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1. The lattice

Let Λ be an associative ring. In this note we show that the collection of (not
necessarily finitely generated) cotilting modules over Λ carries the structure of a lat-
tice. We work in the category ModΛ of (right) Λ-modules and denote by modΛ the
full subcategory of finitely presented Λ-modules. Changing slightly1 the definition
in [1], we say that a Λ-module T is a cotilting module if

(T1) the injective dimension of T is finite;
(T2) Exti

Λ(Tα, T ) = 0 for all i > 0 and every cardinal α;
(T3) there exists an injective cogenerator Q and a long exact sequence 0 → Tn →

· · · → T1 → T0 → Q → 0 with Ti in ProdT for all i = 0, 1, . . . , n;
(T4) T is pure-injective.
Here, ProdT denotes the closure under products and direct factors of T . Two

cotilting modules T and T ′ are equivalent if ProdT = ProdT ′. Our first result
is a consequence of the fact that the equivalence class of a cotilting module T is
determined by

⊥T = {X ∈ Mod Λ | Exti
Λ(X, T ) = 0 for all i ≥ 1}.

Theorem 1.1. The equivalence classes of Λ-cotilting modules form a set of cardi-
nality at most 2κ where κ = max(ℵ0, cardΛ).

Proof. Recall that a class X of Λ-modules is definable if X is closed under taking
products, filtered colimits, and pure submodules. In this case

X = {X ∈ Mod Λ | HomΛ(φ,X) is surjective for all φ ∈ Φ}
where Φ is the set of all maps in modΛ such that HomΛ(φ,X) is surjective for all
X ∈ X ; see [4, Section 2.3].

If T is a cotilting module, then ⊥T is definable. This follows from Theorem 5.6
and Proposition 5.7 in [9]. The cardinality of the set of isomorphism classes of maps
in modΛ is bounded by κ, and therefore we have at most 2κ equivalence classes of
cotilting modules. �

We denote by Cotilt Λ the set of equivalence classes of Λ-cotilting modules and
we have a natural partial ordering via

T ≤ T ′ ⇐⇒ ⊥T ⊆ ⊥T ′

for T, T ′ ∈ Cotilt Λ. For finite dimensional algebras, the collection of finitely gen-
erated (co)tilting modules has some interesting combinatorial structure which is
closely related to this partial ordering [10, 11, 3]. Our aim is to show that Cotilt Λ

1(T4) is added to avoid set-theoretic problems. For instance, the classification of modules

satisfying (T1) – (T3) over a fixed Dedekind domain R seems to depend on set-theoretic properties
of R.
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is in fact a lattice. For this we need the concept of a cotorsion pair. We fix a pair
(X ,Y) of full subcategories of ModΛ. Let

X⊥ = {Y ∈ Mod Λ | Exti
Λ(X, Y ) = 0 for all i ≥ 1 and X ∈ X},

⊥Y = {X ∈ Mod Λ | Exti
Λ(X, Y ) = 0 for all i ≥ 1 and Y ∈ Y}.

The pair (X ,Y) is called a cotorsion pair for Mod Λ if the following conditions are
satisfied:

(1) X = ⊥Y and Y = X⊥;
(2) every A ∈ Mod Λ fits into exact sequences 0 → Y1 → X1 → A → 0 and

0 → A → Y2 → X2 → 0 with Xi ∈ X and Yi ∈ Y.
For n ∈ N we write In(Λ) = {X ∈ Mod Λ | idX ≤ n} and let I(Λ) =

⋃
n∈N In(Λ),

where idX denotes the injective dimension of a module X. We need the following
example:

Example 1.2. For all n ∈ N there exists a cotorsion pair (⊥In(Λ), In(Λ)). This
follows from Theorem 10 in [6] since

In(Λ) = {Y ∈ Mod Λ | Ext1Λ(Ωn(Λ/a), Y ) = 0 for all right ideals a ⊆ Λ}

by Baer’s criterion.

We have a description of cotilting modules in terms of cotorsion pairs which
follows directly from work of Angeleri Hügel and Coelho [1, Theorem 4.2], in com-
bination with [9, Proposition 5.7].

Proposition 1.3. For a full subcategory X ⊆ Mod Λ the following are equivalent:
(1) X = ⊥T for some cotilting module T with idT ≤ n;
(2) X is definable and there is a cotorsion pair (X ,X⊥) with X⊥ ⊆ In(Λ).

Moreover, in this case X ∩ X⊥ = ProdT .

Observe that Proposition 1.3 shows how to compute for a cotilting module T its
injective dimension:

idT = inf{n ∈ N | ⊥In(Λ) ⊆ ⊥T}.

The next result describes the infimum of a collection of cotilting modules in
Cotilt Λ.

Proposition 1.4. Let (Ti)i∈I be a family of cotilting modules and suppose that
sup{idTi | i ∈ I} < ∞. Then there exists a cotilting module T such that

⊥T =
⋂
i∈I

⊥Ti.

Moreover, idT = sup{idTi | i ∈ I}. The module T is unique up to equivalence and
is denoted by

∧
i∈I Ti.

Proof. We apply Proposition 1.3. There exists a cotorsion pair (X ,Y) with X =
⊥(

∏
i Ti) since

∏
i Ti is pure-injective; see [5, Corollary 10]. Each ⊥Ti is definable

and contains ⊥In(Λ) where n = sup{idTi | i ∈ I}. Therefore X =
⋂

i∈I
⊥Ti is

definable and contains ⊥In(Λ). Thus Y ⊆ In(Λ), and we obtain X = ⊥T for some
cotilting module T . �

Example 1.5 (Happel). Fix a field k and let Λ be the path algebra of the quiver
· // ''· // · which is tame hereditary. Denote by S1 = (1, 0, 1) and S2 = (0, 1, 0) the
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quasi-simples from the unique exceptional tube of rank 2. Then there are cotilting
modules

T1 = (1, 0, 1)⊕ (2, 1, 1)⊕ (1, 0, 0) and T2 = (0, 1, 0)⊕ (2, 2, 1)⊕ (1, 1, 0)

such that ⊥T1 ∩ ⊥T2 = ⊥T for T = Ŝ1 q Ŝ2 q (
∐

S S∞) where S runs through the
isomorphism classes of quasi-simples different from S1 and S2. Here, S∞ denotes
the Prüfer and Ŝ denotes the adic module corresponding to S. Moreover, no finite
dimensional cotilting module is equivalent to T .

Corollary 1.6. The partially ordered set Cotilt Λ is a lattice. More precisely, for
a family (Ti)i∈I in Cotilt Λ the following holds:

(1) The infimum inf{Ti | i ∈ I} of all Ti exists if and only if sup{idTi | i ∈
I} < ∞. In this case inf{Ti | i ∈ I} =

∧
i∈I Ti.

(2) The supremum sup{Ti | i ∈ I} of all Ti equals the infimum inf{T ∈
Cotilt Λ | Ti ≤ T for all i ∈ I}.

Corollary 1.7. The map (Cotilt Λ,≤) −→ (N,≤) sending T to idT has the fol-
lowing properties:

(1) T ≤ T ′ implies idT ′ ≤ idT .
(2) id(inf{Ti | i ∈ I}) = sup{idTi | i ∈ I} for every family (Ti)i∈I , provided

that sup{idTi | i ∈ I} < ∞.
(3) id(sup{Ti | i ∈ I}) ≤ inf{idTi | i ∈ I} for every family (Ti)i∈I .

2. Finitistic dimension

In this section we relate the finitistic dimension of Λ to the structure of Cotilt Λop.
Recall that the finitistic dimension Fin.dim Λ is the supremum of all projective
dimensions of Λ-modules having finite projective dimension. Restriction to finitely
presented Λ-modules gives fin.dim Λ. The finitistic injective dimension of Λ is by
definition

Fin. inj.dim Λ = sup{idX | X ∈ Mod Λ and id X < ∞}.

Observe that Fin.dim Λ = Fin. inj.dim Λop provided that Λ is artinian.

Proposition 2.1. Let Λ be an artin algebra and let C be a class of finitely presented
Λ-modules. If id C = sup{idX | X ∈ C} < ∞, then there exists a cotilting module
T such that ⊥T = ⊥C and idT = id C.

Proof. We apply Proposition 1.3 to obtain the cotilting module T satisfying ⊥T =
⊥C. It follows from Theorem 2 in [9] that every definable and resolving subcategory
X of ModΛ induces a cotorsion pair (X ,X⊥). Recall that X is resolving if X
is closed under extensions, kernels of epimorphisms, and contains all projectives.
Clearly, ⊥C is resolving. Using the fact that the modules in C are finitely presented,
it is not difficult to check that ⊥C is definable; see for example the proof of [9,
Corollary 6.4]. Finally, we have ⊥In(Λ) ⊆ ⊥C if and only if C ⊆ In(Λ), because
(⊥In(Λ))⊥ = In(Λ). Therefore idT = id C. �

Corollary 2.2. Let Λ be an artin algebra. Then

Fin.dim Λ ≥ sup{idT | T ∈ Cotilt Λop} ≥ fin.dim Λ.
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3. Minimal cotilting modules

If Fin. inj.dim Λ < ∞, then we define

Tmin =
∧

T∈Cotilt Λ

T

to be the (unique) minimal element in Cotilt Λ. We have always ⊥I(Λ) ⊆ ⊥Tmin

and in this section we ask when both subcategories are equal. To this end we
introduce another module which is of potential interest.

Lemma 3.1. Let Λ be right noetherian and suppose that Fin. inj.dim Λ < ∞. Then
there exists a Λ-module T such that

⊥I(Λ) ∩ I(Λ) = AddT.

Proof. We have a cotorsion pair (⊥I(Λ), I(Λ)) since Fin. inj.dim Λ < ∞. Ob-
serve that I(Λ) and ⊥I(Λ) both are closed under taking kernels of epimorphisms.
Therefore every epimorphism in ⊥I(Λ) ∩ I(Λ) splits. Now fix an exact sequence
0 → Λ → T → X → 0 with T ∈ I(Λ) and X ∈ ⊥I(Λ). Clearly, T ∈ ⊥I(Λ) ∩ I(Λ).
Taking coproducts we get for each cardinal α an exact sequence 0 → Λ(α) → T (α) →
X(α) → 0 with T (α) ∈ ⊥I(Λ) ∩ I(Λ) and X(α) ∈ ⊥I(Λ), since I(Λ) is closed un-
der coproducts. Thus every map φ : Λ(α) → Y with Y ∈ I(Λ) factors through
Λ(α) → T (α) via some map φ′ : T (α) → Y . If Y ∈ ⊥I(Λ) ∩ I(Λ) and φ is an epi,
then φ′ splits. Thus ⊥I(Λ) ∩ I(Λ) = AddT . �

By abuse of notation we denote by Tinj a module satisfying ⊥I(Λ) ∩ I(Λ) =
AddTinj.

Lemma 3.2. Let Λ be right noetherian and suppose that Fin. inj.dim Λ = n < ∞.
Then a Λ-module C has finite injective dimension if and only if there is an exact
sequence

(∗) 0 −→ Tn+1 −→ · · · −→ T1 −→ T0 −→ C −→ 0

with Ti ∈ Add Tinj for all i.

Proof. We have a cotorsion pair (⊥I(Λ), I(Λ)). Starting with Y0 = C ∈ I(Λ), we
obtain exact sequences εi : 0 → Yi+1 → Ti → Yi → 0 for each i ≥ 0, with Yi ∈ I(Λ)
and Ti ∈ Add Tinj for all i. Using dimension shift, one sees that εn splits. Thus
Yn+1 ∈ AddTinj, and splicing together the εi produces a sequence of the form (∗).
Conversely, if C fits into a sequence (∗), then C ∈ I(Λ) since I(Λ) is closed under
taking cokernels of monomorphisms. �

Recall that a module C is Σ-pure-injective if every coproduct C(α) is pure-
injective.

Theorem 3.3. Let Λ be right noetherian and suppose that Fin. inj.dim Λ < ∞.
Then the following are equivalent:

(1) ⊥I(Λ) = ⊥Tmin;
(2) ⊥I(Λ) is closed under taking products;
(3) Tinj is product complete, that is, AddTinj = Prod Tinj;
(4) Tinj is a Σ-pure-injective cotilting module.

Moreover, in this case Tmin and Tinj are equivalent cotilting modules.

Proof. (1) ⇒ (2): Clear, since ⊥Tmin is closed under products.
(2) ⇒ (3): If ⊥I(Λ) is closed under products, then ⊥I(Λ)∩I(Λ) is closed under

products. Thus every product of copies of Tinj belongs to AddTinj. It follows that
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Tinj is Σ-pure-injective and therefore AddTinj ⊆ ProdTinj; see [8]. Thus Tinj is
product complete.

(3) ⇒ (4): A product complete module is Σ-pure-injective. For Tinj, the defining
conditions of a cotilting module are obviously satisfied, except (T3) which follows
from Lemma 3.2.

(4) ⇒ (1): First observe that AddTinj ⊆ ProdTinj since Tinj is Σ-pure-injective.
The cotilting module Tinj induces a cotorsion pair (⊥Tinj, (⊥Tinj)⊥) by Proposi-
tion 1.3. We claim that I(Λ) = (⊥Tinj)⊥. We need to check I(Λ) ⊆ (⊥Tinj)⊥ and
this follows from Lemma 3.2 since Add Tinj ⊆ ProdTinj. Thus ⊥I(Λ) = ⊥Tinj and
therefore Tinj is equivalent to the minimal cotilting module Tmin. �

Remark 3.4. A cotilting module T is Σ-pure-injective if and only if (⊥T )⊥ is closed
under coproducts. In this case let T ′ be the coproduct of a representative set of
indecomposable modules in Prod T . Then T ′ is a product complete cotilting module
which is equivalent to T .

It seems to be an interesting project to describe the minimal cotilting module
for a given algebra. For example, Tmin = Λ if Λ is a Gorenstein artin algebra.

In fact, there is a more general result which discribes when Tmin is finitely pre-
sented. This is inspired by a result about modules of finite projective dimension by
Huisgen-Zimmermann and Smalø [7].

Proposition 3.5. Let Λ be an artin algebra. Then there exists a finitely presented
minimal cotilting module if and only if the modules of finite injective dimension
form a covariantly finite subcategory of modΛ. Moreover, in this case the equivalent
conditions of Theorem 3.3 are satisfied.

A similar result has been obtained independently by Happel and Unger for the
category of finitely presented Λ-modules.

We do not give the complete proof but sketch the argument. Suppose first that
I(modΛ) = {X ∈ modΛ | idX < ∞} is covariantly finite. Using the correspon-
dence for cotilting modules in modΛ, there exists a cotilting module T such that
⊥T = ⊥I(modΛ) in modΛ; see [2]. The assumption implies that every module of
finite injective dimension is a filtered colimit of modules in I(modΛ). Using this,
one proves that T is minimal. Conversely, if Tmin is finitely presented, then one can
use Proposition 2.1 to show that I(modΛ) is covariantly finite in modΛ.
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