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CHARACTERIZATIONS OF EFFECTIVE SETS AND
NONEXPANSIVE MULTIPLIERS IN CONDITIONALLY

COMPLETE AND INFINITELY DISTRIBUTIVE
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Dedicated to Professor Árpád Varecza on his 60th birthday

Abstract. First, we establish a useful characterization of effective sets in con-
ditionally complete partially ordered sets. Then, we prove that each maximal

nonexpansive partial multiplier on a conditionally complete and infinitely dis-
tributive partially ordered set with upper bounded centre is inner. Finally, we
show that some analogous results hold for T1-families of sets partially ordered

by inclusion.

Introduction

Throughout this paper, we shall assume the terminogy of [17] which may differ
from that of the earlier works on some particular subsets and mappings of posets
(partially ordered sets) and semilattices (posets in which any two elements have a
meet).

If A is a poset, then in contrast to Birkhoff [2, p. 67] the family

Ao =
{

D ∈ A : ∀A ∈ A : ∃A ∧D
}
,

where A∧D = inf{A,D }, will be called the centre of A. Note that Ao = A if and
only if A is a semilattice.

Moreover, in contrast to Cornish [4, p. 340], a subset D of A will be called
effective (supereffective) if D ⊂ Ao and for each A,B ∈ A, with A 6= B (resp. A 6≤
B), there exists a D ∈ D such that A ∧ D 6= B ∧ D (resp. A ∧ D 6≤ B ∧ D).
And, as some straightforward improvements of some slightly incorrect statements
of Cornish, we shall prove the following assertions.
Theorem 1. If A is a conditionally complete poset and D is a nonvoid subset of
Ao, then the following assertions are equivalent:

(1) D is effective (supereffective);
(2) A =

∨
D∈D

A ∧D for all A ∈ A.

Corollary 1. If A is a conditionally complete semilattice and D is an ideal of A,
then the following assertions are equivalent:

(1) D is effective (supereffective);
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(2) A =
∨ {

D ∈ D : D ≤ A
}

for all A ∈ A.

If A is a poset, then in contrast to Schmid [12, p. 403 ] a function F form a
nonvoid subset DF of Ao into A will be called a partial multiplier on A if

F (D) ∧ E = F (E) ∧D

for all D,E ∈ DF . And the family of all partial multipliers F on A will be denoted
by M(A).

In particular, a multiplier F ∈ M(A) will be called nonexpansive if F (D) ≤ D
for all D ∈ DF . Moreover, the multiplier F will be called inner if DF = Ao and
there exists an A ∈ A such that F (D) = A ∧D for all D ∈ Ao.

As some straightforward extensions of some of the results of Szász [13, p. 165],
Brainerd and Lambek [3, Proposition 3] and Berthiaume [1, Theorem 17], we shall
prove the following assertions.
Theorem 2. If A is a conditionally complete and infinitely distributive poset such
that Ao is bounded above in A, then for each nonexpansive multiplier F ∈ M(A)
there exists an A ∈ A such that

F (D) = A ∧D

for all D ∈ DF .
Corollary 2. If A is a conditionally complete and infinitely distributive poset such
that Ao is bounded above in A, then each maximal and nonexpansive multiplier
F ∈M(A) is inner.
Remark. Whenever a multiplier F ∈M(A) is effective in the sense that its domain
DF is effective, then F is nonexpansive and there exists at most one A ∈ A such
that F (D) = A ∧D for all D ∈ DF .

Since an ordinary topology partially ordered by inclusion forms an uncondition-
ally complete and infinitely distributive semilattice, we shall also show that the
analogues of the above results also hold true for T1-families. A nonvoid family A
of sets will be called a T1-family if A \ {x } ∈ A for all A ∈ A and x ∈ A.

1. A few basic facts on partially ordered sets

A nonvoid set A together with a reflexive, transitive and antisymmetric relation
≤ will be called a poset [2]. A poset A can always be thought of as a nonvoid family
of sets partially ordered by set inclusion. Namely, each A ∈ A can be identified
with the set { B ∈ A : B ≤ A }.

The infimum (greatest lower bound) and the supremum (least upper bound) of
a subset D of a poset A will be understood in the usual sense. However, instead
of inf D and supD we shall use the lattice theoretic notations meet

∧
D and join∨

D, respectively.
Concerning finite meets and arbitrary joins

A ∧B = inf{A,B } and
∨
i∈I

Ai = sup
{

Ai : i ∈ I
}
,

we shall only need here the following theorems, partly proved in [17].
Theorem 1.1. If A is a poset and A,B, C, D ∈ A, then

(1) A ≤ B if and only if A = A ∧B;
(2) A ≤ B and C ≤ D imply A∧C ≤ B ∧D whenever A∧C and B ∧D exist.

Corollary 1.2. If A is a poset and A,B, C ∈ A, then
(1) A = A ∧A;
(2) A = A ∧ (A ∨B) whenever A ∨B exists;
(3) A ≤ B implies A ∧ C ≤ B ∧ C whenever A ∧ C and B ∧ C exist.
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Theorem 1.3. If A is a poset and A,B,C ∈ A, then
(1) A ∧B = B ∧A whenever either B ∧A or A ∧B exist;
(2) A∧ (B ∧C) = (A∧B)∧C whenever A∧B and B ∧C and moreover either

(A ∧B) ∧ C or A ∧ (B ∧ C) exist.
Theorem 1.4. If A is a poset and Ai, Bi ∈ A for all i ∈ I such that Ai ≤ Bi for
all i ∈ I, then ∨

i∈I

Ai ≤
∨
i∈I

Bi

whenever both
∨

i∈I Ai and
∨

i∈I Bi exist.
Theorem 1.5. If A is a poset, Ai ∈ A for all i ∈ I and B ∈ A, then∨

i∈I

Ai ∧B ≤
(∨

i∈I

Ai

)
∧B

whenever both
∨

i∈I Ai ∧B and
(∨

i∈I Ai

)
∧B exist.

In connection with posets, we shall assume here a rather particular terminology.
A nonvoid subset B of a poset A will be called a semilattice in A if D ∧ E exists
in A and belongs to B for all D,E ∈ B. Moreover, a nonvoid subset D of B will be
called an ideal of B if D ∧ E is in D for all D ∈ D and E ∈ B.

If A is a poset, then in contrast to Birkhoff [2, p. 67] the family

Ao =
{

D ∈ A : ∀A ∈ A : ∃A ∧D
}

will be called the centre of A. By using Theorem 1.3 (2), it is easy to see that Ao

is a semilattice in A whenever Ao 6= ∅.
A poset A will be called conditionally complete if

∨
D exists for every nonvoid

subset D of A which is bounded above. Note that in this case each nonvoid subset
of A which is bounded below has a meet [6, p. 14], but A still need not even be a
semilattice.

A conditionally complete poset A will be called infinitely Ao-distributive if

A ∧
∨
i∈I

Di =
∨
i∈I

A ∧Di

for every A ∈ A and for every nonvoid family (Di)i∈I in Ao which is bounded above
in A.

Moreover, a conditionally complete poset A will be called infinitely A-distribu-
tive if (∨

i∈I

Ai

)
∧D =

∨
i∈I

Ai ∧D

for every nonvoid family (Ai)i∈I in A which is bounded above and for every D ∈ Ao.

2. Characterizations of effective and supereffective sets

In contrast to Cornish [4, p. 340], we shall assume here the following definition
of [17].
Definition 2.1. A subset D of a poset A will be called effective if D ⊂ Ao and
for each A,B ∈ A, with A 6= B (resp. A 6≤ B), there exists a D ∈ D such that
A ∧D 6= B ∧D (resp.A ∧D 6≤ B ∧D).

Moreover, a poset A will be called effective (supereffective) if its centre Ao is
effective (supereffective).
Remark 2.2. In [17], it has been proved that a suppereffective subset of a poset
is in particular effective. And an effective subset of a semilattice is necessary
supereffective.
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Moreover, the effective (supereffective) subsets of a poset A are closely related
to those subsets D of Ao which are cofinal in A in the sense that for each A ∈ A
there exists a D ∈ D such that A ≤ D.

Now, by assuming the conditional completeness of A, we can prove a more
satisfactory characterization of the effective (suppereffective) sets which improves
a slightly incorrect statement of Cornish [4, p. 340].
Theorem 2.3. If A is a conditionally complete poset and D is a nonvoid subset of
Ao, then the following assertions are equivalent:

(1) D is effective (supereffective);
(2) A =

∨
D∈D

A ∧D for all A ∈ A.

Proof. If A ∈ A, then A ∧ D ≤ A for all D ∈ D. Therefore, by the conditional
completeness of A, the join

B =
∨

D∈D
A ∧D

exists. And we evidently have B ≤ A, and hence B ∧D ≤ A ∧D for all D ∈ D.
Moreover, by the corresponding properties of ∧ and the definition of B, we also

have
A ∧D = A ∧ (D ∧D) = (A ∧D) ∧D ≤ B ∧D

for all D ∈ D. Hence, it is clear that A ∧D = B ∧D for all D ∈ D. Therefore, if
D is effective, then A = B, and thus the assertion (2) also holds.

On the other hand, if the assertion (2) holds and A,B ∈ A such that A ∧D ≤
B ∧D for all D ∈ D, then by Theorem 1.4 we also have

A =
∨

D∈D
A ∧D ≤

∨
D∈D

B ∧D = B.

And thus D is supereffective. �

Remark 2.4. Note that the implication (2) =⇒ (1) does not require the conditional
completeness of A.

Now, as a useful consequence of Theorem 2.3, we can also prove
Corollary 2.5. If A is a conditionally complete and infinitely Ao-distributive poset
with a greatest element X and D is nonvoid subset of Ao, then the following asser-
tions are equivalent:

(1) D is effective (supereffective);
(2) X =

∨
D.

Proof. If the assertion (1) holds, then by Theorems 2.3 we have

X =
∨

D∈D
X ∧D =

∨
D∈D

D =
∨
D.

That is, the assertion (2) also holds.
On the other hand, if the assertion (2) holds, then by the infinite Ao-distributi-

vity of A, we have

A = A ∧X = A ∧
∨
D = A ∧

∨
D∈D

D =
∨

D∈D
A ∧D

for all A ∈ A. And thus, by Theorem 2.3, the assertion (1) also holds. �

Remark 2.6. Note that the implication (1) =⇒ (2) does not require the infinite
Ao-distributivity of A.

And the converse implication (2) =⇒ (1) does not really require the conditional
completeness of A.
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From Theorem 2.3, we can also easily get the following improvement of an other
slightly incorrect statement of Cornish [4, p. 340].

Corollary 2.7. If A is a conditionally complete semilattice and D is an ideal of
A, then the following assertions are equivalent:

(1) D is effective (supereffective);
(2) A =

∨{
D ∈ D : D ≤ A

}
for all A ∈ A.

Proof. If A ∈ A, then by the conditional completeness of A the joins

B =
∨ {

A ∧D : D ∈ D
}

and C =
∨ {

D ∈ D : D ≤ A
}

exist. Moreover, if D ∈ D such that D ≤ A, then we evidently have D = A∧D ≤ B.
Therefore, C ≤ B.

On the other hand, if D ∈ D, the since D is an ideal in A we also have A∧D ∈ D.
Hence, since A∧D ≤ A, it is clear that A∧D ≤ C. Therefore, B ≤ C is also true.
Consequently, we have B = C, and thus by Theorem 2.3, the assertions (1) and (2)
are equivalent. �

3. Nonexpansive, effective and maximal multipliers

In contrast to Schmid [12, p. 403], we assume here the following definition of
[17].

Definition 3.1. If A is a poset such that Ao 6= ∅, then a function F from a nonvoid
subset DF of Ao into A will be called a partial multiplier on A if

F (D) ∧ E = F (E) ∧D

for all D,E ∈ DF . And the family of all partial multipliers F on A will be denoted
by M(A).

Remark 3.2. A multiplier F ∈ M(A) may be called total if DF = Ao. Clearly,
the identity function ∆Ao

of Ao is a total member of M(A).
Moreover, by using Theorem 1.3 (2), we can easily establish the following

Proposition 3.3. If A is a poset, with Ao 6= ∅, and A ∈ A, then the function FA,
defined by

FA(D) = A ∧D

for all D ∈ Ao, is a total member of M(A).

Remark 3.4. A total multiplier F ∈M(A) may be called inner if there exists an
A ∈ A such that F = FA.

Moreover, concerning multipliers, we can also naturally introduce the following
terminology.

Definition 3.5. A multiplier F ∈M(A) will be called nonexpansive if F (D) ≤ D
for all D ∈ DF .

Moreover, a multiplier F ∈ M(A) will be called effective (supereffective) if its
domain DF is effective (supereffective).

Remark 3.6. By Theorem 1.1 (1), it is clear that F ∈ M(A) is nonexpansive if
and only if F (D) = F (D) ∧D for all D ∈ DF .

Moreover, in [17] it has been proved the following

Theorem 3.7. If F ∈M(A) is effective, then F is nonexpansive.

Remark 3.8. The importance of nonexpansive multipliers lies mainly in the fact
that if F ∈M(A) is nonexpansive, then F (D∧E) = F (D)∧E for all D ∈ DF and
E ∈ Ao with E ∧D ∈ DF .
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Definition 3.9. A multiplier F ∈ M(A) is called maximal if G ∈ M(A) and
F ⊂ G imply F = G.

Moreover, if F,G ∈ M such that F ⊂ G and G is maximal, then G is called a
maximal extension of F .
Remark 3.10. By using the Hausdorff maximality principle, it can be shown that
each multiplier F ∈M(A) has a maximal extension.

Moreover, in [17] it has been proved the following
Theorem 3.11. If A is an effective poset and D is a nonvoid subset of Ao, then
the following assertions are equivalent:

(1) D is effective;
(12) each F ∈M(A) with domain D has a unique maximal extension.

Remark 3.12. The importance of maximal effective multipliers lies mainly in the
fact if F,G ∈ M(A) are maximal and effective, then F = G if and only if there
exists an effective subset D of A such that F (D) = G(D) for all D ∈ D.

4. Characterizations of nonexpansive and effective multipliers

As a straightforward extension of some of the results of Szász [13, p. 165], Brain-
erd and Lambek [3, Proposition 3] and Berthiaume [1, Theorem 17], we can now
prove the following
Theorem 4.1. If A is a conditionally complete and infinitely A-distributive poset
such that Ao is bounded above in A, then for each nonexpansive multiplier
F ∈M(A) there exists an A ∈ A such that

F (D) = A ∧D

for all D ∈ DF .

Proof. If Y is an upper bound of Ao in A, then by the nonexpansivity of F we have
F (D) ≤ D ≤ Y . Therefore, by the conditional completeness of A, the join

A =
∨

D∈DF

F (D)

exists. Hence, since F is nonexpansive, it is clear that

F (D) = F (D) ∧D ≤ A ∧D

for all D ∈ DF .
On the other hand, by the infinite A-distributivity and the multiplier property

of F it is clear that

A ∧D =
( ∨

E∈DF

F (E)
)
∧D =

∨
E∈DF

F (E) ∧D =
∨

E∈DF

F (D) ∧ E ≤ F (D)

for all D ∈ DF . Therefore, the equality F (D) = A ∧ D is also true for all
D ∈ DF . �

Now, as an immediate consequence of Theorem 4.1, we can also state
Corollary 4.2. If A is a conditionally complete and infinitely A-distributive poset
such that Ao is bounded above in A, then each maximal and nonexpansive multiplier
F ∈M(A) is inner.

Proof. If F ∈ M(A) is nonexpansive, then by Theorem 4.1, there exists an A ∈ A
such that F (D) = A ∧ D = FA(D) for all D ∈ DF . Hence, it is clear that FA

is a maximal extension of F . Therefore, if F is, in addition, maximal, then we
necessarily have F = FA. �
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Remark 4.3. In this respect, it is also worth mentioning that if A is a poset such
that each total and nonexpansive member of M(A) is inner, then Ao is necessarily
bounded above in A.

Namely, the identity function ∆Ao of Ao is a total and nonexpansive member of
M(A). Therefore, by the assumption, there exists an A ∈ A such that ∆Ao = FA.
Hence, it follows that D = A ∧D, and thus D ≤ A for all D ∈ Ao.

In addition to Theorem 4.1, we can also easily establish the following
Theorem 4.4. If A is a conditionally complete and infinitely A-distributive poset
such that Ao is bounded above in A, then for each effective multiplier F ∈ M(A)
there exists a unique A ∈ A such that

F (D) = A ∧D

for all D ∈ DF .

Proof. In this case, by Theorem 3.7, F is, in particular, nonexpansive. Thus, by
Theorem 4.1, there exists an A ∈ A such that F (D) = A ∧D for all D ∈ DF .

On the other hand, if B ∈ A such that F (D) = B ∧D for all D ∈ DF , then we
have A∧D = B ∧D for all D ∈ DF . Therefore, by the effectiveness of DF , we also
have A = B. �

Hence, it is clear that in particular we also have
Corollary 4.5. If A is a conditionally complete and infinitely A-distributive poset
such that Ao is bounded above in A, then for each maximal and effective multiplier
F ∈ M(A) then there exists a unique A ∈ A such that F = FA.
Remark 4.6. Note that if A is a conditionally complete and effective poset such
that Ao is bounded above in A, then by Theorem 2.3 we have

A =
∨

D∈Ao

A ∧D ≤
∨

D∈Ao

D =
∨
Ao

for all A ∈ A. Therefore,
∨
Ao is the greatest element of A, and thus we also have∨

Ao ∈ Ao.

5. Characterizations of effective sets and multipliers in T1-families
of sets

Since the poset A in Theorems 2.3 and 4.4 may, in particular, be an ordinary
topology, partially ordered by inclusion, it seems to be of some interest to point
out that some analogous results hold for T1-families too.
Definition 5.1. A nonvoid family A of subsets of a set X, with X =

⋃
A, will be

called a T1-family on X if A ∈ A and x ∈ A imply A \ {x } ∈ A.
Remark 5.2. Note that if A is a T1-family on X, then for each x, y ∈ X, with
x 6= y, there exists an A ∈ A, with x ∈ A, such that y /∈ A, but in contrast to
T1-topologies the converse statement need not be true.
Definition 5.3. If A is a nonvoid family of sets, then we write

A1 =
{

D ∈ A : ∀A ∈ A : A ∩D ∈ A
}
.

Remark 5.4. Note that, by considering A to be partially ordered by inclusion, we
have A ∧ D = A ∩ D for all A ∈ A and D ∈ A1. Therefore, A1 ⊂ Ao, but the
equality is not, in general, true.

Now, analogously to Theorem 2.3 and Corollary 2.5, we can also prove the fol-
lowing
Theorem 5.5. If A is a T1-family on X and D ⊂ A1, then the following assertions
are equivalent:
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(1) D is an effective (supereffective) subfamily of A;
(2) A =

⋃
D∈D

A ∩D for all A ∈ A;

(3) X =
⋃
D;

(4) D is an effective (supereffective) subfamily of P(X).

Proof. If the assertion (2) does not hold, then there exist A ∈ A and x ∈ A such
that x /∈ D for all D ∈ D. Therefore, we have

A ∧D = A ∩D =
(
A \ {x }

)
∩D =

(
A \ {x }

)
∧D

for all D ∈ D. And thus the assertion (1) does not also hold. Consequently, the
implication (1) =⇒ (2) is true.

On the other hand, if x ∈ X, then because of X =
⋃
A there exists an A ∈ A

such that x ∈ A. Moreover, if the assertion (2) holds, then there exists a D ∈ D
such that x ∈ D. Therefore, X ⊂

⋃
D, and thus the assertion (3) also holds.

Moreover, if A,B ⊂ X, such that A 6⊂ B, then there exists an x ∈ A such that
x /∈ B. Furthermore, if the assertion (3) holds, then there exists a D ∈ D such that
x ∈ D. Hence, it is clear that

A ∧D = A ∩D 6⊂ B ∩D = B ∧D.

And thus the assertion (4) also holds.
Now, since the implication (4) =⇒ (1) is quite obvious, the proof of the theorem

is complete. �

Remark 5.6. Note that only the implication (1) =⇒ (2) requires the T1-property
of the family A.

Now, from Theorem 4.4, by using Theorem 5.5, we can easily get the following
Theorem 5.7. If A is a T1-family on X, then for each effective multiplier
F ∈M(A), with DF ⊂ A1, then there exists a unique subset A of X such that

F (D) = A ∩D

for all D ∈ DF .

Proof. In this case, by Remark 5.4 and Theorem 5.5, it is clear that F is also an
effective member of M

(
P(X)

)
. Therefore, Theorem 4.4 can be applied to get the

required conclusion. �

Moreover, as a similar consequence of Theorem 4.1, we can also state
Theorem 5.8. If A is a nonvoid family of subsets of a set X, then for each
nonexpansive multiplier F ∈ M(A), with DF ⊂ A1, there exists a subset A of X
such that

F (D) = A ∩D

for all D ∈ DF .

Proof. In this case, by Remark 5.4, it is clear that F is also a nonexpansive member
ofM

(
P(X)

)
. Therefore, Theorem 4.1 can be applied to get the required conclusion.

�
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