
A note on centralizers in q-deformed Heisenberg algebras

Volodymyr Mazorchuk

Max-Planck-Institut für Mathematik, Bonn, Germany∗ †

Abstract

We reprove and generalize several results (including the main one) from the recent
monograph [3] using the technique of generalized Weyl algebras.

1 Introduction

Let k be a field, J a set and q = (qi)i∈J ∈ kJ . The authors of [3] define the q-deformed
Heisenberg algebra as an associative unital k-algebra, H(q, J), generated over k by {Xi, Yi|i ∈
J} subject to the following relations: [Ai, Aj ] = [Bi, Bj ] = [Ai, Bj ] = 0, i 6= j; AiBi−qiBiAi =
1, i ∈ J . Approx. 400 papers, where H(q, J), its properties, generalizations and several
physical applications were studied, are cited in [3] and we refer the reader to [3] for these
details.

One of the principal theorems in [3] states that, for |J | = 1 and q not a root of unity, any
two commuting elements in H(q) = H(q, J) are algebraically dependent ([3, Theorem 7.4]).

The aim of this note is to show (in Section 2) how one can quickly obtain this result
and even generalize it to a wider class of algebras, if one realizes that q-deformed Heisenberg
algebras belong to the class of generalized Weyl algebras (GWAs), introduced by V.Bavula
in the late 80’s. There are several advantages of this approach. First of all, this drastically
simplifies the proof and avoids lengthy calculations. Then, next to a generalization of [3,
Theorem 7.4] we get a generalization of another central result [3, Theorem 6.6], where the
centralizer of an element in H(q) is described. We also get some additional information, e.g.
the commutativity of the centralizer, which appears to be new. In Section 3 we consider the
root of unity case, in which GWAs have large centers. In this case we obtain a generalization
of [3, Theorem 7.5] and [3, Corollary 6.12]. Finally, in Section 4 we use highest weight modules
over GWAs to construct their realizations by difference operators acting on a polynomial ring.
This generalizes results from [3, Chapter 8].

Our arguments in the proof of Theorem 1 are very close to those of [2], but, formally,
V.Bavula considers a slightly different class of algebras (e.g. k is supposed to be of character-
istic zero) and one has to insert a small preliminary step to be able to transfer his proof to
the case we consider here.

Generalized Weyl algebras are associated with a ring, R, central elements 0 6= ti, i ∈
J , and pairwise commuting automorphisms σi, i ∈ J , of R such that σi(tj) = tj , i 6= j.
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The corresponding generalized Weyl algebra A(R, {ti}, {σi}) is defined as a ring, obtained
by adjoining to R symbols {Xi, Yi|i ∈ J} which satisfy the following relations: YiXi = ti,
XiYi = σi(ti), i ∈ J ; Xia = σi(a)Xi, aYi = Yiσi(a), i ∈ J , a ∈ R; [Xi, Yj ] = [Xi, Xj ] =
[Yi, Yj ] = 0, i 6= j. This algebra possesses a natural ZJ -gradation. To get H(q, J) one should
take R = k[hi, i ∈ J ], ti = hi, i ∈ J , and σi defined by σi(hj) = hj , i 6= j and σi(hi) = qihi +1
(this formally works only for qi 6= 0 as σi would not be an automorphism otherwise, however,
the definition of GWA can be extended to the case when σi are endomorphisms, moreover,
this does not affect our applications to results in [3], because qi 6= 0 is assumed there).

2 Main result

Consider the GWA A = A(R, t, σ), where R = k[H], t ∈ R \ k and σ(H) = qH + 1 for q 6= 0
not a root of unity from k (in particular, in this case k is infinite). As |J | = 1 we will write
simply X and Y for Xi, Yi. A is an integral domain and Z-graded with A0 = R, Ai = RXi

and A−i = RY i, i ∈ N. We set A± = ⊕i∈NA±i.

Theorem 1. The centralizer C(f) of any non-scalar element f ∈ A is a commutative algebra
and a free k[f ]-module of finite rank r. Moreover, r divides both the maximal degree π+(f)
and the minimal degree π−(f) in the graded decomposition of f .

This is a generalization of [2, Theorem 7] and Amitsur’s theorem on centralizers in Weyl
algebra ([1]). Our proof follows closely [2, Chapter 7] (where the case q = 1 and char(k) = 0
was considered) with some differences on the first stage caused by a different choice of σ. But
before presenting it we give two immediate corollaries of Theorem 1:

Corollary 1. Two commuting elements of A, in particular, of H(q), are algebraically depen-
dent.

Corollary 2. If f ∈ A is such that π+(f) and π−(f) are relatively prime then C(f) = k[f ].

Proof of Theorem 1. Step 1. Let Z act on k via 1(x) = qx + 1. We claim that the only finite
orbit of this action is {(1− q)−1}.

Indeed, n(x) = qnx+(qn−1)/(q−1) and n(x) = x implies x = (qn−1)/((q−1)(1−qn)) =
(1− q)−1.

Step 2. σ extends to an automorphism of k(H). By abuse of notation we will denote this
extension by σ as well. We claim that σn(p) = p for some p ∈ k(H) and some n ∈ N implies
p ∈ k.

Indeed, let p = q1(H)/q2(H). Adding to k all roots of q1 and q2 if necessary, we may

assume that p = α
(H − α1) . . . (H − αi)
(H − β1) . . . (H − βj)

. As k is infinite, σ(p) = p implies that the multisets

{α1, . . . , αi} and {β1, . . . , βj} are stable under the Z-action from Step 1. As they are finite we
get that the only possibility is αs = βs = c = (1− q)−1 and hence p = α(H − c)l, l ∈ Z. Now,
as q is not a root of unity, we compare the leading coefficients in p and σ(p) and conclude
that l = 0.

The referee has pointed out that there is a shorter way to get the above result using the
division algorithm and comparing the leading coefficients. However, we decided to keep the
above proof as we will use the description of finite Z-orbits later in the proof of Theorem 3.

From now on, Bavula’s proof formally works without any change, but we repeat it for
convenience of the reader.
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Step 3. Let g ∈ A, π+(g) = n > 0 and g1, g2 ∈ C(g), m = π+(g1) = π+(g2) ≥ 0, such
that m-th graded terms of g1 and g2 are equal b1X

m and b2X
m, b1, b2 ∈ R, respectively. Then

b1 and b2 are linearly dependent.
Let bXn be the highest term of g, 0 6= b ∈ R. From [g, gi] = 0 we get bσn(bi) = σm(b)bi,

i = 1, 2. Hence σn(b1/b2) = b1/b2 and the statement follows from Step 2.
Step 4. Denote m = π−(f) and n = π+(f). If m = n = 0 then f ∈ R and C(f) = R

follows from the graded decomposition of A. Clearly, R is a free k[f ]-module of rank degR(f) –
the degree of the polynomial f .

Assume n > 0 (the case m < 0 is analogous). Then C(f)∩A− = ∅. Otherwise there exists
g ∈ C(f) ∩ A− of largest possible degree π+(g) = −k < 0. Then π+(gnif2ki) = π+(fki) =
nki ≥ 0 for all i ∈ N but, as t 6∈ k, the k[H]-coefficients of Xnki in the graded decomposition
of gnif2ki and fki have different degrees for sufficiently large i, which contradicts Step 3.

Let κ be the composition of π+ with Z → Z/nZ. Then G = κ(C(f) \ {0}) is a cyclic
group of order r, which divides n. Let G = {m1 = 0, . . . ,mr}. For each mi choose gi ∈ C(f)
such that κ(gi) = mi and the number π+(gi) be the smallest possible. From C(f) ∩A− = ∅
and Step 3 it follows that such gi do exist and their highest terms are unique up to non-zero
scalars. In particular, we can set g1 = 1. Assume

∑
i giϕi = 0 for some ϕi ∈ k[H] and

not all ϕi are zero. Then there should exist i, j such that π+(giϕi) = π+(gjϕj). But then
κ(gi) = κ(gj) and we obtain a contradiction. Thus the right K[f ]-module M , generated by
{gi}, is free.

Step 5. Now we claim that C(f) = M , in fact, we need C(f) ⊂ M . If g ∈ C(f) and
π+(g) = 0 then Step 3 and C(f) ∩ A− = ∅ imply g ∈ k = g1k. If π+(g) = k > 0, then
there exists i such that κ(g) = κ(gi) and π+(gi) ≤ k. Hence k = π+(gif

s) for some s ∈ Z+.
Applying Step 3 one more time we get λ ∈ k such that π+(g − λgif

s) < k and the proof is
completed by induction on k.

Step 6. Finally, we claim that C(f) is commutative. Choose g ∈ C(f) such that κ(g) is a
generator of G. Denote by E ⊂ C(f) the commutative subalgebra, generated by f and g. By
Step 3, Step 4 and the induction on the degree of elements, the k[f ]-module C(f)/E is finite-
dimensional, hence for any u ∈ C(f) there is 0 6= P ∈ k[f ] such that Pu ∈ E. Let v ∈ C(f) be
arbitrary and Qv ∈ E for some 0 6= Q ∈ k[f ]. Then PQuv = (Pu)(Qv) = (Qv)(Pu) = PQvu.
Since A is an integral domain, uv = vu and the proof is complete.

In the same way as in [2], Theorem 1 immediately implies the following.

Corollary 3. 1. Any maximal commutative subalgebra of A has the form C(f) for some
non-scalar element f ∈ A.

2. If f, g ∈ A commute then C(f) = C(g).

3. If C is a maximal commutative subalgebra of A and f ∈ A such that p(f) ∈ C for some
p(f) ∈ k[f ] then f ∈ C.

4. The intersection of two distinct maximal commutative subalgebras of A is k.

5. The center of A equals k.
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3 Root of unity case

Assume now that ql = 1, l ∈ N \ {1}, and qi 6= 1, i = 1, . . . , l− 1 or q = 1 and char(k) = l > 0.
Then the center of the algebra A is quite big and can be completely described. Set R 3 F =∏l−1

i=0 σ(H) and W = 〈σ〉. The next Theorem is a generalization of [3, Corollary 6.12].

Theorem 2. The center Z(A) of A equals B = 〈F,X l, Y l〉 = 〈X l, Y l〉 and A is a finitely-
generated Z(A)-module.

Proof. Step 1. B = 〈F,X l, Y l〉 = 〈X l, Y l〉 ⊂ Z(A).
If we put n = l into the formula for n(x) in Step 1 of Theorem 1, we get l(x) = x and

hence σl(f) = f for any f ∈ R. Hence σl = 1. From the definition of A we get fX l = X lf and
fY l = Y lf for all f ∈ R. Moreover, X lY = X l−1(XY ) = X l−1σ(t) = tX l−1 = (Y X)X l−1 =
Y X l. Analogously, Y lX = XY l. As σl = 1, we have σ(F ) = F and hence FX = XF and
FY = Y F . Thus the subalgebra of A, generated by F , X l and Y l is contained in Z(A). The
equality 〈F,X l, Y l〉 = 〈X l, Y l〉 follows from F = X lY l = Y lX l.

Step 2. R ∩ Z(A) = {f ∈ R|σ(f) = f} = k[F ].
The first equality is obvious and hence it is enough to prove that for f ∈ R the equality

σ(f) = f implies f ∈ k[F ]. Let f(H) ∈ k[H] be non-constant and k̂ be the decomposition field
of f . Then f = β

∏k
j=1(H−αj) and it is enough to consider the case f =

∏
w∈W w(H−α). If

q = 1, then σi(H−s) = H+i−s = H−s if and only if l|s and hence the orbit of (H−s) under
the W action contains precisely l elements. If ql = 1 then σi(H−s) = qiH+(qi−1)/(q−1)−s
and again we get that each orbit contains precisely l elements. In particular, deg(f) ≥ l. So,
it is enough to prove the statement for f =

∏l−1
i=0 σi(H − s). But F =

∏l−1
i=0 σi(H) and

deg(f − F ) < l, hence f − F is constant.
Step 3. Z(A) is a graded subalgebra of A, Z(A)i = Z(A) ∩ Ai 6= 0 if and only if l|i and

Z(A)i = Xik[F ]. In particular, Z(A) = B.
If z ∈ Z(A) and z =

∑
i∈Z zi is a graded decomposition of z, from zX = Xz, zY = Y z,

zH = Hz we get ziX = Xzi, ziY = Y zi and ziH = Hzi and hence all zi ∈ Z(A). Therefore
Z(A) is also graded. If l does not divide i, then σi(H) 6= H and we have XiH 6= HX i and
Y iH 6= HY i. Hence Z(A)i = 0. If l|i then for f ∈ R from (Xif)X = X(Xif) it follows that
σ(f) = f and hence f ∈ k[F ] by Step 2.

Step 4. A is a finitely generated B-module.
As a system of 2l2 generators of A over B one cane take, e.g. Y iHj , X iHj , 0 ≤ i, j ≤ l−1.

Theorem is proved.

From Theorem 2 we get the following generalization of [3, Theorem 7.5].

Corollary 4. If f, g ∈ A such that fg = gf then there is P (x, y) ∈ Z(A)(x, y) such that
P (f, g) = 0.

I would like to finish this section with a counterexample to the conjecture on [3, page 126],
where the authors ask if two commuting elements α, β ∈ H(q), whose degrees are relatively
prime with l, will be algebraically dependent over k. Take X and XY l, the elements of degrees
1 and l− 1 respectively, both relatively prime with l. For 0 6= p(x, y) ∈ k[x, y] each summand
of p(X, XY l) is homogeneous in A and p(X, XY l) = 0 should be checked on all homogeneous
components. As A is an integral domain and X is itself homogeneous, we can assume that
degA(p(X, XY l)) = 0. Then p(X, XY l) =

∑
i aiX

ilY il with ai ∈ k. Set fi = XilY il. As t 6∈ k,
deg fi = deg(t)il > 0 and hence deg(fi) 6= deg(fj), i 6= j. From this we get that p(X, XY l) is
non-zero as a sum of polynomials with increasing degrees.
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4 Realization by q-difference operators

Here we assume R to be commutative. Let A = A(R, ti, σi) be a GWA and n be a maximal
ideal of R containing ti for all i ∈ J . Set X = (Xi), Y = (Yi), and for l = (li) ∈ ZJ

+ put
X l =

∏
i X

li
i . Let Rn = R/n and ϕ : R → R/n be the canonical projection. Let In denote the

left ideal in A, generated by n and all Xi. From ti ∈ n it follows that In∩A0 = n and thus for
l ∈ ZJ

+ there holds In ∩A−l = Y ln. Denote by M(n) the left module A/In, which is non-zero
since (A/In)0 6= 0. As In is a ZJ -graded ideal, the module M(n) is also ZJ -graded and is
naturally identified with the polynomial ring Rn[Yi] (with right Rn-coefficients). If Y l ∈ Rn[Yi]
is a monomial, the action of A on Y l is defined by Yj(Y l) = YjY

l, r(Y l) = Y lϕ((
∏

i σ
li
i )(r))

and Xj(Y l) = (1− δlj ,0)
∏

i Y
li−δi,jϕ(σlj

j (tj)).

Theorem 3. Let A = A(R, ti, σi), where R = k[Hi]i∈J and σi are defined as follows: σi(Hj) =
Hj, j 6= i, σi(Hi) = qiHi + 1. Assume that hi − (1 − qi)−1 6∈ n, qi 6= 1, and for all i the
parameter qi is either not a root of unity or possibly equals 1 if char(k) = 0. Then the
annihilator AnnA(M(n)) is zero. In all other cases it is non-zero.

Proof. Clearly, AnnA(M(n)) is a ZJ -graded ideal of A and we need AnnA(M(n)) ∩ Al = 0,
l ∈ Zj , only. Then AnnA(1)∩R = n and hence AnnA(Y l)∩R = (

∏
i σ

−li
i )(n). By Step 1 and

Step 2 of Theorem 1, the condition hi−(1−qi)−1 6∈ n guarantees that the orbit of n under W =
〈σi〉 is infinite and hence ∩w∈W w(n) = 0. This implies, in particular, R ∩ AnnA(M(n)) = 0.
As AnnA(M(n)) is a ZJ -graded ideal and A is an integral domain, this automatically implies
AnnA(M(n)) = 0.

If hi−(1−qi)−1 ∈ n, we have (hi−(1−qi)−1) ∈ n and w((hi−(1−qi)−1)) = (hi−(1−qi)−1)
for any w ∈ W . Hence (hi − (1− qi)−1) ⊂ AnnA(M(n)). If ql

i = 1 or qi = 1 and char(k) = l,
then X l

i ∈ AnnA(M(n)) by Theorem 2. This completes the proof.

Now, if we write H(q, J) as the GWA from Section 1 and set n = (hi), the formula
Xj(Y l) = (1 − δlj ,0)

∏
i Y

li−δi,jϕ(σlj
j (tj)) will read Xj(Y l) = (1 − δlj ,0)(

∑lj−1
s=0 qs

j )
∏

i Y
li−δi,j ,

which is precisely the qj-difference operator on k[Y ] and we get the following refinement of [3,
Theorem 8.1, Theorem 8.3]:

Corollary 5. Let n = (hi). Then AnnA(M(n)) = 0 if and only if all qi are either non-roots
of unity or some qi = 1 and char(k) = 0. In particular, in these cases H(q, J) can be realized
via q-difference operators acting on k[Y ].
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