```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 17 (2001), 71-76
www.emis.de/journals
```


ON A SIMULTANEOUS APPROXIMATION PROBLEM CONCERNING BINARY RECURRENCES

PÉTER KISS
Dedicated to Professor Árpád Varecza on his 60th birthday

Abstract

Let $R_{n}(n=0,1,2, \ldots)$ be a second order linear recursive sequence of rational integers defined by $R_{n}=A R_{n-1}+B R_{n-2}$ for $n>1$, where A and B are integers and the initial terms are $R_{0}=0, R_{1}=1$. It is known, that if α, β are the roots of the equation $x^{2}-A x-B=0$ and $|\alpha|>|\beta|$, then $R_{n+1} / R_{n} \longrightarrow \alpha$ as $n \longrightarrow \infty$. Approximating α with the rational number R_{n+1} / R_{n}, it was shown that $\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<\frac{1}{c \cdot\left|R_{n}\right|^{2}}$ holds with a constant $c>0$ for infinitely many n if and only if $|B|=1$. In this paper we investigate the quality of the approximation of α and α^{s} by the rational numbers R_{n+1} / R_{n} and R_{n+s} / R_{n} simultaneously.

Introduction

Let A and B be fixed non-zero integers and let $\left\{R_{n}\right\}_{n=0}^{\infty}$ be a second order linear recursive sequence of rational integers defined by the recursion

$$
R_{n}=A R_{n-1}+B R_{n-2} \quad(n>1)
$$

with initial terms $R_{0}=0$ and $R_{1}=1$. Denote by α and β the roots of the characteristic equation

$$
x^{2}-A x-B=0
$$

of the sequence and suppose that $|\alpha| \geq|\beta|$. We suppose that the sequence $\left\{R_{n}\right\}$ is non degenerate, i.e. α / β is not a root of untity. In this case the terms of the sequence can be expressed as

$$
\begin{equation*}
R_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{1}
\end{equation*}
$$

for any $n \geq 0$.
If $D=A^{2}+4 B>0$, then α and β are real numbers and $|\alpha|>|\beta|$. It implies that

$$
\frac{R_{n+1}}{R_{n}}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha^{n}-\beta^{n}}=\alpha \cdot \frac{1-(\beta / \alpha)^{n+1}}{1-(\beta / \alpha)^{n}} \longrightarrow \alpha \text { as } n \longrightarrow \infty
$$

and so α can be approximated by rational numbers R_{n+1} / R_{n}. For the quality of this approximation in [2] we proved that the inequality

$$
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<\frac{1}{c \cdot\left|R_{n}\right|^{2}}
$$

[^0]with some $c>0$ holds for infinitely many n if and only if $|B|=1$, furthermore in the case $|B|=1$ the best approximation constant is $c=\sqrt{D}$. It was also proved that if $|B|=1$ and $\left|\alpha-\frac{p}{q}\right|<\frac{1}{\sqrt{D} q^{2}}$ with a rational number p / q, then $p / q=R_{n+1} / R_{n}$ for some n.

In this paper we deal with a simultaneous approximation problem. Let γ_{1} and γ_{2} be irrational numbers. It is known that there are infinitely many triples p_{1}, p_{2}, q of rational integers and a constant $c>0$ such that

$$
\left|\gamma_{1}-\frac{p_{1}}{q}\right|<\frac{1}{c \cdot q^{3 / 2}} \quad \text { and } \quad\left|\gamma_{2}-\frac{p_{2}}{q}\right|<\frac{1}{c \cdot q^{3 / 2}}
$$

hold simultaneously and the order $\frac{3}{2}$ of the approximation is the best possibility in general. In the next section we show that if $\gamma_{1}=\alpha$ and $\gamma_{2}=\alpha^{s}$ where s is a positive integer then the order of their simultaneous approximation can be 2 .

The real case

In this section we investigate the case when $D=A^{2}+4 B>0$, so α, β are real numbers and $|\alpha| \neq|\beta|$.
Theorem 1. Let $\left\{R_{n}\right\}$ be a second order linear recursive sequence defined in the Introduction and let $s \geq 2$ be a positive integer. Suppose that $D>0, \quad|\alpha|>|\beta|$ and $|B|=1$. Then there is a constant $c_{0}>0$ such that the inequalities

$$
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<\frac{1}{c_{0} R_{n}^{2}} \quad \text { and } \quad\left|\alpha^{s}-\frac{R_{n+s}}{R_{n}}\right|<\frac{1}{c_{0} \cdot R_{n}^{2}}
$$

hold simultaneously for infinitely many positive integer n.
Proof. For an integer $k \geq 1$ by (1) we have

$$
\begin{gathered}
\left|\alpha^{k}-\frac{R_{n+k}}{R_{n}}\right|=\left|\alpha^{k}-\frac{\alpha^{n+k}-\beta^{n+k}}{\alpha^{n}-\beta^{n}}\right|=\left|\frac{\beta^{k} \beta^{n}-\alpha^{k} \beta^{n}}{\alpha^{n}-\beta^{n}}\right|= \\
|\beta|^{n} \cdot\left|\frac{\alpha^{k}-\beta^{k}}{\alpha^{n}-\beta^{n}}\right|=|\beta|^{n} \frac{\left|R_{k}\right|}{\left|R_{n}\right|}=|\beta|^{n}\left|\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right| \cdot \frac{\left|R_{k}\right|}{R_{n}^{2}}=
\end{gathered}
$$

$$
\begin{equation*}
|\alpha \beta|^{n} \cdot \frac{1}{|\alpha-\beta|} \cdot\left|1-\left(\frac{\beta}{\alpha}\right)^{n}\right| \cdot \frac{\left|R_{k}\right|}{R_{n}^{2}} . \tag{2}
\end{equation*}
$$

But $\left|\frac{\beta}{\alpha}\right|<0,|\alpha-\beta|=\sqrt{D}$ and $|\alpha \beta|=1$ since $|B|=1$, so $(\beta / \alpha)^{n} \longrightarrow 0$ as $n \longrightarrow \infty$ and by (2)

$$
\left|\alpha^{k}-\frac{R_{n+k}}{R_{n}}\right|<\frac{\left|R_{k}\right|}{\sqrt{D}} \cdot \frac{1}{R_{n}^{2}}
$$

for any $k \geq 1$ and for infinitely many positive integer n (for any n if $\beta / \alpha>0$ and for any even n if $\beta / \alpha<0$). From this inequality the theorem follows with

$$
c_{0}=\min \left(\frac{\sqrt{D}}{\left|R_{1}\right|}, \frac{\sqrt{D}}{\left|R_{s}\right|}\right)=\frac{\sqrt{D}}{\left|R_{s}\right|}
$$

We note that some other approximation results was obtained by F. Mátyás [6] and B. Zay [7] concerning general recurrences.

Complex case

Now let $D<0$. In this case α and β are not real complex conjugate numbers with $\left|\frac{\beta}{\alpha}\right|=1$ and we can conclude in (2) only that $0<\left|1-(\beta / \alpha)^{n}\right|<2$, so $\lim _{n \rightarrow \infty} \frac{R_{n+k}}{R_{n}}$ does not exist for any $k \geq 1$. We can approximate only the powers of $|\alpha|$ instead of the powers of α and the quality of these approximations is much weaker than in Theorem 1. In [3] and [4] with R. F. Tichy we proved that there are positive constants c_{1} and c_{2}, depending only on the sequence $\left\{R_{n}\right\}$, such that

$$
\begin{equation*}
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}}\right|\right|<\frac{1}{n^{c_{1}}} \tag{3}
\end{equation*}
$$

for infinitely many n but

$$
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}}\right|\right|>\frac{1}{n^{c_{2}}}
$$

for all suficiently large n. It shows that, apart from the constant $c_{1},(3)$ is the best possibility to approximate $|\alpha|$ by rational numbers of the form $\left|R_{n+1} / R_{n}\right|$. Now we prove:
Theorem 2. For any non-degenerate second order linear recurrence $\left\{R_{n}\right\}$, defined in the Introduction, for which $D<0$, there are constants $c_{4}>c_{3}>0$ such that the inequalities

$$
\begin{equation*}
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}}\right|\right|<\frac{1}{n^{c_{3}}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left||\alpha|^{s}-\left|\frac{R_{n+s}}{R_{n}}\right|\right|<\frac{1}{n^{c_{3}}} \tag{5}
\end{equation*}
$$

hold simultaneously for infinitely many pairs $s>1$, n of positive integers, but

$$
\begin{equation*}
\left||\alpha|^{s}-\left|\frac{R_{n+s}}{R_{n}}\right|\right|>\frac{1}{n^{c_{4}}} \tag{6}
\end{equation*}
$$

for any given s and sufficiently large n.
For the proof of Theorem 2 we need some auxiliary results.
First we recall some results concerning distribution properties of sequences of real numbers modulo 1 . Let $\left(x_{n}\right)(n=1,2, \ldots)$ be a sequence of real numbers. Denote by $\left\{x_{n}\right\}$ the fractional part of a term x_{n} and denote I intervals for which $I \in[0,1]$. For a positive integer N let $A_{N}\left(x_{n}, I\right)$ be the number of indices n with $1 \leq n \leq N$ such that the fractional part of x_{n} is contained in the interval I, i.e.

$$
A_{N}\left(x_{n}, I\right)=\operatorname{card}\left\{n \leq N:\left\{x_{n}\right\} \in I\right\} .
$$

then the discrepancy of the sequence x_{n} is defined by

$$
D_{N}\left(x_{n}\right)=\sup _{I}\left|\frac{A_{N}\left(x_{n}, I\right)}{N}-|I|\right|
$$

where the supremum is taken over all subintervals I of $[0,1]$.
From the definition of $D_{N}\left(x_{n}\right)$ it follows that if $|I| \geq 2 D_{N}\left(x_{n}\right)$, then there exists an integer n with $1 \leq n \leq N$ such that $\left\{x_{n}\right\} \in I$. For a special sequence the following estimation hold.
Lemma 1. Let $\gamma=e^{2 \pi \theta i}$ be a complex number, where $|\gamma|=1$ and $0<\theta<1$ is an irrational number. Then the discrepancy of the sequence $\left(x_{n}\right)=(n \theta)$ satisfies the estimation

$$
D_{N}\left(x_{n}\right) \leq N^{-\delta}
$$

for any sufficiently large N, where $\delta(>0)$ depends only on γ.

Proof. The lemma follows from a more general theorem of [4], but it can be proved directly using Theorem 2.5 of [5], p. 112. We need another result, too.

Lemma 2. Let

$$
\Lambda=b_{1} \cdot \log \omega_{1}+\cdots+b_{t} \cdot \log \omega_{t}
$$

where $b_{i}^{\prime} s$ are rational integers and $\omega_{i}^{\prime} s$ are algebraic numbers different from 0 and 1. Suppose that not all of the $b_{i}^{\prime} s$ are 0 and that the logarithms mean their principal walues. Assume that $\max \left(\left|b_{i}\right|\right) \leq B(B \geq 4), \omega_{i}$ has height at most $M_{i}(\geq 4)$ and that the field generated by the ω_{i}^{\prime} s over the rational numbers has degree at most d. If $\Lambda \neq 0$, then

$$
|\Lambda|>B^{-C \Omega \cdot \log \Omega^{\prime}}
$$

where $\Omega=\log M_{1} \cdot \log M_{2} \cdots \log M_{t}, \quad \Omega^{\prime}=\Omega / \log M_{t}$ and C is an effectively computable positive constant depending only on t and d.

Proof. It is a result of A. Baker, see in [1].
Proof of Theorem 2. α and β are conjugate complex numbers so we can write

$$
\beta=r \cdot e^{\pi \theta i}, \quad \alpha=r \cdot e^{-\pi \theta i} \quad \text { and } \quad \frac{\beta}{\alpha}=e^{2 \pi \theta i}
$$

where $0<\theta<1$ and θ is an irrational number since β / α is not a root of unity. By (1), for any $k \geq 1$ we have

$$
\begin{equation*}
\left|\frac{R_{n+k}}{R_{n}}\right|=\frac{\left|\alpha^{n+k}\left(1-(\beta / \alpha)^{n+k}\right)\right|}{\left|\alpha^{n}\left(1-(\beta / \alpha)^{n}\right)\right|}=|\alpha|^{k}\left|\frac{1-e^{2 \pi(n+k) \theta i}}{1-e^{2 \pi n \theta i}}\right| . \tag{7}
\end{equation*}
$$

Let N be a positive integer large enought and denote by D_{N} the discrepancy of the sequence $\left(x_{n}\right)=(n \theta)$. Then, as we have seen above, there are integers $m_{k_{1}}$ and $m_{k 2}$ with $1 \leq m_{k 1}<m_{k 2} \leq N$ such that

$$
\left|m_{k 1} \theta-p-\left(1-\frac{\theta}{2}\right)\right|<2 D_{N}
$$

and

$$
\left|m_{k 2} \theta-q-\left(1+\frac{\theta}{2}\right)\right|<2 D_{N}
$$

where p and q are suitable integers. From these inequalities, using the notation $z=e^{2 \pi\left(1-\frac{\theta}{2}\right) i}$,

$$
\begin{gathered}
e^{2 \pi m_{k 1} \theta i}=e^{2 \pi\left(1-\frac{\theta}{2}+\varepsilon_{0}\right) i}=z \cdot e^{2 \pi \varepsilon_{0} i} \\
e^{2 \pi\left(m_{k 1}+1\right) \theta i}=e^{2 \pi\left(1+\frac{\theta}{2}+\varepsilon_{0}\right) i}=\bar{z} \cdot e^{2 \pi \varepsilon_{0} i}
\end{gathered}
$$

and

$$
e^{2 \pi m_{k_{2}} \theta i}=e^{2 \pi\left(1+\frac{\theta}{2}+\varepsilon_{1}\right) i}=\bar{z} \cdot e^{2 \pi \varepsilon_{1} i}
$$

follows, where $\left|\varepsilon_{0}\right|,\left|\varepsilon_{1}\right|=O\left(D_{N}\right)$. So by (7), with $m_{k_{1}}=n$ and $m_{k_{2}}=n+s$, we obtain the estimations

$$
\begin{equation*}
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}}\right|\right|=|\alpha| \cdot\left|1-\left|\frac{1-\bar{z} \cdot e^{2 \pi \varepsilon_{0} i}}{1-z \cdot e^{2 \pi \varepsilon_{0} i}}\right|\right|=|\alpha| \cdot O\left(D_{N}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left|\alpha^{s}\right|-\left|\frac{R_{n+s}}{R_{n}}\right|\right|=|\alpha|^{s} \cdot\left|1-\left|\frac{1-\bar{z} \cdot e^{2 \pi \varepsilon_{1} i}}{1-z \cdot e^{2 \pi \varepsilon_{0} i}}\right|\right|=|\alpha|^{s} \cdot O\left(D_{N}\right) . \tag{9}
\end{equation*}
$$

From (8) and (9) the inequalities (4) and (5) follow, since $O\left(D_{N}\right)<\frac{1}{n^{c_{3}^{\prime}}}$ by Lemma 1. for any $c_{3}^{\prime}<\delta$. If we choose another $N^{\prime}(>N)$ which is sufficiently large, then we obtain another pair of integers $m_{k_{1}}^{\prime}, m_{k_{2}}^{\prime}$ and so the existence of infinitely many integers n, s can be concluded.

Now we prove inequality (6). Similary as above we obtain that

$$
\begin{equation*}
\left||\alpha|^{s}-\left|\frac{R_{n+s}}{R_{n}}\right|\right|=|\alpha|^{s} \cdot\left|1-\left|\frac{1-(\beta / \alpha)^{n+s}}{1-(\beta / \theta)^{n}}\right|\right| . \tag{10}
\end{equation*}
$$

Let z be a complex number defined by

$$
z=e^{(\pi-\pi s \theta) i}
$$

Then for any integers $s \geq 1$ and n we have

$$
\left(\frac{\beta}{\alpha}\right)^{n}=e^{2 \pi n \theta i}=z \cdot e^{\lambda i}
$$

where $0<\lambda<2 \pi$ and

$$
\begin{gathered}
\lambda=2 \pi n \theta-\pi+\pi s \theta-2 \pi k= \\
(2 n+s) \pi \theta-(2 k+1) \pi= \\
(2 n+s) \cdot \arg (\beta)-(2 k+1) \cdot \arg (-1)= \\
(2 n+s) \cdot \log \beta-(2 n+s) \cdot \log |\beta|-(2 k+1) \cdot \log (-1)
\end{gathered}
$$

with some integer $k<n+s . \beta,|\beta|$ and -1 are algebraic numbers of degree at most 4 , furthermore $\lambda \neq 0$ since θ is an irrational number, so by Lemma 2 we obtain the inequality

$$
|\lambda|>n^{-c_{4}}
$$

where $c_{4}>0$ depends on s and the sequences $\left\{R_{n}\right\}$. It can be similary proved that

$$
|\pi-\lambda|>n^{-c_{5}}
$$

These inequalities imply that

$$
\begin{equation*}
\mid \operatorname{Im}\left(e^{\lambda i} \mid>n^{-c_{6}} .\right. \tag{11}
\end{equation*}
$$

By (10) we get

$$
\begin{equation*}
\left||\alpha|^{s}-\left|\frac{R_{n+s}}{R_{n}}\right|\right|=|\alpha|^{s} \cdot\left|1-\left|\frac{1-\bar{z} \cdot e^{\lambda i}}{1-z \cdot e^{\lambda i}}\right|\right| . \tag{12}
\end{equation*}
$$

The following estimation can be easily seen by elementary arguments (or see in [3]): If z and w are non-real complex numbers with $z w \neq 1$, then there is a real number $c_{7}>0$ depending on z and $|w|$ such that

$$
\begin{equation*}
\left|1-\left|\frac{1-\bar{z} w}{1-z w}\right|\right|>\min \left\{1, c_{7},|\operatorname{Im}(w)|\right\} . \tag{13}
\end{equation*}
$$

So by (11), (12) and (13)

$$
\left||\alpha|^{s}-\left|\frac{R_{n+s}}{R_{n}}\right|\right|>|\alpha|^{s} \cdot n^{-c_{8}}>n^{-c_{9}}
$$

follow which proves inequality (6).
Note. We note that we obtain similar results if the initial terms of the sequence $\left\{R_{n}\right\}$ are arbitrary, but in this case the constants are weaker and the expressions are more difficult.

PÉTER KISS

References

[1] Baker, A., Transcendence theory and its applications, J. Austral. Math. Soc. (ser. A) 25 (1978), 438-444.
[2] Kiss, P., A Diophantine approximative property of the second order linear recurrences, Period. Math. Hungar. 11 (1980), 281-278.
[3] Kiss, P. and Tichy, R. F., A discrepancy problem with applications to linear recurrences I, Proc. Japan Acad. (ser. A) 65 No. 5 (1989), 135-138.
[4] Kiss, P. and Tichy, R. F., A discrepancy problem with applications to linear recurrences II, Proc. Japan Acad. (ser. A) 65 No. 6 (1989), 191-194.
[5] Kuipers, L. and Niederreiter, H., Uniform distribution of sequences, John Wiley and Sons, New York, 1974.
[6] MÁtyás, F., On the quotions of the elements of linear recursive sequences of second order (Hungarian) Mat. Lapok 27 (1976-1979), 379-389.
[7] Zay, B., A generalization of an approximation problem concerning linear recurrences, Acta Acad. Paed. Agriensis, sect. Mat. 24 (1997), 41-45.

Received September 18, 2000.

E-mail address: kissp@ektf.hu
Department of Mathematics,
Károly Eszterházy College, H-3301 Eger, P.O.Box 43, Hungary

[^0]: 2000 Mathematics Subject Classification. 11B37, 11J13, 11J86.
 Key words and phrases. Linear recursive sequence, Diophantine approximation.
 Research (partially) was supported by the Hungarian OTKA foundation, grant No. T 29330 and 032898.

