ON THE LATTICE OF COTILTING MODULES
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1. THE LATTICE

Let A be an associative ring. In this note we show that the collection of (not
necessarily finitely generated) cotilting modules over A carries the structure of a lat-
tice. We work in the category Mod A of (right) A-modules and denote by mod A the
full subcategory of finitely presented A-modules. Changing slightly® the definition
in [1], we say that a A-module T is a cotilting module if

(T1) the injective dimension of T is finite;

(T2) Ext)y (T, T) =0 for all i > 0 and every cardinal a;

(T3) there exists an injective cogenerator () and a long exact sequence 0 — T,, —

-— T — Ty — Q — 0 with T; in ProdT for allt =0,1,...,n;

(T4) T is pure-injective.

Here, Prod T denotes the closure under products and direct factors of T. Two
cotilting modules T and T" are equivalent if ProdT = ProdT’. Our first result
is a consequence of the fact that the equivalence class of a cotilting module T is
determined by

LT = {X € Mod A | Ext} (X, T) =0 for all s > 1}.

Theorem 1.1. The equivalence classes of A-cotilting modules form a set of cardi-
nality at most 2% where £ = max(No, card A).

Proof. Recall that a class X of A-modules is definable if X is closed under taking
products, filtered colimits, and pure submodules. In this case

X ={X € Mod A | Homp (¢, X) is surjective for all ¢ € &}

where ® is the set of all maps in mod A such that Homy (¢, X) is surjective for all
X € X; see [4, Section 2.3].

If T is a cotilting module, then +7 is definable. This follows from Theorem 5.6
and Proposition 5.7 in [9]. The cardinality of the set of isomorphism classes of maps
in mod A is bounded by «, and therefore we have at most 2 equivalence classes of
cotilting modules. O

We denote by Cotilt A the set of equivalence classes of A-cotilting modules and
we have a natural partial ordering via

T<T <= *‘Tc'7r
for T, T’ € Cotilt A. For finite dimensional algebras, the collection of finitely gen-

erated (co)tilting modules has some interesting combinatorial structure which is
closely related to this partial ordering [10, 11, 3]. Our aim is to show that Cotilt A

1(T4) is added to avoid set-theoretic problems. For instance, the classification of modules
satisfying (T1) — (T3) over a fixed Dedekind domain R seems to depend on set-theoretic properties
of R.
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is in fact a lattice. For this we need the concept of a cotorsion pair. We fix a pair
(X,)) of full subcategories of Mod A. Let

Xt ={Y € ModA | Exty(X,Y) =0 foralli >1and X € X7},

LY ={X € ModA | Ext}(X,Y) =0 foralli>1and Y € V}.
The pair (X,)) is called a cotorsion pair for Mod A if the following conditions are
satisfied:
(1) X="Yand Yy =X+,
(2) every A € Mod A fits into exact sequences 0 — ¥, — X3 — A — 0 and
0—-A—Yy,— Xo —-0with X; e XYand Y; € ).

For n € N we write Z,(A) = {X € Mod A |id X <n} and let Z(A) = J,, ey Zn(A),
where id X denotes the injective dimension of a module X. We need the following
example:

Example 1.2. For all n € N there exists a cotorsion pair (+Z,(A),Z,(A)). This
follows from Theorem 10 in [6] since

Z,(A) = {Y € Mod A | Ext} (2"(A/a),Y) = 0 for all right ideals a C A}
by Baer’s criterion.

We have a description of cotilting modules in terms of cotorsion pairs which
follows directly from work of Angeleri Hiigel and Coelho [1, Theorem 4.2], in com-
bination with [9, Proposition 5.7].

Proposition 1.3. For a full subcategory X C Mod A the following are equivalent:

(1) X =+T for some cotilting module T with idT < n;
(2) X is definable and there is a cotorsion pair (X, X*) with X+ C T, (A).

Moreover, in this case X N X+ = ProdT.

Observe that Proposition 1.3 shows how to compute for a cotilting module T its
injective dimension:

idT = inf{n € N|+Z,(A) C +T}.

The next result describes the infimum of a collection of cotilting modules in
Cotilt A.

Proposition 1.4. Let (T;);cr be a family of cotilting modules and suppose that
sup{idT; | i € I} < co. Then there exists a cotilting module T such that

L1 = ﬂ L.
iel
Moreover, idT = sup{idT; | i € I}. The module T is unique up to equivalence and
is denoted by N\;c; Ti.

Proof. We apply Proposition 1.3. There exists a cotorsion pair (X,)) with X =
L(I1, Ty) since [[; 7T; is pure-injective; see [5, Corollary 10]. Each L7; is definable
and contains +Z,,(A) where n = sup{idT; | i € I}. Therefore X = (o, *T; is
definable and contains 7, (A). Thus Y C Z,(A), and we obtain X = LT for some
cotilting module T. O

Example 1.5 (Happel). Fix a field & and let A be the path algebra of the quiver
7= which is tame hereditary. Denote by S; = (1,0,1) and Sy = (0,1,0) the
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quasi-simples from the unique exceptional tube of rank 2. Then there are cotilting
modules

Ty = (1,0,1) & (2,1,1) & (1,0,0) and Th = (0,1,0) & (2,2,1) & (1,1,0)

such that *Ty N LTy, = +7T for T = §1 I §2 II (g Seo) where S runs through the
isomorphism classes of quasi-simples different from S; and S;. Here, S, denotes
the Priifer and S denotes the adic module corresponding to S. Moreover, no finite
dimensional cotilting module is equivalent to T'.

Corollary 1.6. The partially ordered set Cotilt A is a lattice. More precisely, for
a family (T;)ier in Cotilt A the following holds:

(1) The infimum inf{T; | i € I} of all T; exists if and only if sup{idT; | i €
I} < oo. In this case inf{T; |i € I} = \,c; T;.

(2) The supremum sup{T; | i € I} of all T; equals the infimum inf{T €
Cotit A | T; < T for alli € I}.

Corollary 1.7. The map (Cotilt A, <) — (N, <) sending T to idT has the fol-
lowing properties:

(1) T <T implies idT’ <idT.

(2) id(inf{T; | i € I}) = sup{idT; | i € I} for every family (T;)icr, provided
that sup{idT; | i € I} < oo.

(3) id(sup{T; | i € I}) <inf{idT; | i € I} for every family (T;)icr.

2. FINITISTIC DIMENSION

In this section we relate the finitistic dimension of A to the structure of Cotilt A°P.
Recall that the finitistic dimension Fin.dim A is the supremum of all projective
dimensions of A-modules having finite projective dimension. Restriction to finitely
presented A-modules gives fin. dim A. The finitistic injective dimension of A is by
definition

Fin.inj.dim A = sup{id X | X € Mod A and id X < oo}.
Observe that Fin.dim A = Fin. inj. dim A°P provided that A is artinian.

Proposition 2.1. Let A be an artin algebra and let C be a class of finitely presented
A-modules. If idC = sup{id X | X € C} < oo, then there exists a cotilting module
T such that *T = +C andidT = idC.

Proof. We apply Proposition 1.3 to obtain the cotilting module T satisfying +7" =
LC. Tt follows from Theorem 2 in [9] that every definable and resolving subcategory
X of Mod A induces a cotorsion pair (X, X*). Recall that X is resolving if X
is closed under extensions, kernels of epimorphisms, and contains all projectives.
Clearly, +C is resolving. Using the fact that the modules in C are finitely presented,
it is not difficult to check that -C is definable; see for example the proof of [9,
Corollary 6.4]. Finally, we have +Z,,(A) C *C if and only if C C Z,(A), because
(+Z,(A)t =T, (A). Therefore idT =idC. O

Corollary 2.2. Let A be an artin algebra. Then

Fin.dim A > sup{id T | T € Cotilt A°?} > fin. dim A.
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3. MINIMAL COTILTING MODULES

If Fin. inj. dim A < oo, then we define

Tmin = /\ T
TeCotilt A
to be the (unique) minimal element in Cotilt A. We have always LZ(A) C +T
and in this section we ask when both subcategories are equal. To this end we
introduce another module which is of potential interest.

Lemma 3.1. Let A be right noetherian and suppose that Fin.inj.dim A < co. Then
there exists a A-module T such that

LT(A)NZ(A) = AddT.

Proof. We have a cotorsion pair (1Z(A),Z(A)) since Fin.inj.dimA < oo. Ob-
serve that Z(A) and +Z(A) both are closed under taking kernels of epimorphisms.
Therefore every epimorphism in +Z(A) N Z(A) splits. Now fix an exact sequence
0—-A—T—X —0withT €Z(A) and X € +Z(A). Clearly, T € *Z(A) N Z(A).
Taking coproducts we get for each cardinal @ an exact sequence 0 — A(®) — T(@)
X(@) — 0 with 7@ € LZ(A) N Z(A) and X(®) € +Z(A), since Z(A) is closed un-
der coproducts. Thus every map ¢: A® — Y with Y € Z(A) factors through
A — T via some map ¢': T — Y. If Y € YZ(A)NZ(A) and ¢ is an epi,
then ¢ splits. Thus 1Z(A)NZ(A) = AddT. O

By abuse of notation we denote by Ti,j a module satisfying LZ(A) N Z(A) =
Add Tiy;.

Lemma 3.2. Let A be right noetherian and suppose that Fin.inj.dim A = n < oco.
Then a A-module C has finite injective dimension if and only if there is an exact
sequence

(*) 0—>Tn+1%-~-—>TI—>TO—>C—>O
with T; € Add Tiy,; for all i.

Proof. We have a cotorsion pair (+Z(A),Z(A)). Starting with Yy = C € Z(A), we
obtain exact sequences ¢;: 0 — Y;11 — T; — Y; — 0 for each ¢ > 0, with Y; € Z(A)
and T; € AddTiy; for all . Using dimension shift, one sees that e, splits. Thus
Y,+1 € Add Ti,j, and splicing together the e; produces a sequence of the form (x).
Conversely, if C fits into a sequence (), then C' € Z(A) since Z(A) is closed under
taking cokernels of monomorphisms. (]

Recall that a module C is Y-pure-injective if every coproduct C(® is pure-

injective.
Theorem 3.3. Let A be right noetherian and suppose that Fin.inj.dim A < oo.
Then the following are equivalent:

(1) J_:Z’V(A) = J_T’min;

(2) +Z(A) is closed under taking products;

(3) Tinj is product complete, that is, Add Tinj = Prod Tin;;

(4) Tinj is a X-pure-injective cotilting module.
Moreover, in this case Tnin and Tin; are equivalent cotilting modules.

Proof. (1) = (2): Clear, since T}, is closed under products.
(2) = (3): If LZ(A) is closed under products, then *Z(A)NZ(A) is closed under
products. Thus every product of copies of Ti,; belongs to Add Ti,;. It follows that
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Ty is X-pure-injective and therefore Add Ti,; € ProdTinj; see [8]. Thus Tiyj is
product complete.

(3) = (4): A product complete module is X-pure-injective. For Tiy;, the defining
conditions of a cotilting module are obviously satisfied, except (T3) which follows
from Lemma 3.2.

(4) = (1): First observe that Add Ti,; € Prod Tiy; since Tiyj is X-pure-injective.
The cotilting module Ti,; induces a cotorsion pair (LTinj, (LTinj)L) by Proposi-
tion 1.3. We claim that Z(A) = (+Tin;)+. We need to check Z(A) C (1 Tiyj)*t and
this follows from Lemma 3.2 since Add Tin; C Prod Tinj. Thus LZ(A) = J-Tinj and
therefore Ti,; is equivalent to the minimal cotilting module Tiyiy. O

Remark 3.4. A cotilting module T is Y-pure-injective if and only if (+7)* is closed
under coproducts. In this case let T” be the coproduct of a representative set of
indecomposable modules in Prod T. Then T” is a product complete cotilting module
which is equivalent to T

It seems to be an interesting project to describe the minimal cotilting module
for a given algebra. For example, Tin;, = A if A is a Gorenstein artin algebra.

In fact, there is a more general result which discribes when Ty,;y, is finitely pre-
sented. This is inspired by a result about modules of finite projective dimension by
Huisgen-Zimmermann and Smalg [7].

Proposition 3.5. Let A be an artin algebra. Then there exists a finitely presented
minimal cotilting module if and only if the modules of finite injective dimension
form a covariantly finite subcategory of mod A. Moreover, in this case the equivalent
conditions of Theorem 3.3 are satisfied.

A similar result has been obtained independently by Happel and Unger for the
category of finitely presented A-modules.

We do not give the complete proof but sketch the argument. Suppose first that
Z(modA) = {X € modA |id X < oo} is covariantly finite. Using the correspon-
dence for cotilting modules in mod A, there exists a cotilting module 7" such that
LT = LZ(mod A) in mod A; see [2]. The assumption implies that every module of
finite injective dimension is a filtered colimit of modules in Z(mod A). Using this,
one proves that 7' is minimal. Conversely, if Ty,;;, is finitely presented, then one can
use Proposition 2.1 to show that Z(mod A) is covariantly finite in mod A.
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