
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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ON A SIMULTANEOUS APPROXIMATION PROBLEM
CONCERNING BINARY RECURRENCES

PÉTER KISS

Dedicated to Professor Árpád Varecza on his 60th birthday

Abstract. Let Rn (n = 0, 1, 2, . . .) be a second order linear recursive se-

quence of rational integers defined by Rn = ARn−1 +BRn−2 for n > 1, where

A and B are integers and the initial terms are R0 = 0, R1 = 1. It is known,
that if α, β are the roots of the equation x2 −Ax−B = 0 and |α| > |β|, then

Rn+1/Rn −→ α as n −→ ∞. Approximating α with the rational number

Rn+1/Rn, it was shown that
∣∣∣α− Rn+1

Rn

∣∣∣ < 1
c·|Rn|2 holds with a constant

c > 0 for infinitely many n if and only if |B| = 1. In this paper we investi-
gate the quality of the approximation of α and αs by the rational numbers
Rn+1/Rn and Rn+s/Rn simultaneously.

Introduction

Let A and B be fixed non-zero integers and let {Rn}∞n=0 be a second order linear
recursive sequence of rational integers defined by the recursion

Rn = ARn−1 + BRn−2 (n > 1)

with initial terms R0 = 0 and R1 = 1. Denote by α and β the roots of the
characteristic equation

x2 −Ax−B = 0
of the sequence and suppose that |α| ≥ |β|. We suppose that the sequence {Rn}
is non degenerate, i.e. α/β is not a root of untity. In this case the terms of the
sequence can be expressed as

(1) Rn =
αn − βn

α− β

for any n ≥ 0.
If D = A2 + 4B > 0, then α and β are real numbers and |α| > |β|. It implies

that
Rn+1

Rn
=

αn+1 − βn+1

αn − βn
= α · 1− (β/α)n+1

1− (β/α)n
−→ α as n −→∞

and so α can be approximated by rational numbers Rn+1/Rn. For the quality of
this approximation in [2] we proved that the inequality∣∣∣∣α− Rn+1

Rn

∣∣∣∣ < 1
c · |Rn|2
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with some c > 0 holds for infinitely many n if and only if |B| = 1, furthermore in the
case |B| = 1 the best approximation constant is c =

√
D. It was also proved that

if |B| = 1 and
∣∣∣α− p

q

∣∣∣ < 1√
Dq2 with a rational number p/q, then p/q = Rn+1/Rn

for some n.
In this paper we deal with a simultaneous approximation problem. Let γ1 and

γ2 be irrational numbers. It is known that there are infinitely many triples p1, p2, q
of rational integers and a constant c > 0 such that∣∣∣∣γ1 −

p1

q

∣∣∣∣ < 1
c · q3/2

and
∣∣∣∣γ2 −

p2

q

∣∣∣∣ < 1
c · q3/2

hold simultaneously and the order 3
2 of the approximation is the best possibility

in general. In the next section we show that if γ1 = α and γ2 = αs where s is a
positive integer then the order of their simultaneous approximation can be 2.

The real case

In this section we investigate the case when D = A2 + 4B > 0, so α, β are real
numbers and |α| 6= |β|.
Theorem 1. Let {Rn} be a second order linear recursive sequence defined in the
Introduction and let s ≥ 2 be a positive integer. Suppose that D > 0, |α| > |β| and
|B| = 1. Then there is a constant c0 > 0 such that the inequalities∣∣∣∣α− Rn+1

Rn

∣∣∣∣ < 1
c0R2

n

and
∣∣∣∣αs − Rn+s

Rn

∣∣∣∣ < 1
c0 ·R2

n

hold simultaneously for infinitely many positive integer n.

Proof. For an integer k ≥ 1 by (1) we have∣∣∣∣αk − Rn+k

Rn

∣∣∣∣ = ∣∣∣∣αk − αn+k − βn+k

αn − βn

∣∣∣∣ = ∣∣∣∣βkβn − αkβn

αn − βn

∣∣∣∣ =
|β|n ·

∣∣∣∣αk − βk

αn − βn

∣∣∣∣ = |β|n |Rk|
|Rn|

= |β|n
∣∣∣∣αn − βn

α− β

∣∣∣∣ · |Rk|
R2

n

=

(2) |αβ|n · 1
|α− β|

·
∣∣∣∣1− (β

α

)n∣∣∣∣ · |Rk|
R2

n

.

But
∣∣∣βα ∣∣∣ < 0, |α−β| =

√
D and |αβ| = 1 since |B| = 1, so (β/α)n −→ 0 as n −→∞

and by (2) ∣∣∣∣αk − Rn+k

Rn

∣∣∣∣ < |Rk|√
D
· 1
R2

n

for any k ≥ 1 and for infinitely many positive integer n (for any n if β/α > 0 and
for any even n if β/α < 0). From this inequality the theorem follows with

c0 = min

(√
D

|R1|
,

√
D

|Rs|

)
=
√

D

|Rs|
.

We note that some other approximation results was obtained by F. Mátyás [6]
and B. Zay [7] concerning general recurrences. �
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Complex case

Now let D < 0. In this case α and β are not real complex conjugate numbers with∣∣∣βα ∣∣∣ = 1 and we can conclude in (2) only that 0 < |1 − (β/α)n| < 2, so lim
n→∞

Rn+k

Rn

does not exist for any k ≥ 1. We can approximate only the powers of |α| instead
of the powers of α and the quality of these approximations is much weaker than
in Theorem 1. In [3] and [4] with R. F. Tichy we proved that there are positive
constants c1 and c2, depending only on the sequence {Rn}, such that

(3)
∣∣∣∣|α| − ∣∣∣∣Rn+1

Rn

∣∣∣∣∣∣∣∣ < 1
nc1

for infinitely many n but ∣∣∣∣|α| − ∣∣∣∣Rn+1

Rn

∣∣∣∣∣∣∣∣ > 1
nc2

for all suficiently large n. It shows that, apart from the constant c1, (3) is the best
possibility to approximate |α| by rational numbers of the form |Rn+1/Rn|. Now we
prove:
Theorem 2. For any non-degenerate second order linear recurrence {Rn}, defined
in the Introduction, for which D < 0, there are constants c4 > c3 > 0 such that the
inequalities

(4)
∣∣∣∣|α| − ∣∣∣∣Rn+1

Rn

∣∣∣∣∣∣∣∣ < 1
nc3

and

(5)
∣∣∣∣|α|s − ∣∣∣∣Rn+s

Rn

∣∣∣∣∣∣∣∣ < 1
nc3

hold simultaneously for infinitely many pairs s > 1, n of positive integers, but

(6)
∣∣∣∣|α|s − ∣∣∣∣Rn+s

Rn

∣∣∣∣∣∣∣∣ > 1
nc4

for any given s and sufficiently large n.
For the proof of Theorem 2 we need some auxiliary results.
First we recall some results concerning distribution properties of sequences of

real numbers modulo 1. Let (xn) (n = 1, 2, . . .) be a sequence of real numbers.
Denote by {xn} the fractional part of a term xn and denote I intervals for which
I ∈ [0, 1]. For a positive integer N let AN (xn, I) be the number of indices n with
1 ≤ n ≤ N such that the fractional part of xn is contained in the interval I, i.e.

AN (xn, I) = card{n ≤ N : {xn} ∈ I}.
then the discrepancy of the sequence xn is defined by

DN (xn) = sup
I

∣∣∣∣AN (xn, I)
N

− |I|
∣∣∣∣ ,

where the supremum is taken over all subintervals I of [0, 1].
From the definition of DN (xn) it follows that if |I| ≥ 2DN (xn), then there exists

an integer n with 1 ≤ n ≤ N such that {xn} ∈ I. For a special sequence the
following estimation hold.
Lemma 1. Let γ = e2πθi be a complex number, where |γ| = 1 and 0 < θ < 1 is an
irrational number. Then the discrepancy of the sequence (xn) = (nθ) satisfies the
estimation

DN (xn) ≤ N−δ

for any sufficiently large N , where δ (> 0) depends only on γ.
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Proof. The lemma follows from a more general theorem of [4], but it can be proved
directly using Theorem 2.5 of [5], p. 112. We need another result, too. �

Lemma 2. Let
Λ = b1 · log ω1 + · · ·+ bt · log ωt,

where b′is are rational integers and ω′is are algebraic numbers different from 0 and
1. Suppose that not all of the b′is are 0 and that the logarithms mean their principal
walues. Assume that max(|bi|) ≤ B (B ≥ 4), ωi has height at most Mi (≥ 4) and
that the field generated by the ω′is over the rational numbers has degree at most d.
If Λ 6= 0, then

|Λ| > B−CΩ·log Ω′
,

where Ω = log M1 · log M2 · · · log Mt, Ω′ = Ω/ log Mt and C is an effectively
computable positive constant depending only on t and d.

Proof. It is a result of A. Baker, see in [1]. �

Proof of Theorem 2. α and β are conjugate complex numbers so we can write

β = r · eπθi, α = r · e−πθi and
β

α
= e2πθi,

where 0 < θ < 1 and θ is an irrational number since β/α is not a root of unity. By
(1), for any k ≥ 1 we have

(7)
∣∣∣∣Rn+k

Rn

∣∣∣∣ = |αn+k(1− (β/α)n+k)|
|αn(1− (β/α)n)|

= |α|k
∣∣∣∣1− e2π(n+k)θi

1− e2πnθi

∣∣∣∣ .
Let N be a positive integer large enought and denote by DN the discrepancy of

the sequence (xn) = (nθ). Then, as we have seen above, there are integers mk1 and
mk2 with 1 ≤ mk1 < mk2 ≤ N such that

|mk1θ − p−
(

1− θ

2

)
| < 2DN

and

|mk2θ − q −
(

1 +
θ

2

)
| < 2DN ,

where p and q are suitable integers. From these inequalities, using the notation
z = e2π(1− θ

2 )i,

e2πmk1θi = e2π(1− θ
2 +ε0)i = z · e2πε0i,

e2π(mk1+1)θi = e2π(1+ θ
2 +ε0)i = z · e2πε0i

and

e2πmk2θi = e2π(1+ θ
2 +ε1)i = z · e2πε1i

follows, where |ε0|, |ε1| = O(DN ). So by (7), with mk1 = n and mk2 = n + s, we
obtain the estimations

(8)
∣∣∣∣|α| − ∣∣∣∣Rn+1

Rn

∣∣∣∣∣∣∣∣ = |α| ·
∣∣∣∣1− ∣∣∣∣1− z · e2πε0i

1− z · e2πε0i

∣∣∣∣∣∣∣∣ = |α| ·O(DN )

and

(9)
∣∣∣∣|αs| −

∣∣∣∣Rn+s

Rn

∣∣∣∣∣∣∣∣ = |α|s ·
∣∣∣∣1− ∣∣∣∣1− z · e2πε1i

1− z · e2πε0i

∣∣∣∣∣∣∣∣ = |α|s ·O(DN ).
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From (8) and (9) the inequalities (4) and (5) follow, since O(DN ) < 1

nc
′
3

by

Lemma 1. for any c
′

3 < δ. If we choose another N ′ (> N) which is sufficiently
large, then we obtain another pair of integers m′

k1, m′
k2 and so the existence of

infinitely many integers n, s can be concluded.
Now we prove inequality (6). Similary as above we obtain that

(10)
∣∣∣∣|α|s − ∣∣∣∣Rn+s

Rn

∣∣∣∣∣∣∣∣ = |α|s ·
∣∣∣∣1− ∣∣∣∣1− (β/α)n+s

1− (β/θ)n

∣∣∣∣∣∣∣∣ .
Let z be a complex number defined by

z = e(π−πsθ)i.

Then for any integers s ≥ 1 and n we have(
β

α

)n

= e2πnθi = z · eλi,

where 0 < λ < 2π and

λ = 2πnθ − π + πsθ − 2πk =

(2n + s)πθ − (2k + 1)π =

(2n + s) · arg(β)− (2k + 1) · arg(−1) =

(2n + s) · log β − (2n + s) · log |β| − (2k + 1) · log(−1)
with some integer k < n+s. β, |β| and −1 are algebraic numbers of degree at most
4, furthermore λ 6= 0 since θ is an irrational number, so by Lemma 2 we obtain the
inequality

|λ| > n−c4

where c4 > 0 depends on s and the sequences {Rn}. It can be similary proved that

|π − λ| > n−c5 .

These inequalities imply that

(11) |Im(eλi| > n−c6 .

By (10) we get

(12)
∣∣∣∣|α|s − ∣∣∣∣Rn+s

Rn

∣∣∣∣∣∣∣∣ = |α|s ·
∣∣∣∣1− ∣∣∣∣1− z · eλi

1− z · eλi

∣∣∣∣∣∣∣∣ .
The following estimation can be easily seen by elementary arguments (or see in [3]):
If z and w are non-real complex numbers with zw 6= 1, then there is a real number
c7 > 0 depending on z and |w| such that

(13)
∣∣∣∣1− ∣∣∣∣1− zw

1− zw

∣∣∣∣∣∣∣∣ > min{1, c7, |Im(w)|}.

So by (11), (12) and (13)∣∣∣∣|α|s − ∣∣∣∣Rn+s

Rn

∣∣∣∣∣∣∣∣ > |α|s · n−c8 > n−c9

follow which proves inequality (6). �

Note. We note that we obtain similar results if the initial terms of the sequence
{Rn} are arbitrary, but in this case the constants are weaker and the expressions
are more difficult.



76 PÉTER KISS

References

[1] Baker, A., Transcendence theory and its applications, J. Austral. Math. Soc. (ser. A) 25

(1978), 438–444.

[2] Kiss, P., A Diophantine approximative property of the second order linear recurrences, Period.
Math. Hungar. 11 (1980), 281–278.

[3] Kiss, P. and Tichy, R. F., A discrepancy problem with applications to linear recurrences I,

Proc. Japan Acad. (ser. A) 65 No. 5 (1989), 135–138.
[4] Kiss, P. and Tichy, R. F., A discrepancy problem with applications to linear recurrences II,

Proc. Japan Acad. (ser. A) 65 No. 6 (1989), 191–194.

[5] Kuipers, L. and Niederreiter, H., Uniform distribution of sequences, John Wiley and Sons,
New York, 1974.
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