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Abstract

Let V = Vt ⊃ Vt−1 ⊃ . . . V1 ⊃ V0 = {0} be a flag of vector spaces
of dimension vector d = (dim Vt/Vt−1, . . . , dim V2/V1, dim V1). We denote
its stabilizer by P (d). For a fixed sequence of natural numbers a(r) =
t > a(r − 1) > . . . > a(1) > a(0) = 0 we consider the partial flag V =
Va(r) ⊃ Va(r−1) ⊃ . . . Va(1) ⊃ Va(0) = 0 and denote its stabilizer by P (d).
The parabolic group P (d) acts on the Lie algebra p(d)u of the unipotent
radical of P (d) via conjugation. We determine all instances of the numbers
a = (t; a(1), a(2), . . . , a(r − 1)) so that P (d) acts with a finite number of
orbits on p(d)u for all dimension vectors d. In particular we determine a
list of critical sequences a.

Actions of reductive groups are a classical subject in pure mathematics. They
appear in many branches, in particular, in connection with classification prob-
lems. In contrast, not much is known for parabolic group actions, the next
case which should be studied (see e .g [RRS], [HR] and references therein).
Recently the instances of the action of a parabolic group on its unipotent radi-
cal (see [HR]) and the members of its descending central series (see [BH1] and
[BHR]) with a finite number of orbits could be classified. For the action of a
parabolic group on an arbitrary unipotent subgroup the methods already de-
veloped do not work (for further results in this direction we also refer to [BH2],
[BH3] and [H]). In this note we consider a particular case of those actions which
we can solve using a computer program: a parabolic subgroup in the general
linear group is the stabilizer of a flag and acts on the Lie algebra of the unipotent
radical of the stabilizer of a partial flag. The result is based on a more gen-
eral conjecture for the action of a parabolic subgroup on an arbitrary unipotent
ideal.

We fix a natural number t and consider for any given dimension vector d =
(d1, . . . , dt) a fixed flag

F : V = Vt ⊃ Vt−1 ⊃ . . . ⊃ V1 ⊃ V0 = {0}

with dim Vi/Vi−1 = di for i = 1, . . . , t. By P (d) we denote the stabilizer of this
flag. It is a parabolic subgroup in GLn, where n =

∑t
i=1 di. For fixed numbers

a = (a(1), . . . , a(r)) with a(r) = t > a(r − 1) > . . . a(1) > 0 we consider the
partial flag

F : V = Va(r) = V r ⊃ Va(r−1) = V r−1 ⊃ . . . ⊃ Va(1) = V 1 ⊃ V0 = {0}.
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We denote the dimension vector of this partial flag by

d = (d1, . . . , dr) = (d1 + . . . + da(1), . . . , da(r−1)+1 + da(r)).

The stabilizer of the partial flag F we denote by P (d). It is isomorphic to
P (d). The group P (d) acts via conjugation on the unipotent radical p(d)u

of P (d). We can identify p(d)u with all endomorphisms f of V , satisfying
f(V i) ⊆ V i−1. In this note we are interested in a classification of all se-
quences (t; a(1), . . . , a(r−1)), so that P (d) acts with a finite number of orbits on
p(d)u for all dimension vectors d. In this case we call the sequence of numbers
(t; a(1), . . . , a(r − 1)) a sequence of finite type, otherwise a sequence of infinite
type. Assume (t; a(1), . . . , a(r − 1)) is a sequence of infinite type, then any se-
quence (t, b(1), . . . , b(s− 1)) with {a(1), . . . , a(r − 1)} ⊂ {b(1), . . . , b(s− 1)}, is
also of infinite type. Moreover, any sequence (s; b(1) = a(1)+c(1), . . . , b(r−1) =
a(r−1)+c(r−1)) is of infinite type, for s > t and 0 ≤ c(1) ≤ . . . ≤ c(r−1) ≤ s−t.
In both cases we say the first sequence (t; a(1), . . . , a(r− 1)) is smaller than the
latter sequence (−; b(1), . . . , b(r − 1)). A sequence of infinite type is called crit-
ical if each smaller sequence is of finite type. For convenience we sometimes
draw a picture of the corresponding Lie algebra p(d)u (see Figure 1).

Theorem 1 The following is the list of critical sequences (see Figure 1):

t = 6, a = (1, 3, 5), (1, 2, 4, 5);
t = 7, a = (2, 5), (1, 2, 4), (1, 2, 6), (1, 4, 5), (1, 5, 6), (2, 3, 6), (3, 5, 6);
t = 8, a = (1, 5), (3, 5), (3, 7);
t = 9, a = (1, 4), (1, 7), (2, 4), (2, 8), (5, 7), (5, 8).

The theorem implies that any sequence for t > 9 and r ≥ 2 is already infinite
except the sequences (t; 1, 2, 3), (t; t− 3, t− 2, t− 1), (t; 1, t− 1), and (t; i, i + 1)
for 1 ≤ i ≤ t− 2. Further, any sequence with r = 1 is obviously finite.

Proof (of the theorem)
We prove the result using a computer program [XPar] written by D. Guhe and
T. Brüstle. First we show that the sequences (t; 1, 2, 3), (t; t − 3, t − 2, t − 1),
(t; 1, t− 1), and (t; i, i + 1) for 1 ≤ i ≤ t− 2 are of finite type: this can be done
explicitly using matrix reduction. Secondly we check the remaining finite num-
ber of sequences with the computer program [XPar] (see List 1 for a complete
list of these sequences, for t ≥ 9 we omitted the infinite cases for convenience).
Finally, we determine the critical sequences using the list of sequences of finite
and infinite type. This finishes the proof. 2

Some Complements. According to the results in [BH2] and [BH3] we
also determined for a certain class of quasi-hereditary algebras, whether they
are of ∆-finite representation type. Moreover, the list in Figure 1 leeds to
a list of minimal infinite configurations in the sense defined in [H], whereas
three of these minimal infinite configurations coincide with already known ones:
(6; 1, 3, 5), (6; 1, 2, 4, 5), and (7; 2, 5) (see [H], Figure 1). The computer program
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we have used uses a matrix reduction algorithm for certain particular bimodules.
Finally, we should mention, that the program does not determine the dimension
vectors of critical one-parameter families.
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the critical sequences (up to reflection)
Figure 1
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t = 6, r = 2
finite: {i, j} for 0 ≥ i < j ≤ 5,
t = 6, r = 3
finite: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}
infinite: {1, 3, 5}
critical: {1, 3, 5}
t = 6, r = 4
finite: {1, 2, 3, 4}, {2, 3, 4, 5}
infinite: {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}
critical: {1, 2, 4, 5}

t = 7, r = 2
finite: {i, j} for 0 ≥ i < j ≤ 5 and (i, j) 6= (2, 5)
infinite: {2, 5}
critical: {2, 5}
t = 7, r = 3
finite: {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {3, 4, 5}, {3, 5, 6}, {4, 5, 6}
infinite: {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6},
{2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 5, 6}
critical: {1, 2, 4}, {1, 2, 6}, {1, 4, 5}, {1, 5, 6}, {2, 3, 6}, {3, 5, 6}
t = 7, r = 4
all are infinite

t = 8, r = 2
finite: {1, 2}, {1, 3}, {1, 4}, {1, 6}, {1, 7}, {2, 3}, {2, 4}, {2, 7}, {3, 4}, {4, 5},
{4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7}
infinite: {1, 5}, {2, 5}, {2, 6}, {3, 5}, {3, 6}, {3, 7}
critical: {1, 5}, {3, 5}, {3, 7}
t = 8, r = 3
finite: {1, 2, 3}, {1, 2, 4}, {1, 2, 6}, {1, 2, 7}, {1, 3, 4}, {1, 3, 6}, {1, 3, 7}, {1, 4, 6}, {1, 4, 7}, {1, 6, 7},
{2, 3, 4}, {2, 3, 6}, {2, 3, 7}, {2, 4, 6}, {2, 4, 7}, {2, 6, 7}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}
infinite: {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {1, 5, 6}, {1, 5, 7}, {2, 3, 5}, {2, 4, 5}, {2, 5, 6},
{2, 5, 7}, {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 5, 6}, {3, 5, 7}, {3, 6, 7}
t = 8, r ≥ 4
all are infinite

t = 9, r = 2
finite: {1, 2}, {1, 3}, {1, 8}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {6, 8}, {7, 8}
critical: {1, 4}, {1, 7}, {2, 4}, {2, 8}, {5, 7}, {5, 8}
t = 9, r = 3
finite: {1, 2, 3}, {6, 7, 8}
t = 9, r = 4
all are infinite

t ≥ 10, r = 2
finite: {i, i + 1} for i = 1, . . . , t− 2, {1, 3}, {t− 3, t− 1}, {1, t− 1}
t ≥ 10, r = 3
finite: {1, 2, 3}, {t− 3, t− 2, t− 1}
t ≥ 10, r ≥ 4

all are infinite

the list of all sequences with t ≤ 9
List 1

6


