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ON THE RECTIFIABILITY CONDITION OF A SECOND ORDER
ORDINARY DIFFERENTIAL EQUATION
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Dedicated to Professor Árpád Varecza on his 60th birthday

Abstract. In this paper we wish to survey the rectifiability conditions of a

second order differential equation, and we give some examples for a projectively
flat two-dimensional Finsler space.

1. Introduction

In a famous book of Arnold [2] we can find the following theorem: “An equation
d2y/dx2 = Φ(x, y, dy/dx) can be reduced to the form d2y/dx2 = 0 if and only if
the right-hand side is a polynomial in the derivative of order not greater 3 both for
the equation and for its dual.”

This theorem can be formulated in the following form on the basis of [4]: “An
equation d2y/dx2 = Φ(x, y, dy/dx) can be reduced to the form d2y/dx2 = 0 if and
only if the path space P 2 (determined by the equation d2y/dx2 = Φ(x, y, dy/dx))
is projectively related to a two-dimensional projectively flat Finsler space F 2.”

The aim of this paper is to give some projectively flat two-dimensional Finsler
spaces using this latter theorem.

2. Notations and theorems

Proposition 2.1. [1] The second order differential equations

d2xi/dt2 = −2Gi(x, ẋ); ẋi = dxi/dt (i = 1, 2, . . . , n)

give a path space Pn, where the functions Gi(x, ẋ) are positively homogeneous of
degree two in ẋ.
Definition 2.2. [2] The integral curves of this second order differential equation
are called paths.
Definition 2.3. [1] A Finsler space Fn is a pair (Mn, L), where Mn is a connected
differentiable manifold of dimension n, L(x, ẋ) is the metrical function defined on
the manifold TM/O of nonzero tangent vectors, and L(x, ẋ) is positively homoge-
neous of degree one in ẋ.

The differential equations of geodesic curves of Fn:

d2xi/dt2 = −2Gi(x, ẋ) ,

where
Gi = gij

[
ẋr∂2L2/∂ẋj∂xr − ∂L2/∂xj

]
,
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and
gij = (gij)−1 ; gij =

1
2
∂2L2/∂ẋi∂ẋj .

Definition 2.4. [1]A path space Pn and a Finsler space Fn are called projectively
related to each other, if any path of Pn is a geodesic curve of Fn and vice versa.
Theorem 2.5. [5] In two-dimensions any path space is projectively related to a two
dimensional Finsler space.
Definition 2.6. [1] A Finsler space is called projectively flat, if it is covered by
coordinate neighborhoods in which any geodesic is represented by linear equations.
Theorem 2.7. [1] If a path space Pn projectively is related to a Finsler space
Fn, then we have two invariant tensors, called the Weyl and the Douglas tensor
respectively.
Definition 2.8. [3] A Finsler space is said to be a Douglas space, if the Douglas
tensor Dh

ijk vanishes identically, where

Dh
ijk = ∂3Qh/∂ẋk∂ẋj∂ẋi

with Qh = Gh − ẋhG
1

n + 1
; G = Gr

r ; Gi
j = ∂Gi/∂ẋj .

Theorem 2.9. [3] A two-dimensional Finsler space F 2 is a Douglas space if and
only if (in a local coordinate system (x, y)) the right-hand side Φ(x, y, dy/dx) of the
equation of geodesics y′′ = Φ(x, y, dy/dx) is a polynomial in dy/dx = y′ of degree
at most three.

From the previous Theorems and Definitions we obtain
THEOREM 1. An equation d2y/dx2 = Φ(x, y, y′) can be reduced to the form
d2y/dx2 = 0 if the pathspace P 2 (determined by the equation d2y/dx2 = Φ(x, y, y′))
is projective related to a two-dimensional Douglas space.

Some examples can be found in the papers [3] and [4] for the Douglas spaces.
Theorem 2.10. [4] A Finsler space F 2 (a two-dimensional Finsler space) is a
projectively flat space if and only if F 2 is a Douglas space and satisfies Πijk = 0,
where Πijk = ∂Qij/∂xk +Qr

ijQrk− [ij]. The tensor Qij = Qr
ijr, where in a Douglas

space

Qh
ijk = ∂Qh

ij/∂xk + Qr
ijQ

h
rk − [ij] , Qh

ij =
∂2

[
Gh − ẋhG 1

n+1

]
∂ẋi∂ẋj

.

Theorem 2.11. [4] A two-dimensional Finsler space F 2 is a Douglas space if and
only if the differential equation of F 2 has the form

y′′ = k(x, y)(y′)3 + h(x, y)(y′)2 + g(x, y)y′ + f(x, y) =

= Q1
22(y

′)3 − (Q2
22 − 2Q1

12)(y
′)2 − (2Q2

12 −Q1
11)y

′ + Q2
11 .

Theorem 2.12. [4] A two dimensional Douglas space is projectively flat if and only
if Π112 = 0 and Π212 = 0 .

THEOREM 2. In a Douglas space

Π112 = −fyy+
2
3
gxy−

1
3
ggy+fhy+hfy−

1
3
hxx+

1
3
hxg+kfx−

2
27

g2h+
2
3
gkh− 2

3
fhk ,

Π212 = − 1
3
gyy +

2
3
hxy −

1
3
gyh + kyf + 2kfy − kxx +

2
3
hhx +

2
3
hxk − 4

27
gh2 +

+
2
3
hkx −

1
3
gkx −

1
3
gxk − 2

9
hgk +

2
9
g2k ,

where fx = ∂f/∂x , fy = ∂f/∂y , . . . .
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3. Some examples

Assume that a two-dimensional Finsler space F 2 on a domain of the (x, y)-plane
has the geodesics given by the equations:

1. y′′ = f(x, y) ,
2. y′′ = g(x, y)y′ + f(x, y) ,
3. y′′ = k(x, y)(y′)3 ,
4. y′′ = h(x, y)(y′)2 ,
5. y′′ = g(x, y)y′ .

The components of the tensor Π are the following in these cases:
1. Π112 = −fyy ; Π212 = 0 ,
2. Π112 = −fyy + 2

3gxy − 1
3ggy ; Π212 = − 1

3gyy ,
3. Π112 = 0 ; Π212 = −kxx ,
4. Π112 = − 1

3hxx ; Π212 = hxy + hhx ,

5. Π112 = 2
3gxy − 1

3ggy ; Π212 = − 1
3gyy .

Consequently, F 2 is projectively flat, if and only if
1. f(x, y) = A(x)y + B(x) ,
2. f(x, y) = σ1(x)y3 + σ2(x)y2 + σ3(x)y + σ4(x) ; g(x, y) = α(x)y + β(x) ,
3. k(x, y) = C(y)x + D(y) ,
4. h(x, y) = E(y)x + F (y) , where dE/dy + (Ex + F )E = 0 ,
5. g(x, y) = γ(x)y + δ(x) , where 2

3dy/dx− 1
3 (γy + δ)γ = 0 .
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