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ABSTRACT. The multisegment (or Zelevinsky) duality ¢ plays an important role
in the representation theory of the groups GL, over a p-adic field, but also for
the quantum groups of type A. Recently, Knight and Zelevinsky have exhibited a
formula which allows a direct calculation of ¢; their proof uses the representation
theory of a linearly ordered quiver of type A. Some of their considerations may be
interpreted homologically. It is well-known that the multisegment duality can easily
be defined in terms of the corresponding preprojective algebra. The use of certain
modules over the preprojective algebra seems to illuminate the considerations of
Knight and Zelevinsky. We are going to outline all the essential steps, only few
details are left to the reader.

Throughout the paper we fix some natural number n. We denote by S the set of pairs
(i,4) where 1 <i < j < n; or also the set of corresponding segments [i, j| = {i,i+1,...,7}
of natural numbers. Note that we may identify S with the set of positive roots in the
root system of type A,; the one-element segment [i,4] corresponds to the simple root
a; and [i, ] to a; + a;41 + -+ - + a;. The elements d of N§ may be considered as formal
linear combinations of segments with non-negative integral coefficients, they are called
multisegments, such an element is of the form d = (d;;)(; j); here all the d;; belong to Ng
and the index pairs (4, j) to S.

In addition, we also fix some algebraically closed field K. All the vector spaces will
be defined over K. In particular, when dealing with a quiver A, the representations we
consider are given by K-spaces and K-linear maps; note that such representations are
just the modules over the corresponding path algebra KA. The quivers we deal with will
have no multiple arrows, thus we may refer to a path (ag — a1 — -+ — a;) by specifying
the vertices but without labeling the arrows.

1. The linearly oriented quiver of type A,.

We denote by A = A(n) the path algebra of the following quiver: the vertices are
the natural numbers 1,2,...,n, and there are the arrows a;: 7 — i+1 for 1 < i < n.
Gabriel’s theorem asserts that the indecomposable representations correspond bijectively
to elements of S. In fact, let us denote by S(¢) the simple representation corresponding
to the vertex i. The segment [i,j] corresponds to the indecomposable representation
M (i, 7) with composition factors S(i), S(i+1),...,S(j) (it is unique up to isomorphism).
In this way one obtains all the isomorphism classes of indecomposable representations.
According to the Krull-Remak-Schmidt theorem, any A-module M is isomorphic to one
of the form M(d) = €P,; di;M(i,j). The map d — M(d) yields a bijection between N§
and the set of isomorphism classes of finitely generated A-modules.

Given any A-module M and i < j we denote by r;;(M) the rank of the linear
map corresponding to the path i — i+1 — .-+ — j (or, equivalently, of the K-linear
map M — M given by multiplication by aj_1...a;410;). Clearly, the value 7;;(M)
only depends on the isomorphism class of M, and r;;(M) is equal to the Jordan-Holder
multiplicity of S(i) in M. Note that these functions r;; form a complete set of invariants:
given all the values r;;(M), we recover the isomorphism class d of M, namely

dij = rij(M) —ri—1 (M) —7i j11 (M) + 131 j41(M).

We denote by E the Ext-quiver of A, its vertices are the isomorphism classes of the
indecomposable representations (or the elements of S), and there is an arrow (i,j) —
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(k,1) provided Ext*(M (i, ), M(k,1)) # 0 (note that in our case, these Ext-groups are
1-dimensional). Tt is well-known that Ext' (M (i, ), M (k,1)) # 0 if and only if i+1 < k <
j+ 1 <. For the proof, denote by 7 the Auslander-Reiten translation, thus 7M (3, j)
is equal to M(i + 1,7+ 1) for j < n and to the zero representation otherwise. Now,
Ext! (M (i,), M (k,1)) has the same dimension as Hom(M (k,1), 7M(i,j)), and the fact
that Hom(M (k,1), M(i+ 1,7 + 1)) # 0 is described by the mentioned inequalities.

Let (i,7) be an element of E. We write E(i,j) for the full subquiver of E given by
the vertices (k,l) such that [k,{] N [i,j] # 0. Note that E(i,j) is a convex subquiver of
E.

Here an example, for n = 4. We arrange the vertices of the Ext-quiver F (shown in
the middle) in the same way as we arrange the Auslander-Reiten quiver (shown to the
left); we also exhibit the quiver F(2,3) (to the right):

14 14
7N\
24 13
NN
34 23 23‘—12
o NN / \
(A)

2. The preprojective algebra of type A,.

The preprojective algebra A of type A,, can be described by a quiver and relations
as follows: as vertices take the natural numbers 1,2,... n, take arrows «;: 7 — i+1
and o :i+1 — 4, for 1 < ¢ < n, and the relations ajo; = 0, ofa; = o—10]_; for
1 <i<mnand ap_1a),_; =0 (the general definition involves signs for the relations, but
since we deal with a tree type, these signs do not matter). Note that A contains A as a
subalgebra. Also, we may consider the subalgebra of A generated by the paths of length
zero and the arrows o, we denote it by A°. Observe that A° is again the path algebra
of a linearly oriented A,-quiver. The algebras A and A° have the same simple modules
and as above we denote by M°(i,j) an indecomposable A°-modules with composition
factors S(i),S(i + 1),...,S(j); and for d € N§, let M°(d) = @ d;; M°(4,j). Thus again
we identify the isomorphism classes of the indecomposable A°-modules with S, those of
arbitrary A°-modules with N§.

Given any A-module N, we denote by 7(N) the space N considered as a A-module,
similarly, the space N considered as a A°-module will be denoted by 7°(N).

As for A-modules, we also consider ranks of linear maps for A-modules and for A°-
modules: Given any A-module N and i < j we denote by r;;(N) the rank of the linear
map corresponding to the path i — i+1 — -+ — j and by 77;(IV) that corresponding
to the path ¢ « i+1 « --- « j; for a A°-module M’ we similarly define rg;(M'). Of
course, for any A-module N, we have

r(m(N) = (), and  15;(x°(N)) = 5 (N).

The A-modules M(i,j) where (i,7) € S, can be considered as A-modules. Let us

write down the groups ExtX(M( J), M(k,1)):

K ifk+1<i<l4+1<j,
ExtL(M(i, ), M(k, 1) ={ K ifi+1<k<j+1<lI,

0 otherwise.

In the first case, the corresponding exact sequences split when we apply m, in the sec-
ond, they split when we apply 7°. Of course, in the second case, the extension groups
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Extlx(—, —) are just the extension groups Ext} (—, —) as discussed in the previous section,
in particular the non-vanishing of these groups is described by the Ext-quiver E. Let us
denote by Extgx’ A)(N , N") the set of extensions which split when we apply 7; of course,
these are the extension groups with respect to a relative homological structure on the
category of all A-modules. Since

K ifk+1<i<i+1<j,
Ext  (M(i,5), M(k,1)) = - B
x (A,A)( (i,7), M (k, 1)) { 0  otherwise,

we see that the quiver E* opposite to E describes the non-vanishing of EXt%K, A This
will be the Ext-quiver we are interested in, and we have to deal with the paths in this
quiver. Instead of considering paths in E* (as we should) we can equally well work with
paths in FE, we only have to remember that the individual steps in such a path mention

first the submodule and then the factor module of the corresponding extension.

3. The multisegment duality.

The following observation by Zelevinsky [Z,KZ] (and later also by Lusztig [L]) can
be used as a definition of the multisegment duality ¢. For every A-module, let Z(M)
be the set of A-modules N with w(IN) = M; note that this is a K-variety. Let d be a
multisegment. The K -variety Z(M(d)) contains an open and dense subset O such that
for all N € O, the A°-modules w°(N) are isomorphic, say isomorphic to M°({d).

Here is the recipe proposed by Knight and Zelevinsky [KZ] in order to calculate {d.
Determine the maximal value of r§;(N) for all A-modules N with w(N) = M(d). This
maximal value is just r;(M°(¢d)). But remember: A° is the path algebra of a directly
oriented A,-quiver, thus the functions rf; form a complete set of invariants and allow to
recover (d easily.

4. Laminae and paths in F.

Denote by P(i) the indecomposable projective A-modules with top S(i). Note that
m(P(i)) = @i, M(t,n—i+t)and 7°(P(i)) = @7 "' M°(t,i—1+t). Of importance
is the following fact: For every i, the submodules of P(i) form a distributive lattice,
thus there are only finitely many submodules. Proof: Every semisimple subquotient is
multiplicity-free.

An indecomposable subquotient of any P(7) is said to be a lamina, direct sums of
laminae are said to be laminated modules. For n < 3, all modules are laminated, for
n > 4 not; an example of a module which is not laminated will be presented below.

Here is a typical example of a lamina L. We take r = 14 and exhibit a subquotient
of P(6). The upper row labels the composition factors (but only the last digit is shown:
it starts on the left with 1,2,... and ends with ..., 13,14). The dotted frame shows the
shape of P(6). The bullets indicate base vectors, the lines the multiplication by «; (in
south-east direction) and « (in south-west direction).

12345678901234
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We have
m(L) = M(2,7) @& M(4,9) & M(5,10) & M(8,13) & M(9,14).

Theorem 1. For every pa_th w = (ag,a1,...,ap) in E, there exists up to isomor-
phism a unique indecomposable A-module L(w) with n(L(w)) = @, M(a;). It is a lamina
and every lamina is obtained in this way.

Remark: The paths to be considered are actually those in E*, not in E, but of
course, there is no real difference. Given a lamina L, the decomposition of (L) into
indecomposables clearly gives a path in the relative Ext-quiver E*. It is easy to see that
also all the paths are obtained in this way. In fact, the relative global dimension of the
pair (A, A) is at most 1.

Let us stress that Theorem 1 in conjunction with the definition of a lamina shows well
the benefit of invoking preprojective algebras: The theorem provides a module theoretical
realization of a combinatorial object, namely of paths in the quiver E. The advantage of
working with A stems from the fact that there is no need for a cumbersome construction
of the modules L(w) using iterated extensions of serial modules, it suffices to identify
them with subfactors of indecomposable projective modules, a much easier task.

Theorem 2. Let w be a path in E(i,j) of length p. If p > j — i, then ri;(L(w)) =
p—Jj+i+1, otherwise ri;,(L(w)) = 0.

More generally, we may consider an arbitrary path w in E. Let us denote by w;; its
part inside E(4, ), this is again a path since E(i, j) is convex in E. Then 79;(L(w)) =
rij(L(wig)).

Example: Let r = 14, let ¢« = 6,5 = 8 and consider again the lamina L exhibited

above:
12345678901234

Here, w is the path
w=((2,7) = (4,9) — (5,10) — (8,13) — (9,14)),
and
wi; = ((2,7) — (4,9) — (5,10) — (8,13)),
The path w;; has length 3, and we have j —i =8 —6 = 2. Thus r;(L(w)) = l(w;;) —j +
1+ 1=2.
5. Laminated A-modules.
Let A be a directed quiver without multiple arrows. Define the p-capacity x,(A) of
A as the maximum of
S (iw) —p+1)
wew
where W is a set of vertex-disjoint paths w of length I(w) > p.

Given a quiver A = (Ag, A1) and a function d: Ay — Ny, we denote by A? the quiver
obtained from A by replacing any vertex x of A by vertices (x,7) with 1 < i < d(x),
and with arrows («,,7): (z,i) — (y,Jj) for any arrow a: ¢ — y and 1 <1 < d(z), 1 <
J < d(y).
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Theorem 3. Let d be a multisegment and let © < j. Then there exists a laminated
module N with 7(N) = M(d) such that r{;(N) = r;_i(E(i, j)?).

Proof: Let p = j — i. By definition of ¢ = r;_;(E(i,j)?), we get a set W of vertex-
disjoint paths w of length at least p such that ¢ = .y, (l(w) —p+1). But any path w
just yields a lamina L(w) and r3;(L(w)) = l[(w) —p+ 1. As module N we take the direct
sum of these laminae.

6. The p-capacity of a directed quiver.

Given a quiver A, the quiver A[p] is constructed as follows: take p+ 1 copies of Ay,
say vertices (x,7) with z a vertex of A and 0 < ¢ < p, and draw an arrow (z,i—1) — (y, )
provided there is an arrow & — y. This is a p-network (see [FF] or also [KZ]), the length
of a path in a p-network is at most p, and the maximal number of vertex-disjoint paths is
called its capacity and denoted by x(A[p]). Of course, this capacity is just the p-capacity
of Alp]

Proposition. x,(A) = &(A[p]).

Proof: The inequality x,(A) < k(Alp]) is obvious: Let us assume that there is given
a set W of vertex disjoint paths of length at least p. Any path xg — 21 — -+ — 2,4+ in
A with t > 0 yields ¢ + 1 disjoint paths in Alp], namely the paths (z;,0) — (z;41,1) —
-+ = (xpyi,p) for 0 <@ <t

The reverse inequality follows from Poljak [P], see [KZ], Theorem 2.3.

7. The Knight-Zelevinsky formula.

The essential observation of Knight-Zelevinsky [KZ] is the following: Let d be a
multisegment, let © < j. Then

(%) 15 (M°(¢d)) = rj—i(E(i, j)7).

(The paper uses as right side x(F(i,7)?[j—i]), but as we have noted in the last section,
this is the same.) This formula reduces the calculation of the rank function ¢; to a purely
combinatorial problem, and Knight and Zelevinsky use for the right side the “maximal
flow = minimal cut” theorem for networks in order to arrive at a formula for r7; which
concerns a minimum.

On the basis of (%), we may reformulate Theorem 3 as follows:

Theorem 4. Let d be a multisegment and let © < j. Then there exists a laminated
module N with m(N) = M(d) such that r{;(N) = r{;(M°(¢d)).

o

This result shows that the optimal value for r; can be achieved using laminated
modules. However, let us stress the following: If we deal only with laminated modules, it
can be impossible that all the r; become optimal at the same time!

Example: Consider the case n = 4 and let d be given by dio = doy = d33 = dyg =1
and d;; = 0 otherwise. We exhibit an indecomposable A-module N with 7(N) = M(d)
which is not laminated (we write down the dimension vector of a module N for the
universal covering of A which is sent under the covering functor to N; due to the fact
that the square has to be commutative and that there is a zero relation on the right
arms, N is unique up to isomorphism and shift under the Galois group):
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and we see that 795 (N) = 1 =1r3,(N).

Consider any laminated A-module N’ with 7(N’) = M(d) and r3,(N’) = 1. In
order to have r3,(N') = 1, the module N’ must have a direct summand N which is a
subquotient of P(3) or P(4). Since m(N") must be a direct summand of 7(NN), we see
the only possibility is m(N") = M(1,2) ® S(3) @ S(4). But then r{5(N") = 0. Also, if
N' =N"@& N", then n(N"") = M(2,4) and also r9,(N"") = 0, thus r{5(N) = 0.

On the other hand, the results presented here may also be used in order to get a
concise proof of (x). Indeed, as we have seen, there exists a laminated module N with
m(NN) = M(d) such that r7;(N) = rkj—i(E(i,§)%). Since r3;(M(Cd)) > r;(N), we obtain
the inequality

re (M°(Cd)) = ry—s(E(i, 5)%).

The converse inequality follows directly from part of the work of Poljak [P], see [KZ],
and actually this is the easy part of [P].
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