyperbola which is symmetrical for the line y = −x and has
the assimptots x = − 1

b (< −1) and y = 1
b (> 1). In this case

lim
x→1
x<1

y′(x) =
1− b

1 + b
and lim

x→−1
x>−1

y′(x) =
1 + b

1− b
.

In the case

(1.32) m = −1 and 0 < b < 1

the equation (1.5) gives the special case

y =
b− x

1− bx
, −1 < x < 1.
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It is a piece of the hyperbola which is symmetrical for the line y = x and has
the assimptots x = 1

b (> 1) and y = 1
b (> 1). In this case

lim
x→1
x<1

y′(x) =
b + 1
b− 1

and lim
x→−1
x>−1

y′(x) =
b− 1
b + 1

.

In the case

(1.33) m = 1 and − 1 < b < 0

the equation y = x ⊕ b has the inverse y = x ⊕ |b| which is the case (1.31) with
0 < |b| < 1.

In the case

(1.34) m = −1 and − 1 < b < 0

the equation (1.2) has the form y = b 	 x = −(x ⊕ |b|). Considering the graph of
case (1.31) with 0 < |b| < 1 and reflecting it for the ”x” axis we have the graph of
this case.

Collecting the cases (1.31), (1.32), (1.33) and (1.34) with |b| = 1
2 we have the

next figure:

Fig. 1.35.

In the last part of the discussion we consider the cases m, b ∈ R such that
|m| 6= 1, and m, b 6= 0. We need
Lemma 1.36. Let m, b ∈ R. If the point (x0, y0) lies on the graph of the curve
having the equation (1.2) then:

a) point (−x0,−y0) lies on the graph of the curve having the equation

(1.37) y = (m� x)⊕ (−b),

b) point (−x0, y0) lies on the graph of the curve having the equation

(1.38) y = ((−m)� x)⊕ b,
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c) point (y0, x0) lies on the graph of the curve having the equation

(1.39) y = (x©: m)⊕ ((−b)©: m),

where m 6= 0 is assumed.

Proof. Case a)
Using (1.2), by (0.2) and (0.3) we obtain

y0 = (m� x0)⊕ b = (m� (−(−x0)))⊕ b =
= (m� ( − 1� (−x0)))⊕ ( − 1� (−b)) = − 1� ((m� (−x0))⊕ (−b)) =
= −((m� (−x)) + (−b)).

So, (−x0,−y0) satisfies (1.37)
Case b)
Using (1.2), by (0.2) and (0.3), we obtain

y0 = (m� x0)⊕ b = (m� ( − 1� (−x0))⊕ b =
= ((m� − 1)� (−x0))⊕ b = ((−m)� (−x0))⊕ b.

So, (−x0, y0) satisfies (1.38).
Case c)
Starting from (1.2), by (0.6), (0.2), (0.3) and (0.7), we can write

y0 = (m� x0)⊕ b
y0 	 b = m� x0

y0 ⊕ (−b) = x0 �m
(y ⊕ (−b))©: m = x0

(y0©: m)⊕ ((−b)©: m) = x0,

that is (y0, x0) satisfies (1.39). �

Finally, we have
Theorem 1.40. If m, b ∈ R such that m 6= 1, 0, − 1 and b 6= 0 then the curve of
the sub-linear function defined by the equation (1.2) has the unique inflexion-point

(1.41)
(
xm,b,

xm,b

µ

)
, (µ = m)

where xm,b is the inflexion-abscissa.

Proof. We have already seen that the equation (1.2) is equivalent to the equation
(1.5) which has the derivative (1.8). Hence,

y
′′
(x) = µ(1− b2)

( 1
(1− x2)(ch(µ area thx) + b sh(µ area thx))2

)′
, −1 < x < 1.

We have to solve the equation

(1.42) y
′′
(x) = 0, −1 < x < 1

which is equivalent to the equation

((1− x2)(ch(µ area thx) + b sh(µ area thx))2)′ = 0, −1 < x < 1.

Hence, a usual computation gives that (1.42) is equivalent to the equation

(1.43) (x− bµ) ch(µ area thx) = (µ− bx) sh(µ area thx), −1 < x < 1.

Now we distinguish the following eight cases

(i)/1: µ > 1 and b > 0,
(i)/2: µ > 1 and b < 0,
(ii)/1: 0 < µ < 1 and b > 0,
(ii)/2: 0 < µ < 1 and b < 0,
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(iii)/1: −1 < µ < 0 and b > 0,
(iii)/2: −1 < µ < 0 and b < 0,
(iv)/1: µ < −1 and b > 0,
(iv)/2: µ < −1 and b < 0.

Let is begin with the case (i)/1. Writing (1.43) in the form
x− bµ

µ− bx
= m� x, (see (1.3) and (0.3))

by Lemma 1.23 and Definition 1.30 we have that the unique solution of (1.42) is the
inflection-abscissa xm,b. Writing the left-hand side in the form x

µ 	 b the equalities
(1.26) and (1.27) show that the point (1.41) lies on the curve of the sub-linear
function (1.2). Moreover, (1.7) and (1.10) show that the curve starts from the
point (-1, -1) in a convex way. So, we have that it is convex the interval (−1, xm,b)
and concave in the interval (xm,b, 1). Thus our statement is proved for the case
(i)/1.

In the case (i)/2 we apply the case a) of Lemma 1.36 which says that the graph
is a reflection with respect to the point O = (0, 0) of the graph given in the case
(i)/1.

In the case (ii)/2 we apply the case c) of Lemma 1.36 which says that the graph
is a reflection with respect to line y = x of a graph belonging to the case (i)/2.

In the case (ii)/1 we apply the case a) of Lemma 1.36 which says that the graph
is a reflection with respect to the point O = (0, 0) of the graph given in the case
(ii)/2.

In the case (iv)/1 we apply the case b) of Lemma 1.36 which says that the graph
is a reflection with respect to the ”y” axis of the graph given in the case (i)/1.

In the case (iv)/2 we apply the case a) of Lemma 1.36 which says that the graph
is a reflection with respect to the point O = (0, 0) of the graph given in the case
(iv)/1.

In the case (iii)/1 we apply the case a) of Lemma 1.36 which says that the graph
is a reflection with respect to the point O = (0, 0) of the graph given in the case
(ii)/1.

In the case (iii)/2 we apply the case a) of Lemma 1.36 which says that the graph
is a reflection with respect to the point O = (0, 0) of the graph given in the case
(iii)/1.

The proof of Theorem 1.40 is complete. �

Finally, using Theorem 1.40 by (1.6), (1.7), (1.9), (1.10). Fig. 1.20, (1.21),
Definition (1.30) and (1.41) we give the graph of the sub-linear function y = (2 �
x)⊕ 1

2 :
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Fig. 1.41.
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