```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
17 (2001), 113-115
www.emis.de/journals
```


MIKUSIŃSKI FUNCTIONAL EQUATION ON A HEXAGON

KÁROLY LAJKÓ
Dedicated to Professor Árpád Varecza on the occasion of his 60th birthday

Abstract. The general solution of the conditional functional equation (M) is described for functions $f:(-r, r) \rightarrow \mathbb{R}$, where (M) is satisfied for all $(x, y) \in H$, where $H=\{(x, y) \mid x, y, x+y \in(-r, r)\}$ is a hexagon.

1. Introduction

J. Mikusiński (in 1971) mentioned the functional equation

$$
\begin{equation*}
f(x+y)[f(x+y)-f(x)-f(y)]=0 \tag{M}
\end{equation*}
$$

which since has been named after him.
The authors of [2] find the general solution of (M) for functions $f: X \rightarrow Y$ where $(X,+)$ and $(Y,+)$ are (not necessarily commutative) groups. In case $X=Y=\mathbb{R}$ they proved the following
Theorem 1. The only solutions of equation (M) for functions $f: \mathbb{R} \rightarrow \mathbb{R}$ are additive functions, i.e. the solutions of Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \quad(x, y \in \mathbb{R}) \tag{1}
\end{equation*}
$$

The aim of this paper is to present the general solution of (M) for functions $f:(-r, r) \rightarrow \mathbb{R}$, where (M) is satisfied for all $(x, y) \in H=\{(x, y) \mid x, y, x+y \in$ $(-r, r)\}$ and $(-r, r)$ is an open interval in \mathbb{R}.

2. An extension theorem for (M)

Following the ideas of Aczél [1] and Kuczma [3] we prove the following extension theorem for the Mikusiński functional equation (M).
Theorem 2. If the function $f:(-r, r) \rightarrow \mathbb{R}$ satisfies the Mikusiński functional equation (M) for all $(x, y) \in H$, where H is a hexagon given above, then there exists a unique function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (M) for any $x, y \in \mathbb{R}$ and

$$
f(x)=F(x), \quad x \in(-r, r) .
$$

Proof. a) First we show that

$$
\begin{equation*}
f\left(\frac{x}{2^{n}}\right)=\frac{1}{2^{n}} f(x), \quad x \in(-r, r), n \in N \tag{2}
\end{equation*}
$$

If $f(x)=0$, then it is easy to see that $f\left(2^{n} x\right)=0\left(2^{n} x \in(-r, r)\right)$, which implies (2).

[^0]If $f(x) \neq 0$, then replacing both x and y by $\frac{x}{2}$, we get from (M)

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \neq 0, \quad x \in(-r, r) . \tag{3}
\end{equation*}
$$

Thus (2) holds for $n=1$.
Using (3) repeatedly completes the statement.
b) On the other hand, for every $u \in \mathbb{R}$ there exists an $n \in N \cup\{0\}$ such that $x=\frac{u}{2^{n}} \in(-r, r)$. We define the function F by

$$
\begin{equation*}
F: \mathbb{R} \rightarrow \mathbb{R}, \quad F(u)=2^{n} f\left(\frac{u}{2^{n}}\right) \quad\left(\frac{u}{2^{n}} \in(-r, r)\right) \tag{4}
\end{equation*}
$$

This definition is correct and (4) gives

$$
f(x)=F(x), \quad x \in(-r, r) .
$$

c) We must verify that F satisfies (M) for all $x, y \in \mathbb{R}$.

If $x, y \in \mathbb{R}$ are arbitrary, then there exists an $n \in N \cup\{0\}$ such that

$$
\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{x+y}{2^{n}} \in(-r, r)
$$

Now

$$
f\left(\frac{x}{2^{n}}+\frac{y}{2^{n}}\right)\left[f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}+\frac{y}{2^{n}}\right)\right]=0
$$

that is

$$
2^{n} f\left(\frac{x+y}{2^{n}}\right)\left[2^{n} f\left(\frac{x}{2^{n}}\right)+2^{n} f\left(\frac{y}{2^{n}}\right)-2^{n} f\left(\frac{x+y}{2^{n}}\right)\right]=0 .
$$

This implies that the function F, defined by (4) satisfies (M) for all $x, y \in \mathbb{R}$.
d) To prove the uniqueness, suppose that a function $G: \mathbb{R} \rightarrow \mathbb{R}$ satisfies (M) in \mathbb{R} and fulfills the condition

$$
\begin{equation*}
G(x)=f(x), \quad x \in(-r, r) . \tag{5}
\end{equation*}
$$

Similarly as in a) one can get that

$$
\begin{equation*}
G\left(\frac{x}{2^{n}}\right)=\frac{1}{2^{n}} G(x), \quad x \in \mathbb{R}, n \in N \cup\{0\} \tag{6}
\end{equation*}
$$

Take an arbitrary $x \in \mathbb{R}$. There exists an $n \in N \cup\{0\}$ such that $\frac{x}{2^{n}} \in(-r, r)$.
Thus we have by (4), (5) and (6)

$$
G(x)=2^{n} G\left(\frac{x}{2^{n}}\right)=2^{n} f\left(\frac{x}{2^{n}}\right)=F(x)
$$

Consequently $G=F$ in \mathbb{R}.

3. The general solution of (M) on a hexagon

Using Theorems 1 and 2 we obtain
Theorem 3. If the function $f:(-r, r) \rightarrow \mathbb{R}$ satisfies the Mikusinski functional equation (M) for all $(x, y) \in H$, then there exists a unique additive function
$A: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=A(x), \quad x \in(-r, r) \tag{7}
\end{equation*}
$$

Proof. Theorem 2 shows that there exists a unique function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (M) for all $x, y \in \mathbb{R}$ and $f(x)=F(x) \quad x \in(-r, r)$.

Because of Theorem $1 F$ is an additive function.
It is easy to see that all additive functions A fulfill also (M) for all $(x, y) \in H$.

References

[1] Aczél, J., Diamonds are not the Cauchy extensionists' best friend Compt. Rendus Math. Dep. Acad. Sci. Canada 5 no. 6 (1983), 259-264.
[2] Dubikajtis, L. - Ferens, C. - Ger, R. - Kuczma, M., On Mikusiński's functional equation Ann. Pol. Math. 28 (1973), 40-47.
[3] Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, Panstwowe Wydawnictwo Naukowe Uniw. Šlaski, Warszawa - Kraków - Katowice 1985.

Received December 1, 2000.

Institute of Mathematics and Informatics,
University of Debrecen,
H-4010 Debrecen, Pf. 12, Hungary
E-mail address: lajko@math.klte.hu

[^0]: 2000 Mathematics Subject Classification. 39B22.
 Key words and phrases. Functional equations, extension theorem, general solution.
 Research supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T-030082 and by the Hungarian High Educational Research and Development Found (FKFP) Grant No. 0310/1997.

