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QUANTISED sl2-DIFFERENTIAL ALGEBRAS

Andrey Krutov and Pavle Pandžić

Abstract. We propose a definition of a quantised sl2-differential algebra
and show that the quantised exterior algebra (defined by Berenstein and
Zwicknagl) and the quantised Clifford algebra (defined by the authors) of sl2
are natural examples of such algebras.

1. Introduction

Let g be a Lie algebra. H. Cartan introduced the notion of g-differential algebras
as a generalisation of algebras of differential forms on manifolds with g-action, [8, 9].
Later g-differential algebras appeared in the study of equivariant cohomology [2, 14],
in Chern–Weil theory [3, 24], and in relation to (algebraic) Dirac operators and
Vogan’s conjecture [2, 16, 17].

We develop a new approach to quantisation of the notion of g-differential algebras
which assumes that the quantum exterior algebra of g has classical dimension. This
is different from previous attempts to generalise the notion of g-differential algebras
to the setting of quantum groups and noncommutative geometry; for example,
see [4, 5, 25]. Some of these works start with a bicovariant calculus on a quantum
group, which usually does not have classical dimension. This is in particular the
case for Uq(sl2), see [26], see also [18] for the general case. Other works assume the
setting of triangular Hopf algebras which is not applicable to the setting of Uq(sl2)
since it is only quasitriangular, see [12].

In this paper we propose a definition of quantised sl2-differential algebras based
on the 3-dimensional quantised adjoint Uq(sl2)-module and give first examples,
certain quantised Clifford and exterior algebras. The advantage of our approach
is that we start with the quantum exterior algebra defined by Berenstein and
Zwicknagl [6] of the classical dimension instead of a bicovariant calculus. We use
the coboundary structure on the category of Uq(sl2)-modules, see [11]. (As it was
shown in [15] such coboundary structure is related to the category of crystals.)

The paper is organised as follows. In §2 we recall necessary facts about the
Drinfeld–Jimbo quantum group Uq(sl2), the quantised adjoint representation and
its quantum exterior algebra. In §3 we recall the definition of the q-deformed
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Clifford algebra of sl2 introduced in [21] and define Lie derivatives, contraction
operators and the differential on it. We show that the defined operations enjoy
many features of their classical counterparts, in particular, Cartan’s magic formula
holds for them. In §4 we propose a definition of a quantised sl2-differential algebra
and show that the quantised exterior and Clifford algebras of sl2 are examples of
such algebras.

2. Preliminaries

2.1. g-differential algebras. Let g be a complex Lie algebra. Let
∧

[ξ] be the
Grassmann algebra with one generator ξ, and let d := ∂ξ ∈ Der

∧
[ξ] be the

derivation with respect to ξ. Set ĝ := g⊗
∧

[ξ] A Cd. Then ĝ = ĝ−1 ⊕ ĝ0 ⊕ ĝ1 is a
Z-graded Lie superalgebra where

ĝ−1 = g⊗ ξ , ĝ0 = g⊗ 1 , ĝ1 = Cd .
For x ∈ g, let Lx := x⊗ 1 ∈ ĝ0, ιx := x⊗ ξ ∈ ĝ−1. The non-zero bracket relations
in ĝ are defined as

[Lx, ιy] = ι[x,y] , [Lx, Ly] = L[x,y] , [ιx,d] = Lx for all x, y ∈ g.(1)
2.1.1. Digression: semisimple Lie superalgebras. Assume that g is simple.
Let

∧
(n) denote the Grassmann algebra with n generators ξ1, . . . , ξn. Then

∧
(n)

has a natural Z-grading given by deg ξi = 1. Let vect(0|n) := Der
∧

(n). Clearly,
vect(0|n) is a Z-graded Lie superalgebra where deg ∂ξi = −1. Let vect(0|n)−1
denotes the homogeneous component of degree −1. As it was shown in [10], any
semisimple Lie superalgebra is the direct sum of the following summands

s̃⊗
∧

(n) A v,

where s is a simple Lie superalgebra, s ⊆ s̃ ⊆ Der s, and v ⊂ vect(0|n) is such that
the projection v → vect(0|n)−1 is onto. In our case (for ĝ) we have that n = 1,
v = SpanC(∂ξ), s̃ = s = g.
2.2. g-differential spaces and algebras. A g-differential space is a superspace V ,
together with a ĝ-module structure ρ : ĝ → End(V ). A g-differential algebra is
a superalgebra A, equipped with a structure of g-differential space such that
ρ(x) ∈ DerA for all x ∈ ĝ. Observe that if A is a g-differential algebra then the
contraction operators ι define a g-equivariant representation of U(ĝ−1) ∼=

∧
g on A,

where U(ĝ−1) is the universal enveloping algebra of the Lie superalgebra ĝ−1. The
idea of a g-differential algebra is due to H. Cartan [8, 9]. We follow the terminology
and notation from [24].

2.2.1. Example. Take A =
∧

g∗, equipped with the coadjoint action of g denoted
by Lx for x ∈ g. For x ∈ g and f ∈ g∗ =

∧1
g∗ define the contraction operator by

ιxf = f(x). The odd map ιx is extended to
∧

g∗ by the super Leibniz rule. Let
ea be a basis of g and fa be the corresponding dual basis in g∗. The Lie algebra
differential on

∧
g∗ may be written as

d∧ = 1
2
∑
a

fa ◦ Lea ,



QUANTISED sl2-DIFFERENTIAL ALGEBRAS 353

with fa acting by the exterior multiplication. Then
∧

g∗ is a g-differential algebra.
One can show that H(

∧
g∗,d∧) ∼= (

∧
g∗)g.

2.2.2. Example. Suppose that g has a nondegenerate invariant symmetric bilinear
form B (for example, see review in [7]), used to identify g ∼= g∗. Let Cl(g) be the
Clifford algebra of g with respect to B defined by

Cl(g) = T (g)/ 〈x⊗ y + y ⊗ x− 2B(x, y) | x, y ∈ g〉 .
Let zi be an orthonormal basis of g, then the Chevalley map (or quantisation)
qCl :

∧
(g)→ Cl(g) is defined by

zi1 ∧ . . . ∧ zik 7→ zi1 . . . zik (and 1 7→ 1) ,
where 1 ≤ i1 < · · · < ik ≤ dim g. Set

γ = − 1
12

dim g∑
a,b,c=1

B([za, zb], zc)za ∧ zb ∧ zc ∈ (
∧3

g)g .

Define the map α : g→ Cl(g) by

α(x) = −1
4

dim g∑
a,b=1

B(x, [za, zb])zazb for x ∈ g .

The map α extends to an algebra homomorphism α : U(g)→ Cl(g).
The Clifford algebra Cl(g) is a filtered g-differential algebra with differential,

Lie derivatives and contractions given as

dCl = [qCl(γ),−]Cl , Lx = [α(x),−]Cl , ιx = 1
2[x,−]Cl, for x ∈ g ,

where [−,−]Cl denotes the supercommutator in Cl(g). The quantisation map qCl :∧
g→ Cl(g) intertwines the Lie derivatives and contractions, but does not intertwine

the differential. The cohomology of (Cl(g),dCl) is trivial in all filtration degrees
(except if g is abelian, in which case dCl = 0); for example, see [24, §7.1].

2.3. Uq(sl2). Fix a nonzero q ∈ C which is not a root of unity. The quantised
enveloping algebra Uq(sl2) is the associative algebra with unit generated by the
elements E, F , K, and K−1 subject to the relations

KE = q2EK, KF = q−2FK, KK−1 = K−1K = 1 , EF − FE = K −K−1

q − q−1 .

A Hopf algebra structure on Uq(sl2) is given by
∆E = E ⊗K + 1⊗ E , ∆F = F ⊗ 1 +K−1 ⊗ F , ∆K = K ⊗K ,

∆K−1 = K−1 ⊗K−1 , S(E) = −EK−1 , S(F ) = −KF , S(K−1) = K ,

S(K) = K−1 , ε(E) = ε(F ) = 0 , ε(K) = ε(K−1) = 1 ,
where ∆ is the coproduct, S is the antipode, and ε is the counit. In what follows
we use Sweedler notation for the coproduct ∆x =

∑
x(1) ⊗ x(2).

Let h be a Cartan subalgebra of sl2, P ⊂ h∗ be the weight lattice of sl2, and
P+ be the sublattice of dominant weights generated by the fundamental weight π.
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The category of finite dimensional type 1 modules over Uq(sl2) is equivalent to the
category of finite dimensional sl2 modules; for example, see [13, §5.8] or [19, §3].
For λ ∈ P+ we denote the corresponding type 1 finite dimensional Uq(sl2)-module
with highest weight λ by Vλ.

Let slq(2) denote the vector subspace of Uq(sl2) spanned by the elements

X = E , Z = q−2EF − FE , Y = KF .

The space slq(2) is closed with respect to the left adjoint action of Uq(sl2) on itself
defined by

adx y =
∑

x(1)yS(x(2)) for x, y ∈ Uq(sl2).
It is easy to see that as a Uq(sl2)-module, slq(2) is isomorphic to the quantised
adjoint representation V2π of sl2. In what follows we will use notation slq(2) to
emphasise that elements X, Z, and Y belong to slq(2) ⊂ Uq(sl2). In the case when
V2π is treated as an abstract Uq(sl2)-module and in the case when we will construct
quantum exterior and Clifford algebras, we will use the following notation for basis
elements in V2π:

v2 = X , v0 = Z , v−2 = Y .

2.4. Normalised braiding. The following construction is due to Drinfeld [11].
Let C be a braided monoidal category linear over C[[~]] and assume that the
braiding satisfies σW,V ◦ σV,W = idV⊗W +O(~). Then the map

σ̃V,W = σV,W ◦ (σW,V ◦ σV,W )−1/2 ,

is called a normalised braiding and defines a coboundary structure on C in the
sense of [11]. For details see [13, Exercise 8.3.25 on p. 202]. In particular, we have
that σ̃2 = id.

The category of type one finite-dimensional Uq(sl2)-module is a braided monoidal
category where the braiding σ is given by the universal R-matrix; see [13, §8.3] for
details. The R-matrix braiding σ satisfies the above condition. In what follows we
denote by σ̃ the corresponding normalised braiding.
2.5. Quantum exterior algebras. Following [6] define the quantum exterior
algebra

∧
qV2π of V2π as∧

qV2π = T (V2π)/〈v ⊗ w + σ̃(v ⊗ w) | v, w ∈ V2π〉

The algebra
∧
qV2π is generated by v2, v0, v−2 subject to the following relations

v2 ∧ v2 = 0 , v−2 ∧ v−2 = 0 ,
v0 ∧ v2 = − q−2v2 ∧ v0 , v−2 ∧ v0 = − q−2v0 ∧ v−2 ,

v0 ∧ v0 = (1− q4)
q3 v2 ∧ v−2 , v−2 ∧ v2 = − v2 ∧ v−2 .

We note that
∧
qV2π is a Z-graded super algebra in the braided monoidal category of

type 1 finite-dimensional Uq(sl2)-modules. The Z2-grading corresponding to a super
algebra structure is given by setting p(v2) = p(v0) = p(v−2) = 1̄, where p(v) ∈ Z2 =
{0̄, 1̄} denotes the parity of the element v. The algebra

∧
qV2π is (super)commutative
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with respect to normalised braiding, i.e. v ∧ w = (−1)p(v)p(w) ∧ ◦ σ̃(v ⊗ w) for all
parity homogeneous v, w ∈

∧
qV2π.

3. Motivating example: Clq(sl2)

Fix a non-zero constant c ∈ C[q, q−1]. First recall from [21, §2.7] that V2π admits
a nondegenerate Uq(sl2)-invariant bilinear form given by

〈v2, v−2〉 = c , 〈v0, v0〉 = q−3(1 + q2)c , 〈v−2, v2〉 = cq−2 .

Note that the form 〈·, ·〉 is symmetric with respect to the normalised braiding σ̃,
i.e., 〈·, ·〉 = 〈·, ·〉 ◦ σ̃. The q-deformed Clifford algebra of sl2 was defined in [21, §3]
as filtered deformation of

∧
qV2π by the bilinear form 〈·, ·〉:

Clq(sl2) = T (V2π)/〈v ⊗ w + σ̃(v ⊗ w)− 2〈v, w〉 | v, w ∈ V2π〉 ,

As it was shown in [21, Lemma 3.3], the algebra Clq(sl2) is generated by v2, v0,
v−2 satisfying the following relations

v2v2 = 0 , v−2v−2 = 0 ,
v0v2 = − q−2v2v0 , v−2v0 = − q−2v0v−2 ,

v0v0 = 1− q4

q3 v2v−2 + q2 + 1
q

c1 , v−2v2 = − v2v−2 + q2 + 1
q2 c1 .

It is easy to see that Clq(sl2) is a filtered super algebra in the (braided) monoidal
category of Uq(sl2)-modules. We note that Clq(sl2) is a filtered Uq(sl2)-module
where the elements of Uq(sl2) act by operators of degree 0.

The quantum exterior algebra
∧
qV2π and the q-deformed Clifford algebra Clq(sl2)

can be considered as results of the deformation quantisation of the classical exterior
algebra

∧
sl2. The corresponding Poisson structures on

∧
sl2 are studied in [1].

3.1. σ̃-commutators. For x, y ∈ Clq(sl2) homogeneous with respect to parity set

[x, y]σ̃ :=
(
mClq − (−1)p(x)p(y)mClq ◦ σ̃

)
(x⊗ y) ,

where mClq denotes the multiplication map in Clq(sl2). The map [−,−]σ̃ is extended
to Clq(sl2) by linearity. By construction [−,−]σ̃ is Uq(sl2)-equivariant since it is
composed from equivariant maps.

3.1.1. Lemma. The bracket [−,−]σ̃ is σ̃-skew-symmetric:

[ω, µ]σ̃ = −(−1)p(ω)p(µ)[−,−]σ̃ ◦ σ̃(ω ⊗ µ) for ω, µ ∈ Clq(sl2),

and has the filtration degree −1.

Proof. The σ̃-skew-symmetricity follows form the definition of [−,−]σ̃. Since
Clq(sl2) is a filtered deformation of the σ̃-supercommutative algebra

∧
qV2π, it

follows from the definition that the bracket [−,−]σ̃ has the filtration degree −1. �
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3.2. The α and β maps and Lie derivatives. The quantum moment map (in
the sense of [23]) is the algebra map αq : Uq(sl2)→ Clq(sl2) defined in [21, §3.7]. It
is given on generators by

αq(E) = − q

(1 + q2)cv2v0 , αq(F ) = − q2

(1 + q2)cv0v−2 ,

αq(K) = q3 − q
(1 + q2)cv2v−2 + q−1 , αq(K−1) = − q3 − q

(1 + q2)cv2v−2 + q .

Since αq is an algebra map it follows that

αq(Z) = 1
c
v2v−2 − 1 , αq(Y ) = − q

(1 + q2)cv0v−2 .

As it was shown in [21, Lemma 3.7.1] the inner Uq(sl2)-action defined by αq
coincides with the natural one:

x . ω =
∑

αq(x(1))ωαq(S(x(2))) for x ∈ Uq(sl2), ω ∈ Clq(sl2),

where x . ω denotes the Uq(sl2)-action on Clq(sl2).
Following the classical situation we define Lie derivatives on Clq(sl2) with respect

to elements of Uq(sl2) by

Lxω := x . ω for x ∈ Uq(sl2), ω ∈ Clq(sl2).

Classically, the map α defined the (adjoint) action of g by taking the (su-
per)commutator; see Example 2.2.2. This is no longer true in the quantum case for
σ̃-commutators. Define a linear map βq : slq(2)→ Clq(sl2) by

βq(X) = 1 + q2

q
αq(X) , βq(Y ) = 1 + q2

q
αq(Y ) , βq(Z) = 1 + q2

q
αq(Z) .

The definition of βq is motivated by the following lemma.

3.2.1. Proposition. The βq-map defines the quantum Hamiltonian with respect
to the σ̃-commutator for the action of elements of slq(2) ⊂ Uq(sl2) on Clq(sl2).
Namely, we have that

Lxω = [βq(x), ω]σ̃ for x ∈ slq(2), ω ∈ Clq(sl2).

Proof. For X ∈ slq(2) and v2 ∈ Clq(sl2), we have that

[βq(X), v2]σ̃ = − 1
2cv2v0v2 + 1

2cv2v2v0 = 1
2q2c

v2v2v0 = 0 = X . v2 .

The computations for other elements of slq(2) and Clq(sl2) are analogous. �

3.2.2. Remark. One can check that βq defines a morphism of “quantum brackets”
in the following sense: [βq(x), βq(y)]σ̃ = βq(adx y) for all x, y ∈ slq(2). Moreover, it
follows from Lemma 3.1.1 that ad ◦ σ̃ = − ad on slq(2).
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3.3. Differential. Recall from [21, §3.4] that the element

γq = − 1
2c2 (cv0 + v2v0v−2) ∈ Cl(3)

q (sl2)

squares to a scalar. Therefore, we can define a differential on Clq(sl2) by

dClqωq = [γq, ω]σ̃ = γqω − (−1)p(ω)ωγq , ω ∈ Clq(sl2) .

3.3.1. Proposition. We have that
(1) dClqx = 2βq(x) for x ∈ slq(2);
(2) the differential dClq is Uq(sl2)-equivariant.

Proof. (1) We have that

dClqv2 = − 1
2c2 (v2(cv0 + v2v0v−2) + (cv0 + v2v0v−2)v2)

= − 1
2c2 (cv2v0 − q−2cv2v0 − v2v0v2v−2 + q2 + 1

q2 cv2v0)

= − 1
2c2

cq2 − c+ q2c+ c

q2 v2v2 = −1
c
v2v0 = 2βq(X) ,

dClqv0 = − 1
2c2 (v0(cv0 + v2v0v−2) + (cv0 + v2v0v−2)v0)

= − 1
2c2

(
2c(1− q4)

q3 v2v−2 + 2c2(q2 + 1)
q

− 2q−2v2v0v0v−2

)
= − 1

2c2

(
2c(1− q4)

q3 v2v−2 + 2c2(q2 + 1)
q

− 2c(q2 + 1)
q3 v2v−2

)
= q2 + q

2cq (v2v−2 − c) = 2βq(Z) ,

dClqv0 = − 1
2c2 (v−2(cv0 + v2v0v−2) + (cv0 + v2v0v−2)v−2)

= − 1
2c2 (−q−2cv0v−2 + q−2v2v−2v−2v0 + q2 + 1

q2 cv0v−2 + cv0v−2)

= − 1
c
v0v−2 = 2βq(Y ) .

(2) The equivariance of dClq follows from the equivariance of the bracket [−,−]σ̃.
�

3.3.2. Remark. We note that the differential is dual to the quantised adjoint
action of slq(2) on itself (a version of “quantum Lie bracket”) in the following sense:
ιxιydClqz = 〈adx y, z〉 for x, y, z ∈ slq(2).

3.4. Contractions. Following the classical case, see Example 2.2.2, define

ιxω = 1
2[x, ω]σ̃ , x ∈ V2π, ω ∈ Clq(sl2) .
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This definition is motivated by the fact that for linear v ∈ V2π ⊂ Cl(1)
q (sl2) we have

that
ιxv = 1

2[x, v]σ̃ = 1
2(xv +mClq ◦ σ̃(x⊗ v)) = 1

2(2〈x, v〉) = 〈x, v〉 ,

where mClq is the multiplication map in Clq(sl2). Furthermore, ιx has the filtration
degree −1.

3.4.1. Proposition. For x, y ∈ V2π let xi, yi ∈ V2π be defined by σ̃(x ⊗ y) =∑
i yi ⊗ xi, then for all ω ∈ Clq(sl2) the contraction operators satisfy

ιxιyω +
∑
i

ιyiιxiω = 0 .

Hence the map ι : V2π → End(Clq(sl2)) extends to a Uq(sl2)-equivariant morphism
of superalgebras ι :

∧
qV2π → End(Clq(sl2)).

Proof. For v2, v0 ∈ V2π =
∧1
qV2π we have that

v2 ⊗ v0 + σ̃(v2 ⊗ v0) = 2
1 + q4

(
q2v0 ⊗ v2 + v2 ⊗ v0

)
.

For v2v0v−2 ∈ Clq(sl2) we have that
ιv2ιv0(v2v0v−2) = ιv2

(
(q2 − 1)(q2 + 1)q−3c2 − (1 + q2)q−1v2v−2

)
=(1 + q2)q−1c2v2 ,

and

ιv0ιv2(v2v0v−2) = ιv0(cv2v0) = −(1 + q2)q−3c2v2 = −q−2ιv2ιv0(v2v0v−2) .

The computations for other elements of
∧
qV2π and Clq(sl2) are analogous. The

Uq(sl2)-equivariance follows from the equivariance of the bracket [−,−]σ̃. �

3.4.2. Remark. It is subject of further research to describe the derivation property
for the action of

∧
qV2π on Clq(sl2). We show below that several obvious attempts

to ensure this property do not work.
We consider the following possible approach: let us assume that for x ∈ slq(2)

and ω, µ ∈ Clq(sl2),

ιx(ωµ) = ιx(ω)µ+ (−1)p(ω)
∑
i

ωiιxi(µ) ,

where ωi and xi are defined by the following options
(1) σ(x⊗ ω) =

∑
ωi ⊗ xi,

(2) σ−1(x⊗ ω) =
∑
ωi ⊗ xi,

(3) σ̃(x⊗ ω) =
∑
ωi ⊗ xi,

In what follows we show that none of these options works in the example of x = v0,
ω = v2, and µ = v−2. First note that

ιv0(v2v−2) = c(1− q2)
q2 v0 , ιv0(v2)v−2 = 0 .
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Case 1. We have that

σ(v0 ⊗ v2) = v2 ⊗ v0 + q−2(q4 − 1)v0 ⊗ v2.

Therefore,

ιx(ω)µ+ (−1)p(ω)
∑
i

ωiιxi(µ) = −v2ιv0(v−2)− q4 − 1
q2 v0ιv2v−2

= −c(q
4 − 1)
q2 v0 6= ιv0(v2v−2) .

Case 2. We have that
σ−1(v0 ⊗ v2) = v2 ⊗ v0.

Therefore,

ιx(ω)µ+ (−1)p(ω)
∑
i

ωiιxi(µ) = −v2ιv0(v−2) = 0 6= ιv0(v2v−2) .

Case 3. We have that

σ̃(v0 ⊗ v2) = 2q2

1 + q4 v2 ⊗ v0 + q4 − 1
1 + q4 v0 ⊗ v2 .

Therefore,

ιx(ω)µ+ (−1)p(ω)
∑
i

ωiιxi(µ) = − 2q2

1 + q4 v2ιv0(v−2)− q4 − 1
1 + q4 v0ιv2v−2

= − c(q4 − 1)
1 + q4 v0 6= ιv0(v2v−2) .

Perhaps one could use approach similar to [4, §6] or consider a braided Hopf
algebra structure on

∧
qV2π similar, for example, to the one constructed [22].

In view of the difficulties explained in Remark 3.4.2, it is surprising that we
have the following theorem.

3.5. Theorem. For x ∈ slq(2) = V2π the operators Lx, ιx, and dCl on Clq(sl2)
satisfy Cartan’s magic formula

Lx = ιx ◦ dClq + dClq ◦ ιx .

In particular, cochain maps Lx are homotopic to 0, with ιx as homotopy operators.
Therefore, Lx induces the zero action on cohomology.

Proof. Direct computations. For example, for v2 ∈ slq(2) = V2π and v−2 ∈ Clq(sl2)
we have that

Lv2v−2 = v0

and
ιv2dClqv−2 + dClq ιv2v−2 = − 1

c
ιv2v0v−2 + cdClq (1) = v0 .

The computations for other cases are similar. �
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3.6. Remark. First note that the element γq generates a Uq(sl2)-invariant subal-
gebra in Clq(sl2). Moreover, the element γq satisfies γ2

q = 1+q2

4cq . Therefore, by the
universal property of Clifford algebras, we have that

Clq(sl2)Uq(sl2) = Cl(Pq(sl2), Bq),
where Pq(sl2) is the space of primitive invariants spanned by γq equipped with
nondegenerate symmetric bilinear form Bq given by Bq(γq, γq) = 1+q2

4cq . It is now
easy to see that H(Clq(sl2),dClq ) = 0.

Since the element γq is Uq(sl2)-invariant we have that [ω, γq]σ̃ = −(−1)p(ω)[γq, ω]σ̃
for all parity homogeneous ω ∈ Clq(sl2). Therefore, for x ∈ slq(2) we have that

ιxγ = [ 1
2x, γq]σ̃ = [γq, 1

2x]σ̃ = 1
2 dClq (x) = βq(x) ∈ imαq .

Moreover, direct computations show that for x ∈ slq(2) we have
ιxγq · γ∗q = x ,

where γ∗q = 4qc
1+q2 γq is the dual to γq with respect to Bq. This leads to the quantum

analogue of the ρ-decomposition from [20]:
Clq(sl2) = Cl(Pq(sl2), Bq)⊗ imαq .

We emphasise that in this case the braided tensor product of algebras in the
braided monoidal category of type 1 finite-dimensional Uq(sl2)-modules reduces
to the usual tensor product of algebras since the elements of Cl(Pq(sl2), Bq) are
Uq(sl2)-invariant.

4. The general definition

4.1. Definition. A supervector space W is called a quantised sl2-differential space
if it is equipped with

(1) Lie derivatives Lx ∈ End(W ) for x ∈ Uq(sl2) which define a Uq(sl2)-module
structure on W ;

(2) a Uq(sl2)-equivariant action ι :
∧
qV2π ⊗W →W of

∧
qV2π;

(3) a Uq(sl2)-equivariant differential dW : W →W ;
(4) such that they satisfy Cartan’s magic formula

Lx = ιx ◦ dW + dW ◦ ιx for x ∈ slq(2).

A morphism between two quantised sl2-differential spaces is a morphism in the
category of Uq(sl2)-modules which intertwines contractions and differentials (and
also Lie derivatives).

4.2. Definition. An algebra A is called a quantised sl2-differential algebra if it is
a quantised sl2-differential space such that

(1) the Lie derivatives satisfy

Lx(ab) =
∑

(Lx(1)a)(Lx(2)b) for a, b ∈ A, x ∈ Uq(sl2),

in other words, A is an algebra in the monoidal category of Uq(sl2)-modules;
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(2) the differential dA satisfies the (graded) Leibniz rule.
A morphism between two quantised sl2-differential algebras is an algebra morphism
in the category of Uq(sl2)-modules which intertwines contractions and differentials
(and also Lie derivatives).

It is subject of further research to describe the derivation property for the action
of
∧
qV2π on a quantised sl2-differential algebra; see the discussion in Remark 3.4.2.

4.3. Quantum exterior algebra. In this subsection we show that the quantum
exterior algebra of the 3-dimensional quantised adjoint Uq(sl2)-module V2π is
a quantised sl2-differential algebra in the sense of our definition.

First note that the associated graded algebra of Clq(sl2) is the quantum exterior
algebra

∧
qV2π. For x ∈ slq(2), the associated graded maps Lx :

∧
qV2π → V2π to

the Lie derivatives Lx : Clq(sl2) → Clq(sl2) define an action of Uq(sl2) since the
filtration on Clq(sl2) is compatible with Uq(sl2)-action.

The differential dClq has filtered degree one. Therefore, we can define the
associated graded map d∧q :

∧
qV2π →

∧
qV2π which is Uq(sl2)-equivariant by

construction. It is easy to see, c.f. Example 2.2.1, that d∧q is nonzero only for

d∧q (v2) = −1
c
v2 ∧ v0 , d∧q (v0) = 1 + q2

qc
v2 ∧ v−2 , d∧q (v−2) = −1

c
v0 ∧ v−2 .

It is straightforward to check that d2
∧q = 0 and that it satisfies the graded Leibniz

rule, so it defines a differential on
∧
qV2π. Moreover, we have the quantised version

of the formula for differential, see Example 2.2.1,

d∧q = q2

1 + q4

(
1
c
v−2LX + q3

(1 + q2)cv0LZ + q2

q2 v2LY

)
.

Note that the formulas for the differential depend on the parameter c since we
identify

∧
qV
∗

2π with
∧
qV2π via the bilinear form 〈·, ·〉.

Similarly, for x ∈
∧
qV2π we define the contraction operator ιx :

∧
qV2π →∧

V2π as the associated graded map for the contraction operator on Clq(sl2). By
construction, the operators ιx define a Uq(sl2)-equivariant representation of

∧
qV2π.

In particular, we have that

ιv2v2 = 0 , ιv0v2 = 0 , ιv−2v2 = q−2c ,

ιv2v0 = 0 , ιv0v0 = q−3(1 + q2)c , ιv−2v0 = 0 ,
ιv2v−2 = c , ιv0v2 = 0 , ιv−2v−2 = 0 ,

ιv2v2 ∧ v0 = 0 , ιv0v2 ∧ v0 = − 1+q2

q3 cv2 , ιv−2v2 ∧ v0 = cv0 ,

ιv2v2 ∧ v−2 = −cv2 , ιv0v2 ∧ v−2 = 1−q2

q2 cv0 , ιv−2v2 ∧ v−2 = q−2cv−2 ,

ιv2v0 ∧ v−2 = −cv0 , ιv0v0 ∧ v−2 = 1+q2

q cv−2 , ιv−2v0 ∧ v−2 = 0 ,

ιv2v2 ∧ v0 ∧ v−2 = cv2 ∧ v0 , ιv0v2 ∧ v0 ∧ v−2 = − 1+q2

q cv2 ∧ v−2 ,

ιv−2v2 ∧ v0 ∧ v−2 = cv0 ∧ v−2 .
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Cartan’s magic formula for associated graded maps Lx, ιx, and d∧q on
∧
qV2π

follows from the fact that Cartan’s magic formula on Clq(sl2) has degree 0. It can
also be checked by direct computations as follows. First note that for elements of∧0
V2π and

∧3
V2π Cartan’s magic formula holds trivially. The operator d∧q ◦ ιx

acts by zero on
∧1
V2π. We have that

ιv2d∧qv−2 = −1
c
ιv2(v0 ∧ v−2) = v0 = Lv2v−2 .

The operator ιx ◦ d∧q acts by zero on
∧2
V2π. We have that

d∧q ιv2(v0 ∧ v−2) = −cd∧qv0 = −1 + q2

q
v2 ∧ v−2 = Lv2(v0 ∧ v−2) .

Therefore, we have proved the following theorem.

4.4. Theorem. The algebras Clq(sl2) and
∧
qV2π are quantised sl2-differential

algebras.

4.5. Remark. Similarly to the case of Clq(sl2), see Remark 3.6, we can now
compute the cohomology of

∧
qV2π using Cartan’s magic formula. First note that

the subalgebra of Uq(sl2)-invariant elements in
∧
qV2π is spanned by 1, v2∧v0∧v−2.

Therefore, we have the quantised analogue of Hopf–Koszul–Samelson theorem

H(
∧
qV2π,d∧q ) = (

∧
qV2π)Uq(sl2) =

∧
P∧q (sl2) ,

where P∧q (sl2) is the space of primitive invariants spanned by v2 ∧ v0 ∧ v−2.
We note that

ιv2∧v0∧v−2(v2 ∧ v0 ∧ v−2) = ιv2∧v0(cv0 ∧ v−2) = c2 1+q2

q2 ιv2v−2 = c3 1 + q2

q2 .

Therefore, we can recover the form Bq from Remark 3.6 via contraction operator
just as in the classical case of [20].
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