PROPERTIES OF SOLUTIONS OF QUATERNIONIC RICCATI EQUATIONS

Gevorg Avagovich Grigorian

Abstract

In this paper we study properties of regular solutions of quaternionic Riccati equations. The obtained results we use for study of the asymptotic behavior of solutions of two first-order linear quaternionic ordinary differential equations.

1. Introduction

Let $a(t), b(t), c(t)$ and $d(t)$ be quaternionic-valued continuous functions on $\left[t_{0},+\infty\right)$, i.e.: $a(t) \equiv a_{0}(t)+i a_{1}(t)+j a_{2}(t)+k a_{3}(t), b(t) \equiv b_{0}(t)+i b_{1}(t)+j b_{2}(t)+$ $k b_{3}(t), c(t) \equiv c_{0}(t)+i c_{1}(t)+j c_{2}(t)+k c_{3}(t), d(t) \equiv d_{0}(t)+i d_{1}(t)+j d_{2}(t)+k d_{3}(t)$, where $a_{n}(t), b_{n}(t), c_{n}(t), d_{n}(t)(n=\overline{0,3})$ are real-valued continuous functions on $\left[t_{0},+\infty\right), i, j, k$ are the imaginary unities satisfying the conditions

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=i j k=-1, \quad i j=-j i=k . \tag{1.1}
\end{equation*}
$$

Consider the quaternionic Riccati equation

$$
\begin{equation*}
q^{\prime}+q a(t) q+b(t) q+q c(t)+d(t)=0, \quad t \geq t_{0} \tag{1.2}
\end{equation*}
$$

Particular cases of this equation appear in various problems of mathematics, in particular in problems of mathematical physics (e.g., in the Euler's vorticity dynamics [13], in the Euler's fluid dynamics [4], in the problem of classification of diffeomorphisms of \mathbb{S}^{4} [14], and in the other ones [2, 12]). A quaternionic-valued function $q=q(t)$, defined on $\left[t_{1}, t_{2}\right)\left(t_{0} \leq t_{1}<t_{2} \leq+\infty\right)$ is called a solution of Eq. (1.2) on $\left[t_{1}, t_{2}\right.$), if it is continuously differentiable on $\left[t_{1}, t_{2}\right.$) and satisfies 1.2 on $\left[t_{1}, t_{2}\right)$. It follows from the general theory of ordinary differential equations that for every $t_{1} \geq t_{0}$ and $\gamma \in \mathbb{H}$ (here and after \mathbb{H} denotes the algebra of quaternions) there exists $t_{2}>t_{1}\left(t_{2} \leq+\infty\right)$ such that Eq. (1.2) has the unique solution $q(t)$ on $\left[t_{1}, t_{2}\right)$, satisfying the initial condition $q\left(t_{1}\right)=\gamma$. Thus for every $t_{1} \geq t_{0}$ and $\gamma \in \mathbb{H}$ a solution $q(t)$ of Eq. 1.2 with $q\left(t_{1}\right)=\gamma$ exists or else on some finite interval $\left[t_{1}, t_{2}\right)$ or else on $\left[t_{1},+\infty\right)$. In the last case the solution $q(t)$ we will call a t_{1}-regular (or simply regular) solution of Eq. 1.2 . Notice that some sufficient conditions

[^0]for existence of regular solutions are obtained in the works [1] 11, 13. In the real case properties of regular solutions of Eq. (1.2) are studied in [6] and have found several applications (see [7]-[10]). In this paper we study the properties of regular solutions of Eq. 1.2). We use the obtained result to study the asymptotic behavior of solutions of systems of two first-order linear quaternionic differential equations.

2. Auxiliary propositions

It is not difficult to verify that there exists a one to one correspondence $q \leftrightarrow Q$ between the quaternions $q=q_{0}+i q_{1}+j q_{2}+k q_{3}, q_{k} \in \mathbb{R}, k=\overline{0,3}$ and the skew symmetric matrices

$$
Q \equiv\left(\begin{array}{rccr}
q_{0} & q_{1} & q_{2} & -q_{3} \\
-q_{1} & q_{0} & -q_{3} & -q_{2} \\
-q_{2} & q_{3} & q_{0} & q_{1} \\
q_{3} & q_{2} & -q_{1} & q_{0}
\end{array}\right)
$$

keeping the arithmetic operations: $q_{m} \leftrightarrow Q_{m}, m=1,2 \Rightarrow q_{1}+q_{2} \leftrightarrow Q_{1}+$ $Q_{2}, q_{1} q_{2} \leftrightarrow Q_{1} Q_{2}, q_{1}^{-1} \leftrightarrow Q_{1}^{-1}\left(q_{1} \neq 0\right)$. The matrix Q we will call the symbol of q and will denote by \widehat{q}. By $|q|$ we denote the euclidean norm of the vector $q:|q| \equiv \sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}$. We also denote Re $q \equiv q_{0}$ - the real part of q and $\operatorname{Im} q \equiv i q_{1}+j q_{2}+k q_{3}$ - the imaginary part of q. Finally by $\operatorname{tr} \widehat{q}$ we denote the trace of \widehat{q}.

Lemma 2.1. For every quaternion q the equalities

$$
\operatorname{det} \widehat{q}=|q|^{4}, \quad \operatorname{tr} \widehat{q}=4 \operatorname{Re} q
$$

are valid.
Proof. By direct checking.
Let $A(t), B(t), C(t)$ and $D(t)$ be the symbols of $a(t), b(t), c(t)$ and $d(t)$ respectively. Consider the matrix Riccati equation

$$
\begin{equation*}
Y^{\prime}+Y A(t) Y+B(t) Y+Y C(t)+D(t)=0, \quad t \geq t_{0} \tag{2.1}
\end{equation*}
$$

Obviously the solutions $q(t)$ of Eq. 1.2), existing on an interval $\left[t_{1}, t_{2}\right)\left(t_{0} \leq t_{1}<\right.$ $\left.t_{2} \leq+\infty\right)$ are connected with solutions $Y(t)$ of Eq. 2.1) by relation

$$
\begin{equation*}
\widehat{q(t)}=Y(t), \quad t \in\left[t_{1}, t_{2}\right) \tag{2.2}
\end{equation*}
$$

Let $Y(t)$ be a solution of Eq. 2.1) on $\left[t_{1}, t_{2}\right)$. Then every solution $Y_{1}(t)$ of Eq. 2.1) on $\left[t_{1}, t_{2}\right.$) is connected with $\overline{Y(t)}$ by the formula (see [3], pp. 139, 140, 158, 159 , Theorem 6.2)

$$
Y_{1}(t)=Y(t)+\left[\Phi_{Y}(t) \Lambda^{-1}\left(t_{1}\right)\left(I+\Lambda\left(t_{1}\right) \mathcal{M}_{Y}\left(t_{1}, t\right)\right) \Psi_{Y}(t)\right]^{-1}, \quad t \in\left[t_{1}, t_{2}\right)
$$

where $\Phi_{Y}(t)$ and $\Psi_{Y}(t)$ are the solutions of the linear matrix equations

$$
\begin{array}{ll}
\Phi^{\prime}=[A(t) Y(t)+C(t)] \Phi, & t \in\left[t_{1}, t_{2}\right), \\
\Psi^{\prime}=\Psi[B(t)+Y(t) A(t)], & t \in\left[t_{1}, t_{2}\right),
\end{array}
$$

respectively with $\Phi_{Y}\left(t_{1}\right)=\Psi_{Y}\left(t_{1}\right)=I, I$ is the identity matrix of dimension 4×4,

$$
\mathcal{M}_{Y}\left(t_{1}, t\right) \equiv \int_{t_{1}}^{t} \Phi_{Y}^{-1}(\tau) A(\tau) \Psi_{Y}^{-1}(\tau) d \tau, \quad t \in\left[t_{1}, t_{2}\right)
$$

$\Lambda\left(t_{1}\right) \equiv Y_{1}\left(t_{1}\right)-Y\left(t_{1}\right)$, provided $\operatorname{det} \Lambda\left(t_{1}\right) \neq 0$. From here we obtain
(2.3) $\quad Y_{1}(t)=Y(t)+\Psi_{Y}^{-1}(t)\left[I+\Lambda\left(t_{1}\right) \mathcal{M}_{Y}\left(t_{1}, t\right)\right]^{-1} \Lambda\left(t_{1}\right) \Phi_{Y}^{-1}(t), \quad t \in\left[t_{1}, t_{2}\right)$.

By the Liouville formula we have:

$$
\begin{equation*}
\operatorname{det} \Phi_{Y}(t)=\exp \left\{\int_{t_{1}}^{t} \operatorname{tr}[A(\tau) Y(\tau)+C(\tau)] d \tau\right\}, \quad t \in\left[t_{1}, t_{2}\right) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{det} \Psi_{Y}(t)=\exp \left\{\int_{t_{1}}^{t} \operatorname{tr}[A(\tau) Y(\tau)+B(\tau)] d \tau\right\}, \quad t \in\left[t_{1}, t_{2}\right) \tag{2.5}
\end{equation*}
$$

Let $q(t)$ be a solution of Eq. 1.2 on $\left[t_{1}, t_{2}\right)$. Then due to 2.2 from (2.3) it follows that for every solution $q_{1}(t)$ of Eq. 1.2) on $\left[t_{1}, t_{2}\right)$ the equality

$$
\begin{equation*}
q_{1}(t)=q(t)+\psi_{q}^{-1}(t)\left[1+\lambda\left(t_{1}\right) \mu_{q}\left(t_{1}, t\right)\right]^{-1} \lambda\left(t_{1}\right) \phi_{q}^{-1}(t), \quad t \in\left[t_{1}, t_{2}\right) \tag{2.6}
\end{equation*}
$$

is valid, where $\phi_{q}(t)$ and $\psi_{q}(t)$ are the solutions of the linear equations

$$
\left.\begin{array}{ll}
\phi^{\prime} & =[a(t) q(t)+c(t)] \phi, \\
\psi^{\prime} & =\psi[b(t)+q(t) a(t)],
\end{array}, t \in\left[t_{1}, t_{2}\right), t_{2}\right), ~ \$
$$

respectively with $\phi_{q}\left(t_{1}\right)=\psi_{q}\left(t_{1}\right)=1, \lambda\left(t_{1}\right) \equiv q_{1}\left(t_{1}\right)-q\left(t_{1}\right)$,

$$
\mu_{q}\left(t_{1}, t\right) \equiv \int_{t_{1}}^{t} \phi_{q}^{-1}(\tau) a(\tau) \psi_{q}^{-1}(\tau) d \tau, \quad t \in\left[t_{1}, t_{2}\right)
$$

By (2.3) and Lemma 2.1 from (2.5) and (2.6) we obtain

$$
\begin{array}{ll}
\left|\phi_{q}(t)\right|=\exp \left\{\int_{t_{1}}^{t} \operatorname{Re}[a(\tau) q(\tau)+c(\tau)] d \tau\right\}, & t \in\left[t_{1}, t_{2}\right) \tag{2.7}\\
\left|\psi_{q}(t)\right|=\exp \left\{\int_{t_{1}}^{t} \operatorname{Re}[a(\tau) q(\tau)+b(\tau)] d \tau\right\}, & t \in\left[t_{1}, t_{2}\right)
\end{array}
$$

Let $q_{m}(t), \quad m=1,2$ be solutions of Eq. 1.2 on $\left[t_{1}, t_{2}\right)$. Set: $\lambda_{m, s}\left(t_{1}\right) \equiv q_{m}\left(t_{1}\right)-$ $q_{s}\left(t_{1}\right), m, s=1,2$. By 2.4 we have

$$
a(t)\left[q_{m}(t)-q_{s}(t)\right]=a(t) \psi_{q_{s}}^{-1}(t)\left[1+\lambda_{m, s}\left(t_{1}\right) \mu_{q_{s}}\left(t_{1} ; t\right)\right]^{-1} \phi_{q_{s}}^{-1}(t), \quad t \in\left[t_{1}, t_{2}\right) .
$$

Hence,

$$
\left[1+\lambda_{m, s}\left(t_{1}\right) \mu_{q_{s}}\left(t_{1} ; t\right)\right]^{\prime}=A_{q_{m}, q_{s}}\left(t_{1} ; t\right)\left[1+\lambda_{m, s}\left(t_{1}\right) \mu_{q_{s}}\left(t_{1} ; t\right)\right], \quad t \in\left[t_{1}, t_{2}\right),
$$

where

$$
A_{q_{m}, q_{s}}\left(t_{1} ; t\right) \equiv \lambda_{m, s}\left(t_{1}\right) \psi_{q_{s}}^{-1}(t)\left[q_{m}(t)-q_{s}(t)\right] \phi_{q_{s}}^{-1}(t) \lambda_{m, s}^{-1}\left(t_{1}\right), t \in\left[t_{1}, t_{2}\right), m=1,2 .
$$

From here it follows
$\left.\left.\left.\left[I+\widehat{\lambda_{m, s}\left(t_{1}\right)}\right) \widehat{\mu_{q_{s}}\left(t_{1} ; t\right)}\right]^{\prime}=A_{q_{m}, q_{s}\left(t_{1}\right.} ; t\right)\left[I+\widehat{\lambda_{m, s}\left(t_{1}\right)}\right) \widehat{\mu_{q_{s}}\left(t_{1} ; t\right)}\right], t \in\left[t_{1}, t_{2}\right), m=1,2$.
By Lemma 2.1 and the Liouville's formula from here we obtain

$$
\begin{equation*}
\left|1+\lambda_{m, s}\left(t_{1}\right) \mu_{q_{s}}\left(t_{1} ; t\right)\right|=\exp \left\{\int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{m}(\tau)-q_{s}(\tau)\right)\right] d \tau\right\}, \quad t \in\left[t_{1}, t_{2}\right) \tag{2.9}
\end{equation*}
$$

$m, s=1,2$. From here we immediately get:

$$
\begin{equation*}
\left|1+\lambda_{m, s}\left(t_{1}\right) \mu_{q_{s}}\left(t_{1} ; t\right) \| 1+\lambda_{s, m}\left(t_{1}\right) \mu_{q_{m}}\left(t_{1} ; t\right)\right| \equiv 1, \quad t \in\left[t_{1}, t_{2}\right), m, s=1,2 . \tag{2.10}
\end{equation*}
$$

3. Properties of regular solutions of Eq. 1.2

Definition 3.1. A t_{1}-regular solution $q(t)$ of Eq. 1.2 is called t_{1}-normal if there exists a neighborhood $U\left(q\left(t_{1}\right)\right)$ of $q\left(t_{1}\right)$ such that every solution $\widetilde{q}(t)$ of Eq. 1.2 with $\widetilde{q}\left(t_{1}\right) \in U\left(q\left(t_{1}\right)\right)$ is also t_{1}-regular, otherwise $q(t)$ is called t_{1}-extremal.

Definition 3.2. Eq. 1.2 is called regular if it has at least one regular solution.
Remark 3.1. Since the solutions of Eq. (1.2) are continuously dependent on their initial values every t_{1}-normal (t_{1}-extremal) solution of Eq. 1.2) is also a t_{2}-normal (t_{2}-extremal) solution of Eq. 1.2 for all $t_{2}>t_{1}$. Due to this a t_{1}-normal (t_{1}-extremal) solution of Eq. 1.2) we will just call a normal (a extremal) solution of Eq. (1.2). Note that a t_{2}-normal (t_{2}-extremal) solution of Eq. (1.2) may not be a t_{1}-normal (t_{1}-extremal) solution of Eq. (1.2) if $t_{1}<t_{2}$, because a t_{2}-regular solution of Eq. 1.2 may not be t_{1}-regular for $t_{1}<t_{2}$.

Theorem 3.1. If Eq. (1.2) has a t_{1}-regular solution $q(t)$ for some $t_{1} \geq t_{0}$, then it has also another (different from $q(t)$) t_{1}-regular solution.

Proof. Let $q(t)$ be a t_{1}-regular solution for some $t_{1} \geq t_{0}$. Since $\mu_{q}\left(t_{1} ; t\right)$ is continuously differentiable by t there exists $\gamma \in \mathbb{H} \backslash\{0\}$ such that $\mu_{q}\left(t_{1} ; t\right) \neq \gamma$ for all $t \geq t_{0}\left(\mu_{q}\left(t_{1} ; t_{1}\right)=0\right.$ and the curve $f(t) \equiv \mu_{q}\left(t_{1} ; t\right), t \geq t_{1}$ is not space filling $)$. Therefore by (2.7) the solution $q_{1}(t)$ of Eq. (1.2) with $q_{1}\left(t_{1}\right)=q\left(t_{1}\right)-\frac{1}{\gamma}$ is a t_{1}-regular solution of Eq. 1.2), different from $q(t)$. The theorem is proved.

Denote by $Q\left(t ; t_{1} ; \lambda\right)$ the general solution of Eq. $\overline{1.2}$ in the region $G_{t_{1}} \equiv\{(t ; q)$: $\left.t \in I_{t_{1}}(\lambda), q, \lambda \in \mathbb{H}\right\}$, where $I_{t_{1}}$ is the maximum existence interval for the solution $q(t)$ of Eq. 1.2 with $q\left(t_{1}\right)=\lambda$.

Example 3.1. Consider the equation

$$
\begin{equation*}
q^{\prime}+q a(t) q=0, \quad t \geq-1 \tag{3.1}
\end{equation*}
$$

The general solution of this equation in the region $G_{0} \cap[-1,+\infty) \times \mathbb{H}$ is given by formula

$$
\begin{equation*}
Q(t ; 0 ; \lambda)=\frac{1}{1+\lambda \int_{t_{1}}^{t} a(\tau) d \tau} \lambda, \quad \lambda \in \mathbb{H}, \quad 1+\lambda \int_{t_{1}}^{t} a(\tau) d \tau \neq 0, \quad t \geq t_{1} \tag{3.2}
\end{equation*}
$$

Assume $a(t)$ has a bounded support. Then from (3.2) is seen that Eq. (3.1) has no 0-extremal solution, and all its solutions $Q(t, ; 0 ; \lambda)$ with enough small $|\lambda|$ are 0 -normal. If $a(t)$ is a non negative function with an unbounded support and $I_{0} \equiv \int_{0}^{+\infty} a(\tau) d \tau<+\infty$ then from (3.2) is seen that the solution $q_{0}(t)=Q\left(t ; 0 ;-\frac{1}{I_{0}}\right)$ is 0 -extremal; all the solutions $Q(t ; 0 ; \lambda)$ with $\lambda \in \mathbb{H} \backslash\left(-\infty,-\frac{1}{I_{0}}\right)$ are 0 -normal and all the solutions $Q(t ; 0 ; \lambda)$ with $\lambda \in\left(-\infty,-\frac{1}{I_{0}}\right)$ are not 0 -regular. Assume now $\int_{0}^{t} a(\tau) d \tau=\arctan (\cos t+i \sin t+j \cos \pi t+k \sin \pi t), t \geq 0$. Then from 3.2) is seen that all the solutions $Q(t ; 0 ; \lambda)$ with $|\lambda|=\frac{\sqrt{2}}{\pi}$ are 0 -extremal (since the set $\left\{\frac{1}{\sqrt{2}}(\cos t+i \sin t+j \cos \pi t+k \sin \pi t): t \geq 0\right\}$ is everywhere dense in the unite sphere $\{q:|q|=1\})$ and all solutions $Q(t ; 0 ; \lambda)$ with $|\lambda|<\frac{\sqrt{2}}{\pi}$ are 0-normal.

Example 3.2. For $u_{0} \in \mathbb{H}$ and $0<r<R<+\infty$ denote $K_{r, R}\left(u_{0}\right) \equiv\{q \in \mathbb{H}$: $\left.r<\left|q-u_{0}\right|<R\right\}$ - an annulus in \mathbb{H} with a center u_{0} and radiuses r and R. For any $\varepsilon>0$ denote $K_{\varepsilon, r, R}\left(u_{0}\right) \equiv\left\{\xi_{1}, \ldots, \xi_{m} \in K_{r, R}\left(u_{0}\right)\right.$: if $u \in K_{r, R}\left(u_{0}\right)$ then there exists $s \in\{1, \ldots, m\}$ such that $\left.\left|u-\xi_{s}\right|<\varepsilon\right\}$ - a finite ε-net for $K_{r, R}\left(u_{0}\right)$ (here m depends on ε). Consider the sequence of $\frac{1}{2 n}$-nets: $\left\{K_{\frac{1}{2 n}, \frac{1}{n}, n}\left(u_{0}\right)\right\}_{n=1}^{+\infty}$. Let the function $f(t) \equiv \int_{0}^{t} a(\tau) d \tau, t \geq 0$ has the following properties: $f(t) \neq u_{0}, t \in[0,1]$; when t varies from n to $n+1 \quad(n=1,2, \ldots)$ the curve $f(t)$ crosses all points of $K_{\frac{1}{2 n}, \frac{1}{n}, n}\left(u_{0}\right)$ (i.e. for every $v \in K_{\frac{1}{2 n}, \frac{1}{n}, n}\left(u_{0}\right)$ there exists $\zeta_{v} \in[n, n+1]$ such that $\left.f\left(\zeta_{v}\right)=v\right) ; f(t) \in K_{\frac{1}{2 n},+\infty}\left(u_{0}\right) \quad n=1,2, \ldots, t \geq 1$. From these properties it follows that for every $T \geq 0$ the set $\{f(t): t \geq T\}$ is everywhere dense in \mathbb{H} and $f(t) \neq u_{0}, t \geq 0$. Hence from (3.2) it follows that Eq. (3.1) has no t_{1}-normal solutions for all $t_{1} \geq 0$ and has at least two extremal solutions: $q_{1}(t) \equiv 0$ and $q_{2}(t)$ with $q_{2}(0)=-\frac{1}{u_{0}}$. By analogy using $\frac{1}{2 n}$-nets $K_{\frac{1}{2 n}, \frac{1}{n}, n}\left(u_{0} ; \ldots u_{l}\right) \equiv\left\{\xi_{1}, \ldots, \xi_{m} \in\right.$ $\left.\bigcap_{k=0}^{l} K_{\frac{1}{n}, n}\left(u_{k}\right): u \in \bigcap_{k=0}^{l} K_{\frac{1}{n}, n}\left(u_{k}\right) \Rightarrow \exists s \in\{1, \ldots, m\}:\left|u-\xi_{s}\right|<\frac{1}{2 n}\right\}$ of the intersections $\bigcap_{k=1}^{l} K_{\frac{1}{n}, n}\left(u_{k}\right)$ in place of $K_{\frac{1}{2 n}, \frac{1}{n}, n}\left(u_{0}\right), n=1,2, \ldots$ one can show that there exists a Riccati equation which has no t_{1}-normal solutions and has at least $l+2 t_{1}$-extremal solutions for all $t_{1} \geq 0$.

Theorem 3.2. $A t_{1}$-regular solution $q(t)$ of Eq. (1.2) is t_{1}-normal if and only if $\mu_{q}\left(t_{1} ; t\right)$ is bounded by t.

Proof. Sufficiency. Set $M \equiv \sup _{t \geq t_{1}}\left|\mu_{q}\left(t_{1} ; t\right)\right|$. Let $q_{1}(t)$ be a solution of Eq. (1.2) with $\left|q\left(t_{1}\right)-q_{1}\left(t_{1}\right)\right|<\frac{M}{2}$. Then obviously

$$
1+\left(q_{1}\left(t_{1}\right)-q\left(t_{1}\right)\right) \mu_{q}\left(t_{1} ; t\right) \neq 0, \quad t \geq t_{1}
$$

By (2.7) from here it follows that $q_{1}(t)$ is t_{1}-normal.
Necessity. Suppose $\mu_{q}\left(t_{1} ; t\right)$ is unbounded by t on $\left[t_{1},+\infty\right)$. Let then $t_{1}<t_{2}<$ $\cdots<t_{m}, \ldots$ be an infinitely large sequence such that

$$
\begin{equation*}
\left|\mu_{q}\left(t_{1} ; t_{n}\right)\right| \geq n, \quad n=2,3, \ldots \tag{3.3}
\end{equation*}
$$

Let $q_{n}(t), n=2,3, \ldots$ be the solutions of Eq. 1.2 with

$$
\begin{equation*}
q_{n}\left(t_{1}\right)-q\left(t_{1}\right)=-\mu_{q}\left(t_{1} ; t_{n}\right)^{-1}, \quad n=2,3, \ldots \tag{3.4}
\end{equation*}
$$

Since $q(t)$ is t_{1}-normal there exists $\delta>0$ such that every solution $\widetilde{q}(t)$ of Eq. 1.2 with $\left|\widetilde{q}\left(t_{1}\right)-q\left(t_{1}\right)\right|<\delta$ is t_{1}-regular. Hence from (3.3) and (3.4) it follows that for enough large n the solutions $q_{n}(t)$ are t_{1}-regular. On the other hand by (2.7) from (3.4) it follows that for enough large n every solution $q_{n}(t)$ is unbounded in the neighborhood of t_{n}. It means that for enough large n the solutions $q_{n}(t)$ are not t_{1}-regular. The obtained contradiction completes the proof of the theorem.

By 2.9. from Theorem 3.2 we immediately obtain
Corollary 3.1. The following statements are valid:

1) any two t_{1}-regular solutions $q_{1}(t)$ and $q_{2}(t)$ of Eq. 1.2. are t_{1}-normal if and only if the function

$$
I_{q_{1}, q_{2}}(t) \equiv \int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{1}(\tau)-q_{2}(\tau)\right)\right] d \tau, \quad t \geq t_{1}
$$

is bounded;
2) if $q_{N}(t)$ and $q_{*}(t)$ are t_{1}-normal and t_{1}-extremal solutions of Eq. (1.2) respectively then

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{*}(\tau)-q_{N}(\tau)\right)\right] d \tau<+\infty \\
& \liminf _{t \rightarrow+\infty} \int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{*}(\tau)-q_{N}(\tau)\right)\right] d \tau=-\infty
\end{aligned}
$$

3) if $q_{*}(t)$ and $q^{*}(t)$ are t_{1}-extremal solutions of Eq. 1.2 then

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{*}(\tau)-q^{*}(\tau)\right)\right] d \tau=+\infty \\
& \liminf _{t \rightarrow+\infty} \int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{*}(\tau)-q^{*}(\tau)\right)\right] d \tau=-\infty
\end{aligned}
$$

Definition 3.3. A regular Eq. (1.2) is called normal if it has no extremal solutions.

Definition 3.4. A regular Eq. $\overline{1.2}$ is called irreconcilable if its every regular solution is extremal.

Definition 3.5. A regular Eq. 1.2 is called sub extremal if it has only one extremal solution.

Definition 3.6. A regular Eq. $\sqrt{1.2}$ is called super extremal if it has at least two extremal solutions and normal solutions.

From Definitions $3.3-3.6$ is seen that every regular Eq. 1.2 is or else normal or else irreconcilable or else sub extremal or else super extremal. The examples, illustrated above, show that all these types of equations exist.

For any t_{1}-regular solution $q(t)$ of Eq. 1.2 set

$$
\nu_{q}(t) \equiv \int_{t}^{+\infty} \phi_{q}^{-1}(\tau) a(\tau) \psi_{q}^{-1}(\tau) d \tau, \quad t \geq t_{1}
$$

where $\phi_{q}(t)$ and $\psi_{q}(t)$ are the solutions of the linear equations

$$
\begin{aligned}
\phi^{\prime} & =[a(t) q(t)+c(t)] \phi, \\
\psi^{\prime} & =\psi[b(t)+q(t) a(t)],
\end{aligned} \quad t \geq t_{1} .
$$

respectively with $\phi_{q}\left(t_{1}\right)=\psi_{q}\left(t_{1}\right)=1$.
Theorem 3.3. Let $q_{0}(t)$ be a t_{1}-regular solution of Eq. (1.2) such that the integral $\nu_{q_{0}}\left(t_{1}\right)$ is convergent. Then in order that Eq. (1.2) has a t_{1}-extremal solution it is necessary and sufficient that $\nu_{q_{0}}(t) \neq 0, t \geq t_{1}$. If this condition is satisfied then: 1) the unique t_{1}-extremal solution $q_{*}(t)$ of $E q . \sqrt{1.2}$ is given by the formula

$$
\begin{equation*}
q_{*}(t)=q_{0}(t)-\frac{1}{\mathcal{V}_{q_{0}}(t)}, \quad t \geq t_{1} \tag{3.5}
\end{equation*}
$$

where $\mathcal{V}_{q_{0}}(t) \equiv \phi_{q}(t) \nu_{q_{0}}(t) \psi_{q}(t)$;
2) for all t_{1}-normal solutions $q(t)$ of Eq. $\sqrt{1.2}$ and only for them the integrals $\nu_{q}(t)$ converge for all $t \geq t_{1}$ and $\nu_{q}(t) \neq 0, t \geq t_{1}$;
3) for all $t \geq t_{1}$

$$
\begin{equation*}
\nu_{q_{*}}(t)=\infty ; \tag{3.6}
\end{equation*}
$$

4) for two arbitrary t_{1}-normal solutions $q_{1}(t)$ and $q_{2}(t)$ the integral

$$
\int_{t_{1}}^{+\infty} \operatorname{Re}\left[a(\tau)\left(q_{1}(\tau)-q_{2}(\tau)\right)\right] d \tau
$$

converges;
5) for every t_{1}-normal solution $q_{N}(t)$ of $E q$. (1.2) the equality

$$
\begin{equation*}
\int_{t_{1}}^{+\infty} \operatorname{Re}\left[a(\tau)\left(q_{*}(\tau)-q_{N}(\tau)\right)\right] d \tau=-\infty \tag{3.7}
\end{equation*}
$$

is valid.

Proof. Let $q_{0}(t)$ be a t_{1}-regular solution of Eq. (1.2) for which $\nu_{q_{0}}\left(t_{1}\right)$ converges and $\nu_{q_{0}}(t) \neq 0 \quad t \geq t_{1}$. Then

$$
\begin{equation*}
1-\frac{1}{\nu_{q_{0}}\left(t_{1}\right)} \mu_{q_{0}}\left(t_{1} ; t\right) \neq 0, \quad t \geq t_{1} \tag{3.8}
\end{equation*}
$$

Indeed otherwise if for some $t_{2}>t_{1} \nu_{q_{0}}=\mu_{q_{0}}\left(t_{1} ; t_{2}\right)$ then from the equality $\nu_{q_{0}}(t)=\mu_{q_{0}}\left(t_{1} ; t_{2}\right)+\nu_{q_{0}}\left(t_{2}\right)$ it follows that $\nu_{q_{0}}\left(t_{2}\right)=0$, which contradicts our assumption. Let $q_{*}(t)$ be the solution of Eq. 1.2 with $q_{*}\left(t_{1}\right)=q_{0}\left(t_{1}\right)-\frac{1}{\nu_{q_{0}}\left(t_{1}\right)}$. Then by (2.7) from (3.8) it follows that $q_{*}(t)$ is t_{1}-regular and according to (2.10) we have

$$
\left|1+\frac{1}{\nu_{q_{*}}\left(t_{1}\right)} \mu_{q_{*}}\left(t_{1} ; t\right)\right|\left|1-\frac{1}{\nu_{q_{0}}\left(t_{1}\right)} \mu_{q_{0}}\left(t_{1} ; t\right)\right| \equiv 1, \quad t \geq t_{1}
$$

From here it follows $\nu_{q_{*}}\left(t_{1}\right)=\lim _{t \rightarrow+\infty} \mu_{q_{*}}\left(t_{1} ; t\right)=\infty$. Then by virtue of Theorem $3.2 q_{*}(t)$ is t_{1}-extremal and (3.6) is valid. Assume now Eq. (1.2) has a t_{1}-extremal solution $q_{*}(t)$. Show that $\nu_{q_{0}}(t) \neq 0, \quad t \geq t_{1}$. Suppose for some $t_{2} \geq t_{1} \nu_{q_{0}}\left(t_{2}\right)=0$. Then obviously

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left[1+\left(q_{*}\left(t_{2}\right)-q_{0}\left(t_{2}\right)\right) \mu_{q_{0}}\left(t_{2} ; t\right)\right]=1 \tag{3.9}
\end{equation*}
$$

By 2.10 we have

$$
\left|1+\left(q_{0}\left(t_{2}\right)-q_{*}\left(t_{2}\right)\right) \mu_{q_{*}}\left(t_{2} ; t\right)\right|\left|1+\left(q_{*}\left(t_{2}\right)-q_{0}\left(t_{2}\right)\right) \mu_{q_{0}}\left(t_{2} ; t\right)\right| \equiv 1, \quad t \geq t_{2}
$$

This together with (3.9) implies that $\mu_{q_{*}}\left(t_{2} ; t\right)$ is bounded by t on $\left[t_{2},+\infty\right)$. Therefore $\mu_{q_{*}}\left(t_{1} ; t\right)$ is bounded by t on $\left[t_{1},+\infty\right)$, and according to Theorem $3.2 q_{*}(t)$ is t_{1}-normal, which contradicts our assumption. The obtained contradiction shows that $\nu_{q_{0}}(t) \neq 0, t \geq t_{1}$. Let us prove (3.5). By (2.7) we have

$$
\begin{equation*}
q_{*}(t)=q_{0}(t)+\left[\phi_{q}(t)\left[\lambda\left(t_{1}\right)^{-1}+\mu_{q_{0}}\left(t_{1}, t\right)\right] \psi_{q}(t)\right]^{-1}, \quad t \geq t-1 \tag{3.10}
\end{equation*}
$$

where $\lambda\left(t_{1}\right)=q_{*}\left(t_{1}\right)-q_{0}\left(t_{1}\right)$. Since $q_{*}\left(t_{1}\right)-\frac{1}{\nu_{q_{0}}\left(t_{1}\right)}$ from her and from 3.10 we obtain (3.5).

Let $q(t)$ be a t_{1}-normal solution of Eq. 1.2 . By 2.10 we have

$$
\left|1+\left(q\left(t_{1}\right)-q_{*}\left(t_{1}\right)\right) \mu_{q_{*}}\left(t_{1} ; t\right)\right|\left|1+\left(q_{*}\left(t_{1}\right)-q\left(t_{1}\right)\right) \mu_{q}\left(t_{1} ; t\right)\right| \equiv 1, \quad t \geq t_{1}
$$

This together with (3.6) implies

$$
\lim _{t \rightarrow+\infty}\left[1+\left(q_{*}\left(t_{1}\right)-q\left(t_{1}\right)\right) \mu_{q}\left(t_{1} ; t\right)\right]=0
$$

Therefore the integrals $\nu_{q}(t)$ converge for all $t \geq t_{1}$. The inequality $\nu_{q}(t) \neq 0, t \geq t_{1}$ follows immediately from the already proven necessary condition of existence of a t_{1}-extremal solution of Eq. 1.2.

Let $q_{1}(t)$ and $q_{2}(t)$ be t_{1}-normal solutions of Eq. (1.2). By (2.9) we have

$$
\left|1+\left(q_{1}\left(t_{1}\right)-q_{2}\left(t_{1}\right)\right) \mu_{q_{2}}\left(t_{1} ; t\right)\right|=\exp \left\{\int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{1}(\tau)-q_{2}(\tau)\right)\right] d \tau\right\}, \quad t \geq t_{1}
$$

From here and from the convergence of $\nu_{q_{2}}\left(t_{1}\right)$ it follows the convergence of the integral

$$
\int_{t_{1}}^{+\infty} \operatorname{Re}\left[a(\tau)\left(q_{1}(\tau)-q_{2}(\tau)\right)\right] d \tau
$$

Let $q_{N}(t)$ be a t_{1}-normal solution of Eq. (1.2). By (2.9) we have

$$
\left|1+\left(q_{1}\left(t_{N}\right)-q_{*}\left(t_{1}\right)\right) \mu_{q_{*}}\left(t_{1} ; t\right)\right|=\exp \left\{\int_{t_{1}}^{t} \operatorname{Re}\left[a(\tau)\left(q_{*}(\tau)-q_{N}(\tau)\right)\right] d \tau\right\}, \quad t \geq t_{1}
$$

This together with (3.6) implies (3.7). The theorem is proved.
Corollary 3.2. Let Eq. 1.2 have a t_{1}-regular solution $q_{*}(t)$ such that $\nu_{q_{*}}\left(t_{1}\right)=\infty$. Then the statements 1) -5) of Theorem 3.3 are valid.

Proof. By Theorem 3.3 it is enough to show that Eq. 1.2 has a t_{1}-regular solution $q_{0}(t)$ such that $\nu_{q_{0}}\left(t_{1}\right)$ converges and $\nu_{q_{0}}(t) \neq 0, t \geq t_{1}$. Let $q_{0}(t)$ be a t_{1}-regular solution of Eq. 1.2 , different from $q_{*}(t)$. In virtue of 2.10 we have

$$
\begin{equation*}
\left|1+\left(q_{0}\left(t_{1}\right)-q_{*}\left(t_{1}\right)\right) \mu_{q_{*}}\left(t_{1} ; t\right)\right|\left|1+\left(q_{*}\left(t_{1}\right)-q_{0}\left(t_{1}\right)\right) \mu_{q_{0}}\left(t_{1} ; t\right)\right| \equiv 1, \quad t \geq t_{1} \tag{3.11}
\end{equation*}
$$

From the condition of the corollary it follows that

$$
\lim _{t \rightarrow+\infty}\left|1+\left(q_{0}\left(t_{1}\right)-q_{*}\left(t_{1}\right)\right) \mu_{q_{*}}\left(t_{1} ; t\right)\right|=+\infty
$$

From here and from (3.11) it follows that $q_{0}(t)$ is t_{1}-normal and the integral $\nu_{q_{0}}\left(t_{1}\right)$ converges. Moreover by virtue of Theorem 3.2 from the condition of the corollary it follows that $q_{*}(t)$ is t_{1}-extremal. Since $q_{0}(t)$ is an arbitrary t_{1}-regular solution of Eq. (1.2), different from $q_{*}(t)$ it follows that $q_{*}(t)$ is the unique t_{1}-extremal solution of Eq. (1.2). Then by Theorem $3.3 \nu_{q_{0}}(t) \neq 0, \quad t \geq t_{1}$. The corollary is proved.

Theorem 3.3 and Corollary 3.2 allow us to give the following equivalent definitions.

Definition 3.7. Eq. 1.2 is called extremal if for some $t_{1} \geq t_{0}$ it has a t_{1}-regular solution $q(t)$ such that $\nu_{q}\left(t_{1}\right)$ converges and $\nu_{q}(t) \neq 0, t \geq t_{1}$.

Definition 3.8. Eq. 1.2 is called extremal if for some $t_{1} \geq t_{0}$ it has a t_{1}-regular solution $q(t)$ such that $\nu_{q}\left(t_{1}\right)=\infty$.

Example 3.3. Let $\lambda(t)$ be a quaternionic valued continuously differentiable function on $\left[t_{0},+\infty\right), \alpha(t) \equiv \alpha_{0}(t)+i \alpha_{1}(t), \beta(t) \equiv \beta_{0}(t)+j \beta_{1}(t), \quad t \geq t_{0}$, where $\alpha_{0}(t), \alpha_{1}(t), \beta_{0}(t)$ and $\beta_{1}(t)$ are some real-valued continuous functions on $\left[t_{0},+\infty\right)$. Consider the Riccati equation

$$
\begin{align*}
q^{\prime}+q a(t) q-[\lambda(t) a(t) & +\alpha(t)] q-q[a(t) \lambda(t)+\beta(t)]-\lambda^{\prime}(t) \\
2) & +\lambda(t) a(t) \lambda(t)+\alpha(t) \lambda(t)+\lambda(t) \beta(t)=0, \quad t \geq t_{0} . \tag{3.12}
\end{align*}
$$

It is not difficult to verify that $q=\lambda(t)$ is a t_{0}-regular solution of this equation and

$$
\phi_{\lambda}(t)=\exp \left\{-\int_{t_{0}}^{t} \beta(\tau) d \tau\right\}, \quad \psi_{\lambda}(t)=\exp \left\{-\int_{t_{0}}^{t} \alpha(\tau) d \tau\right\}, \quad t \geq t_{0}
$$

So

$$
\nu_{\lambda}(t)=\int_{t}^{+\infty} \exp \left\{\int_{t_{0}}^{\tau} \beta(s)\right\} a(\tau) \exp \left\{\int_{t_{0}}^{\tau} \alpha(s) d s\right\} d \tau, \quad t \geq t_{0}
$$

Therefore if $\nu_{\lambda}\left(t_{0}\right)$ converges and $\nu_{\lambda}(t) \neq 0, t \geq t_{t}$ for some $t_{1} \geq t_{0}$ or if $\nu_{\lambda}\left(t_{0}\right)=\infty$, then Eq. (3.12) is extremal. If $\nu_{\lambda}\left(t_{0}\right)$ converges and $\nu_{\lambda}(t)$ has arbitrary large zeroes, then Eq. 1.2 is normal.

Obviously every extremal Eq. 1.2 is sub extremal. The next example shows that not all sub extremal equations are extremal.

Example 3.4. Consider the Riccati equation

$$
\begin{equation*}
q^{\prime}+q(t \cos t) q=0, \quad t \geq t_{0}, t_{0} \sin t_{0}+\cos t_{0}=0 . \tag{3.13}
\end{equation*}
$$

For every $\lambda \in \mathbb{H}$ the solution $q(t)$ of this equation with $q\left(t_{0}\right)=\lambda$ has the form

$$
q(t)=\frac{1}{1+\lambda \int_{t_{0}}^{t} \tau \cos \tau d \tau} \lambda=\frac{1}{1+\lambda(t \sin t+\cos t)} \lambda, \quad 1+\lambda(t \sin t+\cos t) \neq 0
$$

Hence every solution $q(t)$ of this equation with $q\left(t_{0}\right) \in \mathbb{H} \backslash(\mathbb{R} \backslash\{0\})$ is t_{0}-regular and for $q\left(t_{0}\right) \in \mathbb{R} \backslash\{0\} q(t)$ is not t_{0}-regular. Therefore $q_{0}(t) \equiv 0$ is a t_{0}-extremal solution of Eq. (3.13) and all its solutions $q(t)$ with $q\left(t_{0}\right) \in \mathbb{H} \backslash \mathbb{R}$ are t_{0}-normal. From here it follows that Eq. (3.13) is sub extremal. Obviously the integral

$$
\nu_{q_{0}}\left(t_{0}\right)=\int_{t_{0}}^{+\infty} t \cos t d t
$$

neither is convergent nor divergent to ∞. Therefore Eq. (3.13) is not extremal.

4. The asymptotic behavior of solutions of systems of two FIRST-ORDER LINEAR QUATERNIONIC ORDINARY DIFFERENTIAL EQUATIONS

Let $a_{m l}(t), m, l=1,2$ be quaternionic-valued continuous functions on $\left[t_{0},+\infty\right)$. Consider the linear system

$$
\left\{\begin{array}{l}
\phi^{\prime}=a_{11}(t) \phi+a_{12}(t) \psi, \tag{4.1}\\
\psi^{\prime}=a_{21}(t) \phi+a_{22}(t) \psi, \quad t \geq t_{0}
\end{array}\right.
$$

and the quaternionic Riccati equation

$$
\begin{equation*}
q^{\prime}+q a_{12}(t) q+q a_{11}(t)-a_{22}(t) q-a_{21}(t)=0, \quad t \geq t_{0} \tag{4.2}
\end{equation*}
$$

It is not difficult to verify that the solutions $q(t)$ of Eq. 4.2, existing on some interval $\left[t_{1}, t_{2}\right)\left(t_{0} \leq t_{1}<t_{2} \leq+\infty\right)$ are connected with solutions $(\phi(t), \psi(t))$ of the system (4.1) by relations

$$
\begin{equation*}
\phi^{\prime}(t)=\left[a_{12}(t) q(t)+a_{11}(t)\right] \phi(t), \quad \psi(t)=q(t) \phi(t), \quad t \in\left[t_{1}, t_{2}\right) . \tag{4.3}
\end{equation*}
$$

From here it follows

$$
\widehat{\phi(t)}^{\prime}=\left[\widehat{a_{12}(t)} \widehat{q(t)}+\widehat{a_{11}(t)}\right] \widehat{\phi(t)}, \quad t \in\left[t_{1}, t_{2}\right) .
$$

By Liouville's formula from here we obtain

$$
\operatorname{det} \widehat{\phi(t)}=\operatorname{det} \widehat{\phi\left(t_{1}\right)} \exp \left\{\int_{t_{1}}^{t} \operatorname{tr}\left[\widehat{a_{12}(\tau)} \widehat{q(t)}+\widehat{a_{11}(\tau)}\right] d \tau\right\}, \quad t \in\left[t_{1} ; t_{2}\right)
$$

By virtue of Lemma 2.1 from here it follows

$$
\begin{equation*}
|\phi(t)|=\left|\phi\left(t_{1}\right)\right| \exp \left\{\int_{t_{1}}^{t} \operatorname{Re}\left[a_{12}(\tau) q(\tau)+a_{11}(\tau)\right] d \tau\right\}, \quad t \in\left[t_{1}, t_{2}\right) \tag{4.4}
\end{equation*}
$$

So if $\phi\left(t_{1}\right) \neq 0$, then

$$
\begin{equation*}
\phi(t) \neq 0, \quad t \in\left[t_{1}, t_{2}\right) . \tag{4.5}
\end{equation*}
$$

Remark 4.1. It can be shown that if for a solution $(\phi(t), \psi(t))$ of the system 4.1) the function $\phi(t)$ does not vanish on $\left[t_{1}, t_{2}\right)$ then $q(t)=\psi(t) \phi^{-1}(t), t \in\left[t_{1}, t_{2}\right)$ is a solution of Eq. 4.2] on $\left[t_{1}, t_{2}\right)$.
Definition 4.1. A solution $(\phi(t), \psi(t))$ of the system (4.1) is called t_{1}-regular ($t_{1} \geq t_{0}$) if $\phi(t) \neq 0, t \geq t_{1}$.
Definition 4.2. A t_{1}-regular $\left(t_{1} \geq t_{0}\right)$ solution $(\phi(t), \psi(t))$ of the system 4.1) is called principal (non principal) if $q(t) \equiv \psi(t) \phi^{-1}(t), t \geq t_{1}$ is a t_{1}-extremal (t_{1}-normal) solution of Eq. 4.2.
Definition 4.3. The system (4.1) is called regular if it has at least one t_{1}-regular solution for some $t_{1} \geq t_{0}$.

Remark 4.2. It follows from (4.5) and Remark 4.5 that the system (4.1) has a t_{1}-regular solution for some $t_{1} \geq t_{0}$ if and only if Eq. (4.2) has a t_{1}-regular solution.
Remark 4.3. If $(\phi(t), \psi(t))$ is a solution of the system 4.1 then for every $\lambda \in$ $\mathbb{H}(\phi(t) \lambda, \psi(t) \lambda)$ is also a solution of the system (4.1), but $(\lambda \phi(t), \lambda \psi(t))$ may not be a solution of the system (4.1). For example $\left(e^{i t}, e^{k t}\right), t \geq t_{0}$ is a solution of the system

$$
\left\{\begin{array}{l}
\phi^{\prime}=i \phi, \\
\psi^{\prime}=k \psi, \quad t \geq t_{0}
\end{array}\right.
$$

but $\left(j e^{i t}, j e^{k t}\right), \quad t \geq t_{0}$ is not a solution of this system.
Definition 4.4. The solutions $\left(\phi_{m}(t), \psi_{m}(t)\right), m=1,2$ are called linearly dependent if there exists $\lambda \in \mathbb{H} \backslash\{0\}$ such that $\phi_{2}(t)=\phi_{1}(t) \lambda, \psi_{2}(t)=\psi_{1}(t) \lambda$, otherwise they are called linearly independent.

Remark 4.4. It follows from Theorem 3.1 and Remark 4.5 that if the system 4.1) has a t_{1}-regular solution $(\phi(t), \psi(t))$, then it has also another t_{1}-regular solution, linearly independent of $(\phi(t), \psi(t))$.

Definition 4.5. The regular system (4.1) is called normal (irreconcilable, sub extremal, super extremal, extremal) if Eq. (4.2) is normal (irreconcilable, sub extremal, super extremal, extremal).

Hereafter every t_{1}-regular solution of the system 4.1 we will just call a regular solution of the system (4.1). On the basis of (4.4) from Corollary 3.1 we immediately get.

Theorem 4.1. The following statements are valid:
I) if the system 4.1 is normal then for its two regular solutions $\left(\phi_{m}(t), \psi_{m}(t)\right)$, $m=1,2$ the inequalities

$$
\limsup _{t \rightarrow+\infty} \frac{\left|\phi_{1}(t)\right|}{\left|\phi_{2}(t)\right|}<+\infty, \quad \limsup _{t \rightarrow+\infty} \frac{\left|\phi_{2}(t)\right|}{\left|\phi_{1}(t)\right|}<+\infty
$$

are valid;
II) if the system (4.1) is irreconcilable then for its two arbitrary linearly independent regular solutions $\left(\phi_{m}(t), \psi_{m}(t)\right), m=1,2$ the equalities

$$
\limsup _{t \rightarrow+\infty} \frac{\left|\phi_{1}(t)\right|}{\left|\phi_{2}(t)\right|}=\limsup _{t \rightarrow+\infty} \frac{\left|\phi_{2}(t)\right|}{\left|\phi_{1}(t)\right|}=+\infty
$$

are valid;
III) If the system (4.1) is sub extremal then there exists a regular solution $\left(\phi_{*}(t), \psi_{*}(t)\right)$ of (4.1) such that for every regular solutions $\left(\phi_{m}(t), \psi_{m}(t)\right), m=1,2$ of 4.1) linearly independent of $\left(\phi_{*}(t), \psi_{*}(t)\right)$ the relations

$$
\begin{array}{ll}
\limsup _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{\left|\phi_{1}(t)\right|}<+\infty, & \liminf _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{\left|\phi_{1}(t)\right|}=0 \\
\limsup _{t \rightarrow+\infty} \frac{\left|\phi_{1}(t)\right|}{\left|\phi_{2}(t)\right|}<+\infty, & \limsup _{t \rightarrow+\infty} \frac{\left|\phi_{2}(t)\right|}{\left|\phi_{1}(t)\right|}<+\infty
\end{array}
$$

are valid;
IV) if the system 4.1 is super extremal then there exist two regular solutions $\left(\phi_{*}(t), \psi_{*}(t)\right)$ and $\left(\phi^{*}(t), \psi^{*}(t)\right)$ of (4.1) such that

$$
\limsup _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{\left|\phi^{*}(t)\right|}=\limsup _{t \rightarrow+\infty} \frac{\left|\phi^{*}(t)\right|}{\left|\phi_{*}(t)\right|}=+\infty
$$

and for all two arbitrary solutions $\left(\phi_{m}(t), \psi_{m}(t)\right), m=1,2$ of (4.1) linearly independent of each $\left(\phi_{*}(t), \psi_{*}(t)\right)$ and $\left(\phi^{*}(t), \psi^{*}(t)\right)$ the following relations are
valid

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \frac{\left|\phi_{1}(t)\right|}{\left|\phi_{2}(t)\right|}<+\infty, \quad \limsup _{t \rightarrow+\infty} \frac{\left|\phi_{2}(t)\right|}{\left|\phi_{1}(t)\right|}<+\infty \\
& \limsup _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{\left|\phi_{m}(t)\right|}<+\infty, \quad \limsup _{t \rightarrow+\infty} \frac{\left|\phi^{*}(t)\right|}{\left|\phi_{m}(t)\right|}<+\infty \\
& \liminf _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{\left|\phi_{m}(t)\right|}=\liminf _{t \rightarrow+\infty} \frac{\left|\phi^{*}(t)\right|}{\left|\phi_{m}(t)\right|}=0, \quad m=1,2
\end{aligned}
$$

Theorem 4.1 shows that in the normal case of the system (4.1) all regular solutions of (4.1) are asymptotically equivalent. This case differs from the other cases by the scarcity of asymptotic behavior patterns at $+\infty$ of the solutions of the system (4.1). In the supercritical case of 4.1) we have "the richest" (among the other cases) variety of asymptotic behavior pattern at $+\infty$ of regular solutions of the system (4.1)

Let
$a_{12}(t)=a_{0}(t)+i a_{1}(t)+j a_{2}(t)+k a_{3}(t), \quad-a_{22}(t)=b_{0}(t)+i b_{1}(t)+j b_{2}(t)+k b_{3}(t)$,
$a_{11}(t)=c_{0}(t)+i c_{1}(t)+j c_{2}(t)+k c_{3}(t), \quad-a_{21}(t)=d_{0}(t)+i d_{1}(t)+j d_{2}(t)+k d_{3}(t)$. where $a_{m}(t), b_{m}(t), c_{m}(t)$ and $d_{m}(t), m=\overline{0,3}$ are real-valued continuous functions on $\left[t_{0},+\infty\right)$. Set:

$$
\begin{aligned}
& p_{0, m}(t) \equiv b_{m}(t)+c_{m}(t), \quad m=\overline{1,3} \\
& p_{11}(t) \equiv b_{1}(t)+c_{1}(t), \quad p_{12}(t) \equiv b_{2}(t)-c_{2}(t), \\
& p_{13}(t) \equiv b_{3}(t)-c_{3}(t), \quad p_{21}(t) \equiv b_{1}(t)-c_{1}(t), \\
& p_{22}(t) \equiv b_{2}(t)+c_{2}(t), \quad p_{23}(t) \equiv b_{3}(t)-c_{3}(t), \\
& p_{3 m}(t) \equiv b_{m}(t)-c_{m}(t), \quad m=\overline{1,3}, \quad t \geq t_{0}, \\
& D_{0}(t) \equiv \begin{cases}\sum_{m=1}^{3} p_{0 m}^{2}(t)+4 a_{0}(t) d_{0}(t), & \text { if } a_{0}(t) \neq 0, \\
4 d_{0}(t) & \text { if } a_{0}(t)=0,\end{cases} \\
& D_{n}(t) \equiv \begin{cases}\sum_{m=1}^{3} p_{n m}^{2}(t)-4 a_{n}(t) d_{n}(t), & \text { if } a_{n}(t) \neq 0, \\
-4 d_{n}(t) & \text { if } a_{n}(t)=0, \quad n-\overline{1,3}, t \geq t_{0} .\end{cases}
\end{aligned}
$$

Let \mathfrak{S} be a non empty subset of the set $\{0,1,2,3\}$ and let \mathfrak{D} be its complement i. e. $\mathfrak{D}=\{0,1,2,3\} \backslash \mathfrak{S}$.

Theorem 4.2. Let the conditions
a) $a_{n}(t) \geq 0, t \geq t_{0}, n \in \mathfrak{S}$ and if $a_{n}(t)=0$ then $p_{n m}(t)=0, m \in \mathfrak{S}, a_{n}(t) \equiv 0$, $n \in \mathfrak{D}, D_{n}(t) \leq 0, t \geq t_{0}, n=\overline{0,3} ;$
$\beta) \quad \int_{t_{0}}^{+\infty}\left|a_{12}(\tau)\right| \exp \left\{\int_{t_{0}}^{t}\left[\operatorname{Re} a_{22}(s)-\operatorname{Re} a_{11}(s)\right] d s\right\} d \tau<+\infty$.
be satisfied. Then the following statements are valid:

1) the system (4.1) is or else normal or else extremal:
2) for all T-regular ($T \geq t_{0}$) non principal solutions $(\phi(t), \psi(t))$ of the system (4.1) the integral

$$
\int_{T}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{|\phi(\tau)|^{2}} \exp \left\{\int_{T}^{\tau}\left[\operatorname{Re} a_{11}(s)+\operatorname{Re} a_{22}(s)\right] d s\right\} d \tau
$$

converges;
3) if the system (4.1) is extremal, then:
3_{1}) for its unique (up to arbitrary right multiplier) principal solution $\left(\phi_{*}(t), \psi_{*}(t)\right)$ the equality

$$
\begin{equation*}
\int_{T_{*}}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{\left|\phi_{*}(\tau)\right|^{2}} \exp \left\{\int_{T_{*}}^{\tau}\left[\operatorname{Re} a_{11}(s)+\operatorname{Re} a_{22}(s)\right] d s\right\} d \tau=+\infty \tag{4.6}
\end{equation*}
$$

is valid, where $T_{*} \geq t_{0}$ such that $\phi_{*}(t) \neq 0, t \geq T_{*}$;
3_{2}) for all non principal solutions $(\phi(t), \psi(t))$ of the system (4.1) the equality

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{|\phi(t)| \mid}=0 \tag{4.7}
\end{equation*}
$$

is valid;
3_{3}) for two arbitrary non principal solutions $\left(\phi_{m}(t), \psi_{m}(t)\right), m=1,2$ of the system (4.1) the relation

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{\left|\phi_{1}(t)\right|}{\left|\phi_{2}(t)\right| \mid}=c \neq 0 \tag{4.8}
\end{equation*}
$$

is valid.
To prove this theorem we need in the following result from [11] (see [11, Theorem 3.1])

Theorem 4.3. Let the conditions α) of Theorem 4.2 be satisfied. Then for all $\gamma_{n} \geq 0, n \in \mathfrak{S}$, $\quad \gamma_{n} \in(-\infty,+\infty), n \in \mathfrak{D}$ Eq. 4.2) has a solution $\mathfrak{q}_{0}(t)=$ $\mathfrak{q}_{0,0}(t)-i \mathfrak{q}_{0,1}(t)-j \mathfrak{q}_{0,2}(t)-k \mathfrak{q}_{0,3}(t)$ on $\left[t_{0},+\infty\right)$ with $\mathfrak{q}_{0, n}\left(t_{0}\right)=\gamma_{n}, n=\overline{0,3}$ and $\mathfrak{q}_{0, n}(t) \geq 0, n \in \mathfrak{S}, t \geq t_{0}$.

Proof of Theorem 4.2, Let $q_{0}(t)$ be the solution of Eq. 4.2) with $q_{0}(t)=0$. In virtue of Theorem 4.3 it follows from the conditions α) of the theorem that $q_{0}(t)$ is t_{0}-regular and

$$
\begin{equation*}
\operatorname{Re}\left[a_{12}(t) q_{0}(t)\right] \geq 0, \quad t \geq t_{0} \tag{4.9}
\end{equation*}
$$

Consider the integral

$$
\widetilde{\nu}_{q_{0}}(t) \equiv \int_{t}^{+\infty} \phi_{q_{0}}^{-1}(\tau) a_{12}(\tau) \psi_{q_{0}}^{-1}(\tau) d \tau, \quad t \geq t_{0}
$$

where $\phi_{q_{0}}(t)$ and $\psi_{q_{0}}(t)$ are the solutions of the linear equations

$$
\begin{array}{ll}
\phi^{\prime} & =\left[a_{12}(t) q_{0}(t)+a_{11}(t)\right] \phi, \tag{4.10}\\
\psi^{\prime} & =\psi\left[q_{0}(t) a_{12}(t)-a_{22}(t)\right], \\
t \geq t_{0}
\end{array}
$$

respectively with $\phi_{q_{0}}\left(t_{0}\right)=\psi_{q_{0}}\left(t_{0}\right)=1$. By 2.7) and 2.8) we have respectively

$$
\begin{align*}
& \left|\phi_{q_{0}}(t)\right|=\exp \left\{\int_{t_{0}}^{t} \operatorname{Re}\left[a_{12}(\tau) q_{0}(\tau)+a_{11}(\tau)\right]\right\}, \\
& \left|\psi_{q_{0}}(t)\right|=\exp \left\{\int_{t_{0}}^{t} \operatorname{Re}\left[a_{12}(\tau) q_{0}(\tau)-a_{22}(\tau)\right]\right\}, \quad t \geq t_{0} \tag{4.11}
\end{align*}
$$

Hence,

$$
\begin{align*}
& \text { (4.12) }\left|\widetilde{\nu}_{q_{0}}(t)\right| \leq \int_{t}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{\left|\phi_{q_{0}}(\tau)\right|\left|\psi_{q_{0}}(\tau)\right|} d \tau \tag{4.12}\\
& =\int_{t}^{+\infty}\left|a_{12}(\tau)\right| \exp \left\{-\int_{t_{0}}^{\tau}\left[2 \operatorname{Re} a_{12}(s) q_{0}(s)+\operatorname{Re} a_{11}(s)-\operatorname{Re} a_{22}(s)\right] d s\right\} d \tau, \quad t \geq t_{0} .
\end{align*}
$$

This together with (4.9) and β) implies that

$$
\begin{equation*}
\left|\widetilde{\nu}_{q_{0}}(t)\right| \leq \int_{t}^{+\infty}\left|a_{12}(\tau)\right| \exp \left\{\int_{t_{0}}^{\tau}\left[\operatorname{Re} a_{22}(s)-\operatorname{Re} a_{11}(s)\right] d s\right\} d \tau<+\infty \quad t \geq t_{0} \tag{4.13}
\end{equation*}
$$

It follows from here that the integrals $\widetilde{\nu}_{q_{0}}(t), t \geq t_{0}$ converge. Two cases are possible:
a) $\widetilde{\nu}_{q_{0}}(t)$ has arbitrary large zeroes;
b) $\widetilde{\nu}_{q_{0}}(t) \neq 0, t \geq T_{0}$ for some $T_{0} \geq t_{0}$.

Then by Theorem 3.3 the system (4.1) is or else normal (in the case a)) or else extremal (in the case b)). The statement 1) of the theorem is proved. Let $\left(\phi_{0}(t), \psi_{0}(t)\right)$ be the solution of the system 4.1 with $\phi_{0}\left(t_{0}\right)=1, \psi_{0}\left(t_{0}\right)=0$. Then by 4.3) $\phi_{0}(t)$ is a solution of Eq. 4.10. So $\phi_{0}(t)$ coincides with $\phi_{q_{0}}(t)$. Therefore from β), (4.9) and (4.11) it follows

$$
\begin{align*}
& \int_{t}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{\left|\phi_{0}(\tau)\right|^{2}} \exp \left\{\int_{t_{0}}^{\tau}\left[\operatorname{Re} a_{11}(s)+\text { Re } a_{22}(s)\right] d s\right\} d \tau \tag{4.14}\\
& \leq \int_{t}^{+\infty}\left|a_{12}(\tau)\right| \exp \left\{\int_{t_{0}}^{\tau}\left[\operatorname{Re} a_{22}(s)-R e a_{11}(s)\right] d s\right\} d \tau<+\infty, \quad t \geq t_{0}
\end{align*}
$$

Let $(\phi(t), \psi(t))$ be a T-regular $\left(T \geq t_{0}\right)$ non principal solution of the system (4.1). Then $q(t) \equiv \psi(t) \phi^{-1}(t), t \geq T$ is a T-normal solution of Eq. 4.2). It follows from
(4.13) that $\mu_{q_{0}}(T ; t)$ is bounded on $[T,+\infty)$. Hence, according to the statement 1) of Corollary 3.1 we have

$$
\sup _{t \geq T}\left|\int_{T}^{t} \operatorname{Re}\left[a_{12}(\tau)\left(q_{0}(\tau)-q(\tau)\right)\right] d \tau\right|<+\infty
$$

This together with 4.10 implies

$$
\begin{aligned}
& \int_{T}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{|\phi(\tau)|^{2}} \exp \left\{\int_{T}^{\tau}\left[\operatorname{Re} a_{11}(s)+\operatorname{Re} a_{22}(s)\right] d s\right\} d \tau \\
& \quad=\int_{T}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{\left|\phi_{0}(\tau)\right|^{2}} \exp \left\{\int_{T}^{\tau}\left[\operatorname{Re} a_{11}(s)+\operatorname{Re} a_{22}(s)\right] d s\right\} \\
& \quad \times \exp \left\{2 \int_{T}^{\tau} R e\left[a_{12}(s)\left(q_{0}(s)-q(s)\right)\right] d s\right\} d \tau \\
& \quad \leq M \int_{T}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{\left|\phi_{0}(\tau)\right|^{2}} \exp \left\{\int_{t_{0}}^{\tau}\left[\operatorname{Re} a_{11}(s)+\operatorname{Re} a_{22}(s)\right] d s\right\} d \tau<+\infty
\end{aligned}
$$

where

$$
\begin{aligned}
M \equiv & \exp \left\{-\int_{t_{0}}^{T}\left[\operatorname{Re} a_{11}(s)+\operatorname{Re} a_{22}(s)\right] d s\right\} \\
& \left.\times \exp \left\{2 \sup _{t \geq T} \mid \int_{t_{0}}^{\tau} \operatorname{Re}\left[a_{12}(s)\left(q_{(} s\right)-q(s)\right)\right] d s \mid\right\}<+\infty
\end{aligned}
$$

The statement 2) of the theorem is proved. Assume the system (4.1) is extremal. Then Eq. (4.2) has the unique extremal solution $q_{*}(t)$. Let $q_{*}(t)$ be T_{*}-regular for some $T_{*} \geq t_{0}$ and let $\left(\phi_{*}(t), \psi_{*}(t)\right)$ be the solution of the system (4.1) with $\phi_{*}\left(T_{*}\right)=1, \quad \psi_{*}\left(T_{*}\right)=q_{*}\left(T_{*}\right)$. Then by 4.3) $\left(\phi_{*}(t), \psi_{*}(t)\right)$ is the unique (up to arbitrary right multiplier) principal solution of the system (4.1) and $\phi_{*}(t)$ is a solution of the linear equation

$$
\begin{equation*}
\phi^{\prime}=\left[a_{12}(t) q_{*}(t)+a_{11}(t)\right] \phi, \quad t \geq T_{*} . \tag{4.15}
\end{equation*}
$$

Consider the integral

$$
\widetilde{\nu}_{q_{*}}\left(T_{*}\right) \equiv \int_{T_{*}}^{+\infty} \phi_{q_{*}}^{-1}(\tau) a_{12}(\tau) \psi_{q_{*}}^{-1}(\tau) d \tau
$$

where $\phi_{q_{*}}(t)$ and $\psi_{q_{*}}(t)$ are the solutions of Eq. 4.15 and the equation

$$
\psi^{\prime}=\psi\left[q_{*}(t) a_{12}(t)-a_{22}(t)\right], \quad t \geq T_{*}
$$

respectively with $\phi_{q_{*}}\left(T_{*}\right)=\psi_{q_{*}}\left(T_{*}\right)=1$. Since $q_{*}(t)$ is extremal in virtue of Theorem 3.3 we have

$$
\begin{equation*}
\widetilde{\nu}_{q_{*}}\left(T_{*}\right)=\infty . \tag{4.16}
\end{equation*}
$$

By (2.7) and (2.8) we have respectively

$$
\begin{aligned}
& \left|\phi_{q_{*}}(t)\right|=\exp \left\{\int_{T_{*}}^{t} \operatorname{Re}\left[a_{12}(\tau) q_{*}(\tau)+a_{11}(\tau)\right] d \tau\right\}, \quad t \geq T_{*} \\
& \left|\psi_{q_{*}}(t)\right|=\exp \left\{\int_{T_{*}}^{t} \operatorname{Re}\left[a_{12}(\tau) q_{*}(\tau)-a_{22}(\tau)\right] d \tau\right\}, \quad t \geq T_{*}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|\psi_{q_{*}}(t)\right|=\left|\phi_{q_{*}}(t)\right| \exp \left\{-\int_{T_{*}}^{t} \operatorname{Re}\left[a_{11}(\tau)+a_{22}(\tau)\right] d \tau\right\}, \quad t \geq T_{*} \tag{4.17}
\end{equation*}
$$

Obviously $\phi_{*}(t)=\phi_{q_{*}}(t), t \geq T_{*}$. This together with 4.17) implies

$$
\left|\widetilde{\nu}_{q_{*}}\left(T_{*}\right)\right| \leq \int_{T_{*}}^{+\infty} \frac{\left|a_{12}(\tau)\right|}{\left|\phi_{*}(\tau)\right|^{2}} \exp \left\{\int_{T_{*}}^{\tau} \operatorname{Re}\left[a_{11}(s)+a_{22}(s)\right] d s\right\} d \tau
$$

From here and from (4.16) it follows 4.6. Let $(\phi(t), \psi(t))$ be a non principal solution of the system (4.1). Without loss of generality we may take that $(\phi(t), \psi(t))$ is T_{*}-regular. Then $q(t) \equiv \psi(t) \phi^{-1}(t), t \geq T_{*}$ is a T_{*}-normal solution of Eq. 4.2. By (3.7) from here it follows

$$
\int_{T_{*}}^{+\infty} \operatorname{Re}\left[a_{12}(\tau)\left(q_{*}(\tau)-q(\tau)\right)\right] d \tau=-\infty
$$

By (2.7) from here we obtain 4.7):

$$
\lim _{t \rightarrow+\infty} \frac{\left|\phi_{*}(t)\right|}{|\phi(t)|}=\lim _{t \rightarrow+\infty} \exp \left\{\int_{T_{*}}^{t} \operatorname{Re}\left[a_{12}(\tau)\left(q_{*}(\tau)-q(\tau)\right)\right] d \tau\right\}=0
$$

Let $\left(\phi_{m}(t), \psi_{m}(t)\right), m=1,2$ be non principal T-regular $\left(T \geq t_{0}\right)$ solutions of the system (4.1). By (4.3) $q_{m}(t)=\psi_{m}(t) \phi_{m}^{-1}(t), t \geq T, m=1,2$ are T-normal solutions of Eq. (4.2). Then according to the statement 4) of Theorem 3.3 the integral

$$
\int_{T}^{+\infty} \operatorname{Re}\left[a_{12}(\tau)\left(q_{1}(\tau)-q_{2}(\tau)\right)\right] d \tau
$$

converges. By 2.7 from here it follows 4.8. The theorem is proved.

Remark 4.5. From the estimate 4.13 is seen that if $\operatorname{supp} a_{12}(t)$ is bounded, then $\widetilde{\nu}_{q_{0}}(t)$ has arbitrary large zeroes. Hence in this case under the conditions of Theorem 4.2 the system is normal. If $\operatorname{supp} a_{12}(t)$ is unbounded and the coefficients of the system (4.1) are real-valued, then it is not difficult to verify that under the conditions of Theorem 4.1 $\widetilde{\nu}_{q_{0}}(t) \neq 0, t \geq t_{0}$. So in this case 4.1) is extremal.

References

[1] Campos, J., Mavhin, J., Periodic solutions of quaternionic-valued ordinary differential equations, Ann. Math. 185 (2006), 109-127.
[2] Christianto, V., Smarandache, F., An exact mapping from Navier-Stocks equation to Schrodinger equation via Riccati equation, Progr. Phys. 1 (2008), 38-39.
[3] Egorov, A.I., Riccati equations, Moskow, Fizmatlit, 2001.
[4] Gibbon, J.D., Holm, D.D., Kerr, R.M., Roulstone, I., Quaternions and periodic dynamics in the Euler fluid equations, Nonlinearity 19 (2006), 1962-1983.
[5] Grigorian, G. A., Some properties of the solutions of third order linear ordinary differential equations, Rocky Mountain J. Math. 46 (1) (2016), 147-161.
[6] Grigorian, G.A., On some properties of solutions of the Riccati equation, Izv. Nats. Akad. Nauk Armenii Mat. 42 (4) (2007), 11-26, translation in J. Contemp. Math. Anal. 42 (2007), no. 4, 184-197.
[7] Grigorian, G.A., On the stability of systems of two first-order linear ordinary differential equations, Differ. Uravn. 51 (3) (2015), 283-292.
[8] Grigorian, G.A., Necessary conditions and a test for the stability of a system of two linear ordinary differential equations of the first order, Differ. Uravn. 52 (3) (2016), 292-300.
[9] Grigorian, G.A., On one oscillatory criterion for the second order linear ordinary differential equations, Opuscula Math. 36 (5) (2016), 589-601, http://dx.doi.org/10.7494/OpMath 2016.36.5.589
[10] Grigorian, G.A., Oscillatory criteria for the second order linear ordinary differential equations, Math. Slovaca 69 (2019), 1-14.
[11] Grigorian, G.A., Global solvability criteria for quaternionic Riccati equations, Arch. Math. (Brno) 57 (2021), 83-99.
[12] Leschke, K., Moriya, K., Applications of quaternionic holomorphic geometry to minimal surfaces, Complex manifolds 3 (1) (2016), 282-300.
[13] Wilzinski, P., Quaternionic-valued differential equations. The Riccati equations, J. Differential Equations 247 (2009), 2167-2187.
[14] Zoladek, H., Classification of diffeomorphisms of \mathbb{S}^{4} induced by quaternionic Riccati equations with periodic coefficients, Topol. Methods Nonlinear Anal. 33 (2) (2009), 205-215.

Institute of Mathematics NAS of Armenia
E-mail: mathphys2@instmath.sci.am

[^0]: 2020 Mathematics Subject Classification: primary 34L30; secondary 34C99.
 Key words and phrases: quaternions, the matrix representation of quaternions, quaternionic Riccati equations, regular, normal and extremal solutions of Riccati equations, normal, irreconci-lable, sub extremal and super extremal systems, principal and non principal solutions.

 Received June 9, 2021. Editor R. Šimon Hilscher.
 DOI: 10.5817/AM2022-2-115

