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ON THE GENERALIZED CESÀRO SUMMABILITY FACTORS

H. S. ÖZARSLAN

Abstract. In this paper a general theorem concerning the ψ − | C,α; δ |k
summability factors of infinite series has been proved.

1. Introduction. A sequence (wn) of positive numbers is said to be δ-quasi
monotone, if wn → 0, wn > 0 ultimately and ∆wn ≥ −δn, where (δn) is a sequence
of positive numbers (see[1]). Let

∑
an be a given infinite series with partial sums

(sn). We define Aα
n by identity

(1)
∞∑

n=0

Aα
nx

n = (1− x)−α−1.

The sequence-to-sequence transformations given by

(2) uα
n =

1
Aα

n

n∑
v=0

Aα−1
n−vsv

(3) tαn =
1
Aα

n

n∑
v=1

Aα−1
n−vvav,

define the (C,α) means of the sequences (sn) and (nan), respectively.
The series

∑
an is said to be summable | C,α |k, k ≥ 1 and α > −1,

if (see [3])

(4)
∞∑

n=1

nk−1 | uα
n − uα

n−1 |k<∞.

If we take α = 1, then | C,α |k summability is the same as | C, 1 |k summability.
Let (ψn) be a sequence of positive real numbers. We say that the series

∑
an is

said to be summable ψ− | C,α; δ |k, k ≥ 1, α > −1 and δ ≥ 0, if

(5)
∞∑

n=1

ψδk+k−1
n | uα

n − uα
n−1 |k<∞.

But since tαn = n(uα
n − uα

n−1) (see [4]) condition (5) can also be written as

(6)
∞∑

n=1

ψδk+k−1
n n−k | tαn |k<∞.

If we take δ = 0 and ψn = n (resp. δ = 0, α = 1 and ψn = n), then ψ− | C,α; δ |k
summability is the same as | C,α |k (resp. | C, 1 |k) summability.
Remark. Since (ψn) is a sequence of positive real numbers the summability
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method ψ− | C,α; δ |k is a new method and general than the | C,α; δ |k summabil-
ity method. On the other hand | C,α; δ |k and ψ− | C,α; δ |k summability methods
are different from each other. That is they have got different summability fields.
Therefore, we take the sequence (ψn) instead of n.
2. The following theorem is known.
Theorem A([2]). Let tαn be the n-th Cesàro mean of order α, with α ≥ 1,
of the sequence (nan) such that an ≥ 0 for all n ≥ 1 whenever α > 1 and let
λn → 0 as n→∞. Suppose that there exists a sequence of numbers (Bn) such
that it is δ-quasi monotone with

∑
nαδn log n < ∞,

∑
Bn log n is convergent and

| ∆λn |≤| Bn | for all n.

(7)
m∑

n=1

| ∆(nα) || Bn+1 | log n = O(1),

(8)
m∑

n=1

1
n
| tαn |k= O(logm) as m→∞,

then the series
∑
anλn is summable | C,α |k, k ≥ 1.

3. The aim of this paper is to generalize Theorem A in the following form.
Theorem. Let k ≥ 1 and δ ≥ 0. Let tαn be the n-th Cesàro mean of order α, with
α ≥ 1, of the sequence (nan) such that an ≥ 0 for all n ≥ 1 whenever α > 1 and
let λn → 0 as n→∞. Suppose that there exists a sequence of numbers (Bn)
such that it is δ-quasi monotone with

∑
nαδn log n <∞,

∑
Bn log n is convergent,

| ∆λn |≤| Bn | for all n and that condition (7) of Theorem A is satisfied. If there
exists an ε > 0 such that the sequence (nε−kψδk+k−1

n ) is non-increasing and

(9)
m∑

n=1

ψδk+k−1
n n−k | tαn |k= O(logm) as m→∞,

then the series
∑
anλn is summable ψ− | C,α; δ |k.

If we take δ = 0, ε = 1 and ψn = n in this theorem, then we get Theorem A.
4. We need the following lemmas for the proof of our theorem.
Lemma 1 ([5]). If σ > δ > 0, then

(10)
m∑

n=v+1

Aδ−1
n−v

Aσ
n

=
m∑

n=v+1

(n− v)δ−1

nσ
= O(vδ−σ) as m→∞.

Lemma 2 ([2]). Let λn → 0 as n→∞. Suppose that there exists a sequence
of numbers (Bn) which is δ-quasi monotone with

∑
Bn log n is convergent and

| ∆λn |≤| Bn | for all n, then

(11) | λn | log n = O(1) as n→∞.

Lemma 3 ([2]). Let α ≥ 1. If (Bn) is δ-quasi monotone with
∑
nαδn log n < ∞

and
∑
Bn log n is convergent, then

(12) mαBm logm = O(1) as m→∞,

(13)
∞∑

n=1

nα | ∆Bn | log n <∞.

Lemma 4 ([2]). Let tαn be the n-th Cesàro mean of order α, with α ≥ 1, of the
sequence (nan) such that an ≥ 0 for all n ≥ 1 whenever α > 1. If n ≥ v, then

(14) |
v∑

p=1

Aα−1
n−ppap |≤ Aα−1

n−vA
α
v | tαv | .
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5. Proof of the Theorem. Let (Tα
n ) be the n-th (C,α), with α ≥ 1, means of

the sequence (nanλn). Then, by (3), we have

Tα
n =

1
Aα

n

n∑
v=1

Aα−1
n−vvavλv.(15)

Using Abel’s transformation, we get

Tα
n =

1
Aα

n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap +

λn

Aα
n

n∑
v=1

Aα−1
n−vvav

=
1
Aα

n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap + λnt

α
n

= Tα
n,1 + Tα

n,2, say .

Since

| Tα
n,1 + Tα

n,2 |k≤ 2k(| Tα
n,1 |k + | Tα

n,2 |k),

to complete the proof of the theorem, it is sufficient to show that
∞∑

n=1

ψδk+k−1
n n−k | Tα

n,r |k<∞ for r = 1, 2, by (6).(16)

Firstly, when k > 1, using Lemma 4 and after applying Hölder’s inequality with
indices k and k′, where 1

k + 1
k′ = 1, we get that

m+1∑
n=2

ψδk+k−1
n n−k | Tα

n,1 |k=
m+1∑
n=2

ψδk+k−1
n n−k | 1

Aα
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap |k

≤
m+1∑
n=2

ψδk+k−1
n n−k(Aα

n)−k{
n−1∑
v=1

| Bv | Aα
vA

α−1
n−v | tαv |}k

= O(1)
m+1∑
n=2

ψδk+k−1
n n−k(Aα

n)−k{
n−1∑
v=1

vα | Bv | Aα−1
n−v | tαv |}k

= O(1)
m+1∑
n=2

ψδk+k−1
n n−kAα

n

n−1∑
v=1

(vα | Bv |)kAα−1
n−v | tαv |k

× {
n−1∑
v=1

Aα−1
n−v

Aα
n

}k−1

= O(1)
m∑

v=1

(vα | Bv |)k−1(vα | Bv |) | tαv |k
m+1∑
n=v

ψδk+k−1
n Aα−1

n−v

nkAα
n

= O(1)
m∑

v=1

vα | Bv || tαv |k
m+1∑
n=v

ψδk+k−1
n nε−k(n− v)α−1

nα+ε

= O(1)
m∑

v=1

vα | Bv || tαv |k ψδk+k−1
v vε−k

m+1∑
n=v

(n− v)α−1

nα+ε

= O(1)
m∑

v=1

vα | Bv || tαv |k ψδk+k−1
v v−k,

by Lemma 1. Thus
m+1∑
n=2

ψδk+k−1
n n−k | Tα

n,1 |k= O(1)
m−1∑
v=1

∆(vα | Bv |)
v∑

p=1

ψδk+k−1
p p−k | tαp |k
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+O(1)mα | Bm |
m∑

v=1

ψδk+k−1
v v−k | tαv |k

= O(1)
m−1∑
v=1

∆(vα | Bv |) log v +O(1)mα | Bm | logm

= O(1)
m−1∑
v=1

vα | ∆Bv | log v +O(1)
m−1∑
v=1

| ∆(vα) || Bv+1 | log v

+O(1)mα | Bm | logm = O(1) as m→∞,

by virtue of the hypotheses of the Theorem and Lemma 3.
Again, since | λn |= O(1), we have that

m∑
n=1

ψδk+k−1
n n−k | Tα

n,2 |k=
m∑

n=1

ψδk+k−1
n n−k | λnt

α
n |k

=
m∑

n=1

ψδk+k−1
n n−k | λn |k−1| λn || tαn |k

= O(1)
m∑

n=1

ψδk+k−1
n n−k | λn || tαn |k

= O(1)
m−1∑
n=1

∆ | λn |
n∑

p=1

ψδk+k−1
p p−k | tαp |k

+O(1) | λm |
m∑

n=1

ψδk+k−1
n n−k | tαn |k

= O(1)
m−1∑
n=1

| ∆λn | log n+O(1) | λm | logm

= O(1)
m−1∑
n=1

| Bn | log n+O(1) | λm | logm

= O(1) as m→∞,

by virtue of the hypotheses of the Theorem and Lemma 2.
Therefore, we get (16). This completes the proof of the Theorem.
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[2] H. Bor, Absolute Cesàro summability factors, Atti Sem. Math. Fis. Univ. Modena XLII

(1994), 135–140.
[3] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and

Paley, Proc. Lond. Math. Soc., 7 (1957), 113–141.

[4] E. Kogbetliantz, Sur les sèries absolument sommables par la mèthode des moyannes
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