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ON A SIMULTANEOUS APPROXIMATION PROBLEM
CONCERNING BINARY RECURRENCES

PETER KISS

Dedicated to Professor A/rpafd Varecza on his 60th birthday

ABSTRACT. Let R, (n = 0,1,2,...) be a second order linear recursive se-
quence of rational integers defined by Ry, = AR,—1+ BR,_2 for n > 1, where
A and B are integers and the initial terms are Rg = 0, R; = 1. It is known,
that if «, 3 are the roots of the equation 2 — Az — B = 0 and |a| > |8, then
Rp4+1/Rn — a as n — oco. Approximating o with the rational number
Rn

Rfl < C'“én‘2
¢ > 0 for infinitely many n if and only if |B| = 1. In this paper we investi-

gate the quality of the approximation of a and «® by the rational numbers
Rp+1/Rn and Rp4s/ Ry simultaneously.

Rp+1/Rn, it was shown that |a — holds with a constant

n

INTRODUCTION

Let A and B be fixed non-zero integers and let {R,,}52, be a second order linear
recursive sequence of rational integers defined by the recursion

R, =AR,_, +BR,_» (n > 1)

with initial terms Ry = 0 and R; = 1. Denote by a and 3 the roots of the
characteristic equation
22— Az —B=0

of the sequence and suppose that |a| > |3|. We suppose that the sequence {R,}
is non degenerate, i.e. a/f is not a root of untity. In this case the terms of the
sequence can be expressed as

a™ — ﬂn
1 R,=—"—+—
for any n > 0.

If D= A%+ 4B > 0, then a and 3 are real numbers and |a| > |3|. It implies

that
Rup1 ot —pntt 1—(B/a)™*!
= =a- — a as n —
R, an — gn 1—(B/a)™
and so « can be approximated by rational numbers R, 11/R,. For the quality of
this approximation in [2] we proved that the inequality

‘a_ Ruii 1
R, |~ ¢ [R.P
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with some ¢ > 0 holds for infinitely many » if and only if | B| = 1, furthermore in the
case |B| = 1 the best approximation constant is ¢ = v/ D. It was also proved that

if |B] =1 and ‘a — %’ < \/’%(f with a rational number p/q, then p/q = R,11/R,,
for some n.

In this paper we deal with a simultaneous approximation problem. Let v; and
9 be irrational numbers. It is known that there are infinitely many triples p1, p2, g

of rational integers and a constant ¢ > 0 such that

1
c- g3/

1
c- g3/

4!
M- —| <
q

P2
Te— —| <
q

and

hold simultaneously and the order % of the approximation is the best possibility
in general. In the next section we show that if v; = « and 75 = o® where s is a
positive integer then the order of their simultaneous approximation can be 2.

THE REAL CASE

In this section we investigate the case when D = A% + 4B > 0, so «, 3 are real
numbers and |a| # |5].

Theorem 1. Let {R,} be a second order linear recursive sequence defined in the
Introduction and let s > 2 be a positive integer. Suppose that D > 0, |a| > |3| and
|B| = 1. Then there is a constant co > 0 such that the inequalities

Rn+1 ]- RnJrs ]-
_ d s _
’O‘ Ry, | “orz " Ry | "o R2
hold simultaneously for infinitely many positive integer n.
Proof. For an integer k > 1 by (1) we have
ak B Rn—i—k _ . an+k _ ﬁn+k _ ﬂkﬁn _ akﬂn _
Rn am — ﬁn o — Bn
ik M — |5|n@ = 8" o' = | |Bk| —
an — " |R,,| a—0 R?
1 BN IRkl
2 . 1= C—.
. o - (2) |

But ’g‘ <0, [a—p| = VD and |aB| = 1since |B| = 1, s0 (B/a)” — 0 as n — 00
and by (2)
R 1

K Btk
R,

VD Rj

for any k£ > 1 and for infinitely many positive integer n (for any n if 8/a > 0 and
for any even n if §/a < 0). From this inequality the theorem follows with

. vD D vD
co=min | —, — | = —=—.
0 (Rl R )~ IR

We note that some other approximation results was obtained by F. Mdtyéas [6]
and B. Zay [7] concerning general recurrences. O
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COMPLEX CASE

Now let D < 0. In this case a and (3 are not real complex conjugate numbers with
‘g‘ = 1 and we can conclude in (2) only that 0 < |1 — (8/a)™| < 2, so nlin;o R}’é—ﬁ
does not exist for any k > 1. We can approximate only the powers of |a| instead
of the powers of « and the quality of these approximations is much weaker than
in Theorem 1. In [3] and [4] with R. F. Tichy we proved that there are positive
constants ¢; and ¢, depending only on the sequence {R,}, such that

R7L+1 1
3 - | —
® ol - |2 <
for infinitely many n but
jof = | Bt 2
al —
R, ne2

for all suficiently large n. It shows that, apart from the constant c1, (3) is the best
possibility to approximate |« by rational numbers of the form |R,,11/Ry,|. Now we
prove:

Theorem 2. For any non-degenerate second order linear recurrence { R, }, defined

in the Introduction, for which D < 0, there are constants cy > c3 > 0 such that the
inequalities

Ry+1 1
4 _ | Zntl
@ ol - || <
and
R 1
5 s _ |Zinds
5) ol - ||| <
hold simultaneously for infinitely many pairs s > 1, n of positive integers, but
R 1
6 s n+s
(© - ||| > =

for any given s and sufficiently large n.

For the proof of Theorem 2 we need some auxiliary results.

First we recall some results concerning distribution properties of sequences of
real numbers modulo 1. Let (x,) (n = 1,2,...) be a sequence of real numbers.
Denote by {z,} the fractional part of a term x,, and denote I intervals for which
I € [0,1]. For a positive integer N let Ay (xy,I) be the number of indices n with
1 < n < N such that the fractional part of x,, is contained in the interval I, i.e.

An(zp,I) =card{n < N : {x,} € I}.
then the discrepancy of the sequence x,, is defined by

AN(LL'n7I)
N

where the supremum is taken over all subintervals I of [0, 1].

From the definition of Dy () it follows that if |[I| > 2Dx(z,,), then there exists
an integer n with 1 < n < N such that {z,} € I. For a special sequence the
following estimation hold.
2701

=

)

DN(xn) = Sup
I

Lemma 1. Let y=¢ be a complex number, where |[y| =1 and 0 < 6 <1 is an
irrational number. Then the discrepancy of the sequence (x,) = (nf) satisfies the
estimation

Dy(z,) < N7°
for any sufficiently large N, where § (> 0) depends only on ~.
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Proof. The lemma follows from a more general theorem of [4], but it can be proved
directly using Theorem 2.5 of [5], p. 112. We need another result, too. O

Lemma 2. Let

A=1b-logwy + -+ b; - logwy,
where bs are rational integers and wls are algebraic numbers different from 0 and
1. Suppose that not all of the b;s are 0 and that the logarithms mean their principal
walues. Assume that max(|b;|) < B (B > 4), w; has height at most M; (> 4) and
that the field generated by the wls over the rational numbers has degree at most d.
If A # 0, then

|A| N B—CQJOgQ/’

where Q = log My - log Ms---log My, Q' = Q/logM; and C is an effectively
computable positive constant depending only on t and d.

Proof. Tt is a result of A. Baker, see in [1]. O

Proof of Theorem 2. « and [ are conjugate complex numbers so we can write

B=r-e a=r.-e 7 and = =¥

)

where 0 < # < 1 and 6 is an irrational number since 3/« is not a root of unity. By
(1), for any k > 1 we have

Rop| o™t (1= (B/a)"tF)| lal*
R, la™(1 = (B/a)")]
Let N be a positive integer large enought and denote by Dy the discrepancy of
the sequence (z,,) = (nd). Then, as we have seen above, there are integers my, and
Mo with 1 < my < mge < N such that

0

1— 627r(n+k)9i

(7)

1— e27rn9i

and
0
M2 — q — (1 + 2) | < 2Dy,

where p and ¢ are suitable integers. From these inequalities, using the notation
2r(1-4)i

z=¢€
2mmp, 00 _ 2m(1-%4e0)i 2megi
e =e 2 =z-e ,
. ) . .
627r(mk1+1)91 _ 627r(1+§+€0)1 =%. 627r507,
and
2mmy 501 27r(1+g+51)i - 2met
e =e 2 =ZzZ-€

follows, where |egl, |e1] = O(Dn). So by (7), with mg; = n and mge = n + s, we
obtain the estimations

2mept

1-%-

9]

Rn—i—l

(8) ’al— R, :|a|"1_‘1_z.627r60i = |a| - O(Dn)
and

s RTL+S _ s 11—zt _ s
O o= B e - [ = ek 0tm,
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From (8) and (9) the inequalities (4) and (5) follow, since O(Dy) < -1~ by
n°s
Lemma 1. for any ¢; < 8. If we choose another N’ (> N) which is sufficiently
large, then we obtain another pair of integers mj, mj, and so the existence of
infinitely many integers n, s can be concluded.

Now we prove inequality (6). Similary as above we obtain that

Rnis 1—(B/a)"*®

Let z be a complex number defined by

(10) laf® -

~fal*-[1-|

5= e(ﬂ'fﬂse)i.

Then for any integers s > 1 and n we have

ﬂ " . .
Ind _ 627Tn9z — 5. 6)\17
«

A=2mnl —w+ sl — 27wk =
(2n + s)md — (2k + 1)w =

where 0 < A < 27 and

(2n+s) -arg(B) — (2k + 1) - arg(—1) =
(2n+s)-logfB — (2n+s) -log |8 — (2k + 1) - log(—1)
with some integer k < n+s. 3, || and —1 are algebraic numbers of degree at most

4, furthermore X # 0 since 0 is an irrational number, so by Lemma 2 we obtain the
inequality

[A] >n=
where ¢4 > 0 depends on s and the sequences {R,,}. It can be similary proved that
|m— Al >n"%.
These inequalities imply that
(11) [Im(eM| > n~c.
By (10) we get
1—7z-eM

B il ey

Ry,
The following estimation can be easily seen by elementary arguments (or see in [3]):
If z and w are non-real complex numbers with zw # 1, then there is a real number
¢y > 0 depending on z and |w| such that

s Rn s
(12) \04 - \*

|

1_=
(13) ‘1 - ‘ — iz ‘ > min{1, ¢7, |[Im(w)|}.
So by (11), (12) and (13)
Rn S — —_
’|as—’ R+ > |af® - nT® >nT%®
follow which proves inequality (6). O

Note. We note that we obtain similar results if the initial terms of the sequence
{R,} are arbitrary, but in this case the constants are weaker and the expressions
are more difficult.
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