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Abstract

In this paper we study N -koszul algebras which were introduced by R. Berger. We show
that when n ≥ 3, these are classified by the Ext-algebra being generated in degrees 0, 1, and
2. We give a description of the Ext-algebra using the analogous of the Koszul complex and
we also show that it is, is a Koszul algebra, after regrading. This notions can be generalized
in various ways one was is to study categories of homogeneous algebras and this can be found
in [2]

1 A general overview

In [1], Roland Berger introduced what he called “generalized” Koszul algebras. The gener-
alized Koszul algebras are graded algebras A = K ⊕A1⊕A2⊕ · · · which are generated
in degrees 0 and 1 such that there is a graded projective resolution of K for which the kth

projective in the resolution is generated in degree δ(k) where

δ(k) = {
k
2n if k is even
k−1
2 n + 1 if k is odd,

for some n.

We generalize this definition to the nonlocal case, i.e., K is replaced by a semisimple K-
algebra and we call this class of algebras N -koszul algebras.

We provide some general tools to study when the Yoneda product map

Extk
A(A0, A0)⊗HomA(M,A0) → Extk(M,A0)

is surjective where A = A0 ⊕A1 ⊕ · · · is a graded algebra and M is a graded left A-module.
We summarize the contents of the paper. In order to do that we need to introduce some

notation:

2 Notation

Let K be a commutative ring and A = A0 ⊕ A1 ⊕ A2 ⊕ · · · be a graded K-algebra where
the direct sum is as K-modules. Assume that A is generated in degrees 0 and 1; that is,
Ai ·Aj = Ai+j for all 0 ≤ i, j < ∞. Let Gr(A) denote the category of graded A-modules and
degree 0 homomorphisms and Mod(A) denote the category of left A-modules. We denote
by gr(A) and mod(A) the full subcategories of Gr(A) and Mod(A) respectively, consisting
of finitely generated modules. Let F : Gr(A) → Mod(A) denote the forgetful functor and
Gr0(A) (respectively gr0(A)) be the full subcategory of Gr(A) whose objects are the graded
modules (respectively, finitely generated modules) generated in degree 0.

We assume A0 is a semisimple Artin algebra. The graded Jacobson radical of A, which
we denote by rA, or simply r, when no confusion can arise, is A1 ⊕ A2 ⊕ · · ·. Since A is
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generated in degrees 0 and 1, it follows that ri = Ai ⊕Ai+1 ⊕ · · ·. We fix a minimal graded
projective resolution of A0,

P• : · · · → P k → · · · → P 1 → P 0 → A0 → 0,

where A0 is viewed as a graded A-module generated in degree 0.

3 Summary

One of the fundamental results of the paper is the following:

Proposition 3.1 Let M ∈ Gr0(A) be finitely generated with minimal graded projective res-
olution (Q•). Assume that Pn is generated in degree s and Qn is finitely generated. Then
Qn is generated in degree s if and only if ExtkA(A0, A0)⊗K HomA(M,A0) → ExtkA(M,A0) is
surjective; that is, ExtkA(A0, A0) ·HomA(M,A0) = ExtkA(M,A0).

One immediately consequence of this theorem is the following:

Corollary 3.2 Let M ∈ Gr0(A) with minimal graded projective resolution Q•. Assume that
P k is generated in degree s and Qk is generated in degree t. Then t ≥ s.

If M1,M2,M3 are A-modules, we let

Ym,k : Extm
A (M2,M3)⊗K Extk

A(M1,M2) → Extm+k
A (M1,M3)

be the Yoneda product. We will usually write Ym,k as Y when no confusion can arise. Fur-
thermore, we will denote the image of Y in Extm+k

A (M1,M3) by Extm
A (M2,M3)·Extk

A(M1,M2).

Lemma 3.3 Let M be a finitely generated graded A-module. The map
Y : ExtkA(A0, A0)⊗K HomA(M,A0) → ExtkA(M,A0) factors through
ExtkA(M/rM,A0) → ExtkA(M,A0), the map induced from the canonical surjection M →
M/rM . Furthermore, the induced map Y ′ : ExtkA(A0, A0)⊗KHomA(M,A0) → ExtkA(M/rM,A0)
is surjective.

The fundamental proposition, 3.1, is used to prove the following:

Proposition 3.4 Suppose that P i is finitely generated with generators in degree ni, for
i = α, β, α + β. Assume that

nα+β = dα + dβ .

Then the Yoneda maps ExtαA(A0, A0)⊗KExtβA(A0, A0) → Extα+β
A (A0, A0) and ExtβA(A0, A0)⊗K

ExtαA(A0, A0) → Extα+β
A (A0, A0) are both surjective. Thus,

Extα+β
A (A0, A0) = ExtαA(A0, A0) · ExtβA(A0, A0)

= ExtβA(A0, A0) · ExtαA(A0, A0).

In section 4 of the paper appears the definition of N -koszul algebras.
Let A = A0 + A1 + A2 + · · · be a graded K-algebra generated in degrees 0 and 1, where

A0 is a product of the field K, A1 is a finitely generated K-module and that P• is a minimal
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graded A-projective resolution of A0. We say that A is a N -koszul algebra if, for each n ≥ 0,
Pn can be generated in exactly one degree, δ(n), and

δ(k) = {
k
2n if k is even

(k−1
2 n) + 1 if k is odd

.

We present the following characterization of N -koszul algebras.

Theorem 3.5 Let A = TA0(A1)/I where I can be generated by elements of ⊗n
A0

A1 for some
n ≥ 2. Then A is a N -koszul algebra if and only if the Ext-algebra E(A) can be generated in
degrees 0, 1, and 2 in the ext-degree grading.

From the proof of the above theorem, we get the following important result.

Corollary 3.6 If A is a N -koszul algebra, with n > 2, then

Ext2m+1
A (A0, A0) · Ext2k+1

A (A0, A0) = (0),

for all k,m ≥ 0.

In section 5 we introduce the notion of N -koszul modules which is a natural generalization
of the analogous notion of Koszul modules.

We say a left graded A-module M is a N -koszul module if there is a graded A-projective
resolution · · · → Q2 → Q1 → Q0 → M → 0 such that Qn is generated in degree δ(n) where

δ(k) = {
k
2n if k is even

(k−1
2 n) + 1 if k is odd

.

If M is a N -koszul module then M ∈ Gr0(A) since Q0 is generated in degree 0. Note that if
n = 2, then a module is N -koszul if and only if it has a linear projective resolution. Thus,
in this case, being a N -koszul coincides with being a Koszul module.

We state in this summary two results which are proved in section 5 of the paper:

Proposition 3.7 Let A be a N -koszul algebra of type n and M a N -koszul module. Then
Ω2(M)[−n] and Ω1(rM)[−n] are both N -koszul A-modules.

If M is a left A-module, let E(M) denote the left E(A)-module ⊕n≥0Extk(M,A0), where
the module structure is given by the Yoneda product.

Theorem 3.8 Let A = A0 + A1 + · · · be a N -koszul algebra of type n with n ≥ 3 and
let M be a left N -koszul A-module. Then E(M) can be generated in degree 0. Moreover,
Ext2k+1(A0, A0) · Ext2m+1(M,A0) = (0) for all k,m ≥ 0.

Section 6 on the paper studies the sum of the even extensions. The main result in this
section is the following:

Let M be a left N -koszul A-module. We let

Eev(A) = ⊕k≥0Ext2k(A0, A0)

and
Eev(M) = ⊕k≥0Ext2k(M,A0).
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We grade Eev(A) by Eev(A)k = Ext2k(A0, A0) and view Eev(M) as a graded Eev(A)-
module where Eev(M)k = Ext2k

A (M,A0). We call this the even-grading.
The following result is the main result of this section.

Theorem 3.9 Let A = A0 + A1 + · · · be a N -koszul algebra of type n and M a N -koszul
module. Then, in the even-grading, Eev(A) is a Koszul algebra and Eev(M) is a Koszul
Eev(A)-module.

In section 7 we study the Ext of a N -koszul algebra, the main result is the following: We
denote by Ê(A) the Ext-algebra with a new grading where the homogeneous component of
degree k is the sum of Ext2k−1 + Ext2k. We show the following result.

Theorem 3.10 Let A = A0 + A1 + · · · be a N -koszul algebra with n ≥ 3. Let M be a
N -koszul A-module. Then Ê(A) is a Koszul algebra and Ê(M) is a Koszul Ê(A)-module.

In section 8 we give a new proof of one of Berger’s result.
We introduced a N -koszul complex. This complex is defined for any algebra of the type

A = TA0(A1)/I where I is generated by elements of degree n. It happens that this complex
is a minimal resolution of A0 if and only if the algebra is a N -koszul algebra. We end this
summary by describing this complex. We point out that some of the results which we got in
the earlier sections can also be obtained by using this complex, in particular one can get a
good description of the Ext algebra of A, by using it.

Let R = I ∩ (⊗n
A0

A1). Note that R is an A0-A0-submodule of ⊗n
A0

A1. We now assume
K is a field and that A0 is not only semisimple, but, as a ring, A0 is K ×K × · · · ×K. Let
T = TA0(A1) and if x ∈ T , let x̄ denote π(x) where π : T → A is the canonical surjection.
In this case, T is isomorphic to a path algebra KΓ for some quiver Γ. Let {v1, . . . , vn} be
the arrows of Γ. Then the vi’s are a full set of orthogonal idempotents. We say a nonzero
element x ∈ T is left uniform if there exists a vertex vi such that x = vix. If x is left uniform,
we let o(x) = vi if x = vix.

We define the generalized Koszul complex of R as follows. Let H0 = A0, H1 = A1, and,
for k ≥ n,

Hk = ∩i+j+d=k(⊗i
A0

A1)⊗A0 R⊗A0 (⊗j
A0

A1).

As usual, we let

δ(k) = {
k
2n if k is even
(k−1

2 n) + 1 if k is odd

. We define Qk = A⊗A0 Hδ(k) and note that Qk is a projective left A-module for k ≥ 0.
We wish to define maps dk : Qk → Qk−1 for k ≥ 1. For this we need the following lemma

which relates to the condition (ec) in Berger’s work. To simplify notation, we will denote
⊗i

A0
A1 as simply Ai

1 and write ⊗A0 as simply ⊗.

Lemma 3.11 notation, if A is N -koszul then, for 2 ≤ i < n,

(R⊗Ai
1) ∩ (Ai

1 ⊗R) ⊆ Ai−1
1 ⊗R⊗A1.

We define dm : Qm → Qm−1. Recall that Qm = A⊗Hδ(m). From the definition and that
R ⊂ An

1 , we note that Hδ(m) ⊂ A
δ(m)
1 . We write elements of Hδ(m) as x1⊗ · · ·⊗xδ(m) where

the xi are in A1. If m = 2k, define

dm(a⊗ x1 ⊗ · · · ⊗ xkn) = ax1x2 · · ·xn−1 ⊗ xn ⊗ · · · ⊗ xkn.
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If m = 2k + 1, define

dm(a⊗ x1 ⊗ · · · ⊗ xkn+1) = ax1 ⊗ x2 ⊗⊗ · · · ⊗ xkn+1.

Using the description of Hδ(k) in the form of the corollary one shows that the maps are
well-defined. We now can state one of Berger’s main results.

Theorem 3.12 [1, Thm 2.1] Let A = KΓ/I where I is an ideal generated in degree n. The
following statements are equivalent.

(i) A is a N -koszul algebra.

(ii) {Qk, dk} is a minimal A-projective resolution of A0.

In section 9 we provide a description of the Ext-algebra E(A) when A is a N -koszul
algebra with n > 2 We need to introduce some notation in order to be able to state this
description.

Recall that since A0 =
∏n

i=1 K, then the indecomposable A0-A0-bimodules are 1-dimen-
sional over K and of the form eiA0ej , where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 occurring in
the ith component. Furthermore, Aop

0 = A0 since A0 is a commutative ring. Since A0⊗K A0

is a semisimple ring, it follows that every A0-A0-bimodule is a direct sum of copies of the
1-dimensional simple modules eiA0ej , 1 ≤ i, j ≤ n.

Let V be a finitely generated A0-A0-bimodule. If W is an A0-A0-submodule of V , let
W ∗ = HomA0(W,A0) where the Hom is as left A0-modules. The right A0-module structure
on W gives W ∗ a left A0-module structure. The right A0-module structure on A0 gives W ∗

an A0-A0-bimodule structure. Note that ∗ is a duality on A0-A0-bimodules and that if V
is a finitely generated bimodule, then V ∗∗ is naturally isomorphic to V as bimodules. Let
W⊥ = {f ∈ V ∗ | f(W ) = 0}. We see that W⊥ is an A0-A0-bimodule if W is.

We identify A0 and A∗
0. There is a natural isomorphism between (Ai

1)
∗ = (

i
⊗ A1)∗

and
i
⊗ A∗

1 = (A∗
1)

i, which we view as an identification. Let R⊥ = {f ∈ (A∗
1)

n | f(x) =
0 for all x ∈ R}. Let T ∗ be the tensor algebra TA0(A

∗
1) = A0 ⊕ A∗

1 ⊕ (A∗
1)

2 ⊕ · · ·. The dual
algebra of A is defined to be A! = T ∗/ < R⊥ >.

We see that A! is a graded algebra since R⊥ is contained in (A∗
1)

n. Thus A! = A!
0⊕A!

1⊕
A!

2 ⊕ · · ·. Let B = B0 ⊕B1 ⊕B2 ⊕ · · · where Bk = A!
δ(k) as vector spaces.

We main result in this section is the following:

Theorem 3.13 If A is a N -koszul algebra and n ≥ 2 then E(A) is isomorphic to B as
graded algebras. In particular, ExtkA(A0, A0) is isomorphic to A!

δ(k).

In the final section we give some examples of N -koszul algebras with n > 2, in particular
we characterize the monomial algebras which are N -koszul, this was done in [1], we show
that his conclusions carry over quotient of quiver algebras.

References

[1] R. Berger Koszulity of nonquadratic algebras, J. of Algebra, 239, (2001), 705-734.

[2] R. Berger, M. Dubois-Violette and M. Warmbst Homogeneous Algebras To appear
Journal of Algebra.( Available at math. QA).

[3] A.A. Beilinson, V. Ginsburg, and W. Soergel, Koszul duality patterns in representation
theory, J. Am. Math. Soc. 9 (1996), 473-527.

5



[4] E.L. Green, D. Happel, D. Zacharia, Projective resolutions over Artin algebras with zero
relations, Illinois J. Math. 29 (1985) 180-190.

[5] E.L. Green, R. Mart́ınez-Villa, Koszul and Yoneda algebras Representation theory of
algebras (Cocoyoc, 1994), CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI,
(1996) 247-297.

[6] E.L. Green, R. Mart́ınez-Villa, Koszul and Yoneda algebras II Algebras and modules,
II (Geiranger, 1996), CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, (1998)
(227–244).

[7] E.L. Green, Ø. Solberg, D. Zacharia, Minimal projective resolutons, Trans. Am. Math.
Soc., 353, (2001) 2915-2939.

[AMA - Algebra Montpellier Announcements - 01-2003] [September 2003]

6


