Hochschild homology of finite dimensional algebras

Micheline VIGUÉ-POIRRIER
Université Paris-Nord
Institut Galilée
Département de Mathématiques F-93430 Villetaneuse
e-mail : vigue@math.univ-paris13.fr

September 4, 2003

1 Introduction

Let A be an augmented algebra over a field k. By definition, the Hochschild homology of A with coefficients in A (called here Hochschild homology) is the homology of the Hochschild complex $\left(C_{*}(A), b\right)$ and is denoted $H H_{*}(A)=\underset{n \geq 0}{\oplus} H H_{n}(A)$, [Lo]. We denote $A=k \oplus \bar{A}$ where \bar{A} is the augmentation ideal and we assume that \bar{A} is a finite dimensional k-vector space.Then each homology group $H H_{n}(A)$ is finite dimensional. Recall the following formulas :

$$
\begin{gathered}
C_{n}(A)=A \otimes \bar{A}^{\otimes n} \\
b\left(a_{0} \otimes a_{1} \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}+(-1)^{n} a_{n} a_{0} \otimes a_{1} \ldots \otimes a_{n-1}
\end{gathered}
$$

where $a_{0} \in A, a_{i} \in \bar{A}$ if $i \geq 1$.
All the tensor products are over k.
We introduce the cyclic permutation $t_{n}: \bar{A}^{\otimes n} \rightarrow \bar{A}^{\otimes n}$ defined by $t_{n}\left(a_{1} \otimes \ldots \otimes a_{n}\right)=(-1)^{n-1}$ $a_{n} \otimes a_{1} \ldots \otimes a_{n-1}$.
¿From Loday, [Lo], Proposition 2.2.14, the reduced cyclic homology groups $H \tilde{C}_{n}(A):=H C_{n}(A) / H C_{n}(k)$ can be computed as the homology groups of the complex $\bar{A}^{\otimes(n+1)} /\left(I d-t_{n+1}\right)$ endowed with the differential induced by b, when chark $=0$, or chark $=p$ and $n<p-1$.

2 Characterization of the trivial algebra structure

Proposition 2.1 [Ro] Let A be an augmented algebra, where the augmentation ideal \bar{A} has finite dimension d and satisfies $\bar{A} \cdot \bar{A}=0$, then

1. $H H_{n}(A)=\operatorname{Coker}\left(\operatorname{Id}-t_{n+1}\right) \oplus \operatorname{Ker}\left(\operatorname{Id}-t_{n}\right)$ as k-vector spaces for all $n>0$
2. if char $k=0, H \tilde{C}_{n}(A)=\operatorname{Coker}\left(\operatorname{Id}-t_{n+1}\right)$ for all $n>0$.
3. if char $k=0$, for all $n \geq 2$,

$$
a_{n-1}=\operatorname{dim} H C_{n-1}(A)=(1 / n) \sum_{i=1}^{n}(-1)^{(n-1) i} d^{q(i, n)}
$$

where $q(i, n)=$ g.c.d. (i, n).
4. if char $k=0$, then $\quad \operatorname{dim} H H_{n}(A)=a_{n}+a_{n-1} \quad$ for all $n \geq 1 \quad$ and $\quad a_{0}=d$.

Corollary 2.2 Let A be an augmented algebra, where the augmentation ideal \bar{A} has finite dimension $d, d \geq 1$ and satisfies $\bar{A} \cdot \bar{A}=0$, then

1. $H H_{n}(A) \neq 0$ for all $n>0$
2. if $\operatorname{char} k=0, \quad \lim _{n \rightarrow \infty} \sqrt[n]{\operatorname{dim} H H_{n}(A)}=d$.

Theorem 2.3 Let A be an augmented algebra over a field k. Let \bar{A} be its augmentation ideal, with $\operatorname{dim}_{k} \bar{A}$ finite. Let $A_{t}=k \oplus \bar{A}_{t}$ be the augmented algebra with trivial multiplication on \bar{A}_{t} and $\bar{A}=\bar{A}_{t}$ as k-vector space. We assume that char $k=0$, or char $k \neq 0$ and there exists $N \geq 2$ such that $\bar{A}^{N}=0$ in A; then we have

1. $\operatorname{dim} H H_{n}(A) \leq \operatorname{dim} H H_{n}\left(A_{t}\right)$ for all $n \geq 0$
2. $\operatorname{dim} H C_{n}(A) \leq \operatorname{dim} H C_{n}\left(A_{t}\right)$ for all $n \geq 0$

Proof: We define an increasing filtration A_{k} on A
$A_{k}=A \quad$ if $k \geq 0, \quad A_{-p}=\bar{A}^{p} \quad$ if $p \geq 1$
We filter \bar{A} by
$\bar{A}_{k}=\bar{A} \quad$ if $\quad k \geq 0, \quad \bar{A}_{-p}=\bar{A}^{p} \quad$ if $\quad p \geq 1$
This allows us to filter the Hochschild complex as follows:

$$
\begin{aligned}
\mathcal{F}_{k}\left(C_{n}(A)\right) & =\sum_{k_{0}+k_{1}+\ldots+k_{n} \leq k} A_{k_{0}} \otimes \bar{A}_{k_{1}} \otimes \ldots \otimes \bar{A}_{k_{n}} & \text { for } & k<0 \\
\mathcal{F}_{k}\left(C_{n}(A)\right) & =C_{n}(A) & & \text { for }
\end{aligned} \quad k \geq 0
$$

With the additional hypothesis that there exists $N \geq 2$ such that $\bar{A}^{N}=0$, we get $\mathcal{F}_{k}\left(C_{n}(A)\right)=0$ for $k<-(n+1) N$. This filtration gives rise to a spectral sequence $\left(E_{* *}^{r}, d^{r}\right)$ converging to $H H_{*}(A)$ with

$$
\underset{p}{\oplus} E_{-p, n+p}^{0}=C_{n}(B)
$$

$$
B=k \oplus \frac{\bar{A}}{\bar{A}^{2}} \oplus \frac{\bar{A}^{2}}{\bar{A}^{3}} \oplus \ldots
$$

We check that $d^{0}\left(\left(\lambda+\bar{a}_{0}\right) \otimes \bar{a}_{1} \ldots \otimes \bar{a}_{n}\right)=\lambda\left(I d-t_{n}\right)\left(\bar{a}_{1} \ldots \otimes \bar{a}_{n}\right)$ where $\bar{a}_{i} \in \oplus \bar{A}^{p} / \bar{A}^{p+1}$ for $i \geq 0$.
So we have $\underset{p}{\oplus} E_{-p, n+p}^{1}=H H_{n}(B)$ with B isomorphic to A_{t} as algebras.
A general fact about convergent spectral sequences implies that

$$
\operatorname{dim} H H_{n}(A) \leq \operatorname{dim} H H_{n}\left(A_{t}\right) .
$$

To prove 2), we use the reduced bicomplex $\bar{B}(A)$ to compute cyclic homology ([Lo], page 58), and we define on it an increasing filtration as above.

Now, we are interested in algebras A for which inequality 1 or 2 of theorem 2.3 becomes an equality.

Theorem 2.4 Let A be an augmented algebra over a characteristic zero field k. Let \bar{A} be its augmentation ideal. We assume that \bar{A} is a finite dimensional k-vector space. Let $A_{t}=k \oplus \bar{A}_{t}$ be the augmented algebra with trivial multiplication on \bar{A}_{t}, and $\bar{A}_{t}=\bar{A}$ as k-vector space. Suppose that there exists $n \geq 1$ such that

$$
\operatorname{dim} H C_{n}(A)=\operatorname{dim} H C_{n}\left(A_{t}\right)
$$

then A is commutative and is isomorphic to $A=S / I$ where S is the polynomial algebra $k\left[X_{1}, \ldots, X_{m}\right]$ and I is generated by
$f_{i}=X_{i}^{2}-\lambda_{i} X_{i}, 1 \leq i \leq m, \quad g_{i j}=X_{i} X_{j}-\frac{\lambda_{j}}{2} X_{i}-\frac{\lambda_{i}}{2} X_{j}, 1 \leq i<j \leq m, \quad$ and $\quad \lambda_{j} \in k$.
Proof: It is a refinement of the proof of theorem 1.4 of [Vi].

Corollary 2.5 Let A be an augmented algebra over a characteristic zero field k. Let \bar{A} be its augmentation ideal. We assume that \bar{A} is a finite dimensional k-vector space and there exists $N \geq 2$ such that $\bar{A}^{N}=0$, and $\bar{A} \neq 0$. Let $A_{t}=k \oplus \bar{A}_{t}$ be the augmented algebra with trivial multiplication on \bar{A}_{t}, and $\bar{A}_{t}=\bar{A}$ as k-vector space. Suppose that there exists $n \geq 1$ such that

$$
\operatorname{dim} H C_{n}(A)=\operatorname{dim} H C_{n}\left(A_{t}\right)
$$

then the multiplication is trivial in the augmented algebra A, (namely, A is isomorphic to A_{t}, as augmented algebras).

Proof:

The hypothesis $\bar{A}^{N}=0$ implies $\lambda_{i}=0,1 \leq i \leq m$ so that $x^{2}=0$, for any $x \in \bar{A}$.
Remark Theorem 2.4 and Corollary 2.5 remain valid if chark $=p, p>0$, and $n<p-2$.

Example 2.6 Let $A=k[X] /\left(X^{2}-X\right)$ and $A_{t}=k[X] / X^{2}$. We check, $[\mathrm{B}-\mathrm{V}]$, that

$$
\begin{aligned}
& H \tilde{C}_{2 n}\left(A_{t}\right)=H \tilde{C}_{2 n}(A)=k \\
& H C_{2 n+1}\left(A_{t}\right)=H C_{2 n+1}(A)=0 \\
& H H_{n}\left(A_{t}\right)=k \text { for all } n>0 \\
& H H_{n}(A)=0 \text { for all } n>0
\end{aligned}
$$

This shows that the hypothesis $\bar{A}^{N}=0$ cannot be omitted in corollary 2.5. On the other hand, the Hochschild homology groups of A_{t} and A are quite distinct.

This observation leads us to hope that the equality of the dimensions of one Hochschild homology group of A and A_{t} characterizes the trivial product.

Theorem 2.7 Let A be an augmented algebra over a characteristic zero field k. Let \bar{A} be its augmentation ideal and we assume that \bar{A} has finite dimension. Let $A_{t}=k \oplus \bar{A}_{t}$ be the augmented algebra with trivial multiplication on \bar{A}_{t} and $\bar{A}_{t}=\bar{A}$ as k-vector space. Suppose that there exists $n \geq 1$ such that

$$
H H_{n}(A)=H H_{n}\left(A_{t}\right)
$$

Then the multiplication is trivial in the augmented algebra A (namely A is isomorphic to A_{t} as augmented algebras).

Proof: It is analogous to the proof of theorem 1.6 in $[\mathrm{Vi}]$ but here we do not assume that A is commutative.

Remark Theorem 2.7 remains valid if chark $=p>3$, and $1 \leq n<p-1$.

3 Examples and remarks

Let A be an augmented algebra over a field k of characteristic zero. We assume that the augmentation ideal \bar{A} has finite dimension $d, d \geq 2$.

We have seen, in $\S \S 2$, that if $\bar{A} \cdot \bar{A}=0$, then

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\operatorname{dim} H H_{n}(A)}=d
$$

Proposition 3.1 Let A be the quotient of a polynomial algebra $k\left[X_{1}, \ldots, X_{r}\right]$ by an ideal generated by a regular sequence $\left(f_{1}, \ldots, f_{r}\right)$ where $f_{i} \in \mathfrak{m}^{2}$, for all i, and $\mathfrak{m}=\left(X_{1}, \ldots, X_{r}\right)$. Then there exist constants K_{1} and K_{2}, such that

$$
K_{2} \cdot n^{r} \leq \sum_{0 \leq p \leq n} \operatorname{dim} H H_{p}(A) \leq K_{1} \cdot n^{r}
$$

Proof: It relies on results proved in [B-V].
Definition An algebra satisfying the hypothesis of proposition 3.1 is called a complete intersection.

Proposition 3.2 Let A be a finite dimensional smooth commutative algebra, then we have

$$
\operatorname{dim} H H_{n}(A)=0 \quad \text { for } \quad \text { all } \quad n>0
$$

Proof: It is a direct consequence of the Hochschild-Kostant-Rosenberg, [H-K-R].

Conjecture 3.3 Let A be an augmented commutative algebra over a field, where the augmentation ideal has finite dimension $d, d \geq 2$. If A is neither smooth nor a complete intersection, then there exist real numbers $C_{1}, C_{2}, 1<C_{2} \leq C_{1} \leq d$ such that

$$
C_{2}^{n} \leq \sum_{0 \leq p \leq n} \operatorname{dim} H H_{p}(A) \leq C_{1}^{n}
$$

Example $3.4 A=k[x] / x^{2} \times{ }_{k} B$
A is the fiber product over k of $k[x] / x^{2}$ and B, where B is a finite dimensional augmented commutative algebra which is not smooth.

The fact that B is not smooth implies that there exists $y \in \bar{B}$ and $y \notin \bar{B}^{2}$. Consider $X=$ $(x, 0) \in \bar{A}$ and $Y=(0, y) \in \bar{A}$; we have $X^{2}=X Y=0$.
Proposition 9 of [La] implies that for $n=4 m, m \geq 1, \operatorname{dim} H H_{n}(A) \geq 2^{m-1}$. So we have:

$$
C_{2}^{n} \leq \sum_{0 \leq p \leq n} \operatorname{dim} H H_{p}(A) \leq C_{1}^{n}
$$

where $\quad C_{2}=\sqrt[4]{2} \quad$ and $\quad C_{1} \approx 1+\operatorname{dim} \bar{B}$.

REFERENCES

[B-V] D.Burghelea and M.Vigué-Poirrier, Cyclic homology of commutative algebras, Lecture Notes in Mathematics, 1318,(1988),51-72.
[H-K-R] G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras, Trans A.M.S., 102, (1962), 383-408.
[La] P.Lambrechts, On the Betti numbers of the free loop space of a connected sum, J. London Math. Soc., 64, (2001), 205-228.
[Lo] J.L. Loday, Cyclic homology, Springer-Verlag, Berlin, (1992).
[Ro] J.E. Roos, Homology of free loop spaces, cyclic homology, and nonrational Poincaré-Betti series in commutative algebra, Lecture Note in Math., 1352, (1988), 173-189.
[Vi] M.Vigué-Poirrier,Hochschild homology criteria for trivial algebra structures, Trans. A.M.S., 354, (2002), 3869-3882.
[AMA - Algebra Montpellier Announcements - 01-2003] [September 2003]

