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REMARKS ON THE NUMBER OF NON-ZERO COEFFICIENTS
OF POLYNOMIALS

BÉLA BRINDZA

Dedicated to Professor Árpád Varecza on his 60th birthday

Abstract. We give sharp lower bounds for the number of non-zero coefficients
of polynomials given respectively their number of distinct zeros or their number

of distinct intersections with polynomials of low degree.

We give sharp lower bounds for the number of non-zero coefficients of polynomials
given, respectively, their number of distinct zeros or (in the real case) the number
of distinct intersections of their graph with that of polynomials of low degree.

Throughout f denotes a polynomial

f(X) = fnXkn + · · ·+ f2X
k2 + f1X

k1 ,

where fn · · · f2f1 6= 0 and, as suggested by the presentation, kn > · · · > k1. Let
n(f) denote the number of nonzero coefficients of f and z(f) its number of distinct
zeros in C. It will be convenient to set

f?(X) = fnXkn−k1 + · · ·+ f2X
k2−k1 + f1.

Obviously n(f) = n(f?) and it will be useful to work with f?. Finally, if g is
a second polynomial, we denote by i(f, g) the number of intersections (counted
simplistically) of the graphs of f and g, that is, the naive cardinality of the set

{(x, f(x)) : x ∈ R} ∩ {(x, g(x)) : x ∈ R}.

Simplistically, we take i(f, f) = 1. Our results are
Theorem 1. Given a polynomial f ∈ R[X]

n(f) ≥ deg f?

z(f?)
+ 1;(i)

n(f) ≥ max
g∈R[X]

{[
1
2
(i(f, g) + 1

]
− n(g)

}
.(ii)

Set r(f) to denote the number of distinct real zeros of f . A particular case of
the theorem is, on taking g(x) = 0,

n(f) ≥ max
{

deg f?

z(f?)
+ 1,

[
1
2
(r(f) + 1)

]}
,

and, surprisingly perhaps, this is sharp.

2000 Mathematics Subject Classification. 11D09, 11R29.

Key words and phrases. Class numbers, diophantine equations, quadratic forms.
The author was supported by Grant 25371 from the Hungarian National Foundation for Sci-

entific Research.

77
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To see that, let a be a non-zero real number. The polynomial g(X) = (X−a)n−1

has n non-zero real coefficients and, of course,
deg g?

z(g?)
+ 1 = n.

For the other inequality it is enough to take an even polynomial, say,

h(X) = X2(X2 − 12) · · · (X2 − (n− 1)2),

and to note that r(h) = 2n whilst n(h) = n. The theorem is two results, the first
follows from the following
Lemma 1. If a polynomial f in C[X] has a non-zero zero of order s then it has at
least s + 1 non-zero coefficients.

Proof. Of course (X −α)s|f(X) for some α 6= 0 entails (X −α)s|f?(X). Note that
n > s for s = 1. By formal differentiation

(X − α)s|fnXkn−k1 + · · ·+ f2X
k2−k1 + f1

implies
(X − α)s−1|fn(kn − k1)Xkn−k2 + · · ·+ f2(k2 − k1),

and the claim follows by induction on s. �

Since f? has only z(f?) different zeros, at least one of the non-zero zeros of f
has multiplicity at least

deg f?

z(f?)
,

so the lemma includes part (i) of the theorem.
This first result came to our attention in a rather more sophisticated context.

Namely, an identity

fnXkn + · · ·+ f2X
k2 + f1X

k1 − fnXk1

z∏
i=1

(X − αi)si = 0

is an additive relation in S-units of a function field of genus g = 0. Here S is the set
of primes vanishing at ∞, 0 and the αi and thus has cardinality z + 2. According
to an inequality of Brownawell and Masser [1] the height, here deg f?, of a solution
is bounded by

1
2
n(n + 1)(|S|+ 2g − 2) =

1
2
n(n + 1)z(f?),

yielding, for 1
2n(n+1), the lower bound we obtain for n−1. However, it is popularly

believed that the bound of [1] should O(n) rather than O(n2).
Lemma 2. If a polynomial f in R[X] has r distinct real zeros then it has at least[
1
2 (r + 1)

]
non-zero coefficients.

Proof. By the data f? has at least r − 1 distinct real zeros and so, by Rolle’s
Theorem. its derivative has at least r − 2 distinct real zeros (which may include a
zero at 0). Thus

fn(kn − k1)Xkn−k2 + · · ·+ f2(k2 − k1)
has at least r − 3 distinct non-zero real zeros. Since the constant polynomial has
no zeros it is plain that r ≤ 2n− 1, which is the assertion. �

If g is some other polynomial in R[X] then f − g has i(f, g) distinct real zeros,
so i(f, g) + 1 ≤ 2n(f − g). Since, certainly, n(f) ≥ n(f − g)− n(g), assertion (ii) of
the theorem follows immediately.
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