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MIKUSINSKI FUNCTIONAL EQUATION ON A HEXAGON
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Dedicated to Professor Arpdd Varecza on the occasion of his 60th birthday

ABSTRACT. The general solution of the conditional functional equation (M) is
described for functions f: (—r,r) — R, where (M) is satisfied for all (z,y) € H,
where H = {(z,y) | z,y,z +y € (—r,7)} is a hexagon.

1. INTRODUCTION

J. Mikusinski (in 1971) mentioned the functional equation

(M) fa+y)[flz+y) - fl@) - fy)] =0
which since has been named after him.

The authors of [2] find the general solution of (M) for functions f: X — Y where
(X,+) and (Y, +) are (not necessarily commutative) groups. In case X =Y =R
they proved the following
Theorem 1. The only solutions of equation (M) for functions f: R — R are
additive functions, i.e. the solutions of Cauchy functional equation

(1) fle+y)=fl@)+ fly)  (z,y€R).

The aim of this paper is to present the general solution of (M) for functions
fi(=r,r) = R, where (M) is satisfied for all (z,y) € H = {(z,y) | z,y,z +y €
(—r,7)} and (—r,r) is an open interval in R.

2. AN EXTENSION THEOREM FOR (M)

Following the ideas of AczEL [1] and KuczMA [3] we prove the following exten-
sion theorem for the Mikusiriski functional equation (M).
Theorem 2. If the function f: (—r,r) — R satisfies the Mikusiniski functional
equation (M) for all (x,y) € H, where H is a hexagon given above, then there
exists a unique function F: R — R satisfying (M) for any x,y € R and

f(z) = F(x), x € (—r,r).
Proof. a) First we show that

T 1
(2) f(5) = 5:f@.  we(-rr) neN.
If f(x) = 0, then it is easy to see that f(2"x) =0 (2"x € (—r,r)), which implies (2).
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If f(x) # 0, then replacing both = and y by §, we get from (M)
T 1
3) F(3)=3f@#0,  we(=rm.

Thus (2) holds for n = 1.
Using (3) repeatedly completes the statement.

b) On the other hand, for every u € R there exists an n € N U {0} such that
xr = g € (—r,r). We define the function F' by

(4) F:R—R, F(u)=2"f (QE) (2% € (—r, r)) .

This definition is correct and (4) gives
f(z) = F(x), x € (—r,r).

¢) We must verify that F' satisfies (M) for all z,y € R.
If 2,y € R are arbitrary, then there exists an n € N U {0} such that

2%, 2%, x;y € (—r,1).
o TUNT(EN (YY) (E Y] g
fara) (@) 1 (G) (G| =o
that is

ne(TtTY n ( z ) n ( Yy ) ne(TtY
2 2 — 2 =] =2 =0.
f(2n)[f2n+f2n 1(52)| =0
This implies that the function F, defined by (4) satisfies (M) for all z,y € R.

d) To prove the uniqueness, suppose that a function G: R — R satisfies (M) in R
and fulfills the condition

(5) G(z) = f(x), x € (—rr).
Similarly as in a) one can get that
x 1
(6) G(Q—n) = 5:G@),  z€R neNU{o}.
Take an arbitrary x € R. There exists an n € N U {0} such that 5 € (—r,7).
Thus we have by (4), (5) and (6)

G(z) = 2G (21) —onf (2%) = F(x).
Consequently G = F in R. O

3. THE GENERAL SOLUTION OF (M) ON A HEXAGON

Using Theorems 1 and 2 we obtain

Theorem 3. If the function f: (—r,r) — R satisfies the Mikusiriski functional
equation (M) for all (x,y) € H, then there exists a unique additive function
A: R — R such that

(7) flz) = A(z), xe€(-rr).

Proof. Theorem 2 shows that there exists a unique function F: R — R satisfying
(M) for all z,y € R and f(x) = F(z) = € (—r,7).

Because of Theorem 1 F' is an additive function.

It is easy to see that all additive functions A fulfill also (M) for all (z,y) € H. O
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