INITIAL COEFFICIENTS FOR GENERALIZED SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED WITH SUBORDINATION

Gagandeep Singh ${ }^{1}$, Gurcharanjit Singh ${ }^{2}$, and Gurmeet Singh ${ }^{3}$

Abstract

This paper is concerned with certain generalized subclasses of bi-univalent functions defined with subordination in the open unit disc $E=$ $\{z:|z|<1\}$. The bounds for the initial coefficients for the functions in these classes are studied. The earlier known results follow as special cases.

1. Introduction

Let \mathcal{A} denote the class of analytic functions f having Taylor-Maclaurin series of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

defined in the unit disc $E=\{z:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. Further, the class of functions $f \in \mathcal{A}$ and univalent in E, is denoted by \mathcal{S}. By \mathcal{U}, we denote the class of Schwarz functions of the form $u(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$, which are analytic in the unit disc E and satisfy the conditions $u(0)=0$ and $|u(z)|<1$.

For $\delta \geq 1$ and $f \in \mathcal{A}$, Al-Oboudi [2] introduced the following differential operator:

$$
\begin{aligned}
& D_{\delta}^{0} f(z)=f(z) \\
& D_{\delta}^{1} f(z)=(1-\delta) f(z)+\delta z f^{\prime}(z)
\end{aligned}
$$

and in general,

$$
D_{\delta}^{n} f(z)=D\left(D_{\delta}^{n-1} f(z)\right)=(1-\delta) D_{\delta}^{n-1} f(z)+\delta z\left(D_{\delta}^{n-1} f(z)\right)^{\prime}, n \in \mathcal{N}
$$

or equivalent to

$$
D_{\delta}^{n} f(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \delta]^{n} a_{k} z^{k}, n \in \mathcal{N}_{0}=\mathcal{N} \cup\{0\}
$$

[^0]with $D_{\delta}^{n} f(0)=0$. For $\delta=1$, the operator $D_{\delta}^{n} f(z)$ reduces to the Sãããgean operator introduced in [13.

Let f and g be two analytic functions in E. Then f is said to be subordinate to g (symbolically $f \prec g$) if there exists a Schwarz function $u(z) \in \mathcal{U}$ such that $f(z)=g(u(z))$. Further, if g is univalent in E, then $f \prec g$ is equivalent to $f(0)=g(0)$ and $f(E) \subset g(E)$.

It is obvious that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z(z \in E)
$$

and

$$
f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f): r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in E if both f and f^{-1} are univalent in E. The class of functions bi-univalent in E and given by (1) is denoted by Σ. Some examples of the functions in the class Σ are $\frac{z}{\frac{1}{z}-z},-\log (1-z), \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$. But, the well known Koebe function $f(z)=\frac{z}{(1-z)^{2}}$ is not a member of Σ.

Lewin [9] was the first, who investigated the class Σ and proved that $\left|a_{2}\right|<1.51$. Subsequently, bounds for the initial coefficients of various sub-classes of bi-univalent functions were studied by various authors in [4, 5, 8, 10, 11 , and more recently by Abirami et al. [1], Sivapalan et al. [18] and Singh et al. [15]-[17].

In the sequel, we lay down once and for all that $0 \leq \alpha \leq 1, \lambda \geq 0,0<\beta \leq 1$, $0 \leq \eta<1, \delta \geq 1,-1 \leq B<A \leq 1, z \in E, w \in E$ and $g(w)=f^{-1}(w)=$ $w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots$

Definition 1.1. A function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta}(A, B ; s, t)$ if the following conditions are satisfied:

$$
(1-\alpha) \frac{(s-t) z\left[f^{\prime}(z)\right]^{\lambda}}{f(s z)-f(t z)}+\alpha \frac{(s-t)\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(s z)-f(t z))^{\prime}} \prec\left(\frac{1+A z}{1+B z}\right)^{\beta}
$$

and

$$
(1-\alpha) \frac{(s-t) w\left[g^{\prime}(w)\right]^{\lambda}}{g(s w)-g(t w)}+\alpha \frac{(s-t)\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(s w)-g(t w))^{\prime}} \prec\left(\frac{1+A w}{1+B w}\right)^{\beta}
$$

where $s, t \in \mathcal{C}$ with $s \neq t,|t| \leq 1$.
The following observations are obvious:
(i) $\mathcal{S}_{\Sigma}^{1, \alpha, \beta}(A, B ; 1,-1) \equiv \mathcal{M}_{\Sigma}^{s}(\beta, \alpha ; A, B)$, the class studied by Singh [14].
(ii) $\mathcal{S}_{\Sigma}^{\lambda, 0, \beta}(1,-1 ; s, t) \equiv \mathcal{S}_{\Sigma}^{\lambda, \beta}(s, t)$, the class studied by Mazi and Opoola 12.
(iii) For $0 \leq \gamma<1, \mathcal{S}_{\Sigma}^{\lambda, 0,1}(1-2 \gamma,-1 ; s, t) \equiv \mathcal{S}_{\Sigma}^{\lambda}(\gamma, s, t)$, the class studied by Mazi and Opoola [12].
(iv) $\mathcal{S}_{\Sigma}^{\lambda, 0, \beta}(1,-1 ; 1,0) \equiv \mathcal{S}_{\Sigma}^{\lambda, \beta}$, the class studied by Joshi and Pawar [7].
(v) For $0 \leq \gamma<1, \mathcal{S}_{\Sigma}^{\lambda, 0,1}(1-2 \gamma,-1 ; 1,0) \equiv \mathcal{S}_{\Sigma}^{\lambda}(\gamma)$, the class studied by Joshi and Pawar [7].

Definition 1.2. A function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma}^{\lambda}(k, \beta ; A, B)$ if the following conditions are satisfied:

$$
\frac{z\left[\left(D^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D^{k} f(z)} \prec\left(\frac{1+A z}{1+B z}\right)^{\beta}
$$

and

$$
\frac{w\left[\left(D^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D^{k} g(w)} \prec\left(\frac{1+A w}{1+B w}\right)^{\beta}
$$

Specifically,
(i) $\mathcal{S}_{\Sigma}^{\lambda}(k, \beta ; 1,-1) \equiv \mathcal{S}_{\Sigma}^{\lambda}(k, \beta)$, the class studied by Joshi et al. [6].
(ii) For $0 \leq \gamma<1, \mathcal{S}_{\Sigma}^{\lambda}(k, 1 ; 1-2 \gamma,-1) \equiv \mathcal{S}_{\Sigma}^{\lambda}(k, \gamma)$, the class studied by Joshi et al. 6.

Definition 1.3. A function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta, \eta}(A, B ; s, t)$ if the following conditions are satisfied:

$$
(1-\alpha) \frac{(s-t) z\left[f^{\prime}(z)\right]^{\lambda}}{f(s z)-f(t z)}+\alpha \frac{(s-t)\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(s z)-f(t z))^{\prime}} \prec\left(\frac{1+[B+(A-B)(1-\eta)] z}{1+B z}\right)^{\beta}
$$

and
$(1-\alpha) \frac{(s-t) w\left[g^{\prime}(w)\right]^{\lambda}}{g(s w)-g(t w)}+\alpha \frac{(s-t)\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(s w)-g(t w))^{\prime}} \prec\left(\frac{1+[B+(A-B)(1-\eta)] w}{1+B w}\right)^{\beta}$, where $s, t \in \mathcal{C}$ with $s \neq t,|t| \leq 1$.
In particular, $\mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta, 0}(A, B ; s, t) \equiv \mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta}(A, B ; s, t)$.
Definition 1.4. A function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma}^{\lambda, \delta, \eta}(k, \beta ; A, B)$ if the following conditions are satisfied:

$$
\frac{z\left[\left(D_{\delta}^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D_{\delta}^{k} f(z)} \prec\left(\frac{1+[B+(A-B)(1-\eta)] z}{1+B z}\right)^{\beta}
$$

and

$$
\frac{w\left[\left(D_{\delta}^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D_{\delta}^{k} g(w)} \prec\left(\frac{1+[B+(A-B)(1-\eta)] w}{1+B w}\right)^{\beta}
$$

Particularly, $\mathcal{S}_{\Sigma}^{\lambda, 1,0}(k, \beta ; A, B) \equiv \mathcal{S}_{\Sigma}^{\lambda}(k, \beta ; A, B)$.
For deriving our main results, we need to the following lemma

Lemma 1.1 ([[] $]$). If $p(z)=\frac{1+[B+(A-B)(1-\eta)] u(z)}{1+B u(z)}=1+\sum_{k=1}^{\infty} p_{k} z^{k}$, $u(z) \in \mathcal{U}$, then

$$
\left|p_{n}\right| \leq(A-B)(1-\eta), \quad n \geq 1
$$

2. The Class $\mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta, \eta}(A, B ; s, t)$

Theorem 2.1. If $f \in \mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta, \eta}(A, B ; s, t)$, then
(2) $\left|a_{2}\right| \leq$
$\frac{\beta \sqrt{2(A-B)(1-\eta)}}{\sqrt{\beta\left[(2 \lambda-4 \lambda(s+t-\lambda)+2 s t)+2 \alpha\left(\left(s^{2}+4 s t+t^{2}\right)-6 \lambda(s+t-\lambda)\right)\right]-(\beta-1)(1+\alpha)^{2}(2 \lambda-s-t)^{2}}}$ and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\beta(A-B)(1-\eta)}{(1+2 \alpha)\left(3 \lambda-s^{2}-s t-t^{2}\right)}+\frac{(A-B)^{2}(1-\eta)^{2} \beta^{2}}{(1+\alpha)^{2}(2 \lambda-s-t)^{2}} \tag{3}
\end{equation*}
$$

Proof. From Definition 1.3, by principle of subordination, we have

$$
(1-\alpha) \frac{(s-t) z\left[f^{\prime}(z)\right]^{\lambda}}{f(s z)-f(t z)}+\alpha \frac{(s-t)\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(s z)-f(t z))^{\prime}}
$$

$$
\begin{equation*}
=\left(\frac{1+[B+(A-B)(1-\eta)] u(z)}{1+B u(z)}\right)^{\beta}=[p(z)]^{\beta}, u \in \mathcal{U} \tag{4}
\end{equation*}
$$

and
$(1-\alpha) \frac{(s-t) w\left[g^{\prime}(w)\right]^{\lambda}}{g(s w)-g(t w)}+\alpha \frac{(s-t)\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(s w)-g(t w))^{\prime}}$

$$
\begin{equation*}
=\left(\frac{1+[B+(A-B)(1-\eta)] v(w)}{1+B v(w)}\right)^{\beta}=[q(w)]^{\beta}, v \in \mathcal{U} \tag{5}
\end{equation*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ and $q(w)=1+q_{1} w+q_{2} w^{2}+\ldots$.
On expanding and equating the coefficients of z and z^{2} in (4) and of w and w^{2} in (5), we obtain

$$
\begin{equation*}
(1+\alpha)(2 \lambda-s-t) a_{2}=\beta p_{1} \tag{6}
\end{equation*}
$$

$$
(1+3 \alpha)\left[\left(s^{2}+2 s t+t^{2}\right)-2 \lambda(s+t-\lambda+1)\right] a_{2}^{2}+(1+2 \alpha)\left(3 \lambda-s^{2}-s t-t^{2}\right) a_{3}
$$

$$
\begin{equation*}
=\beta p_{2}+\frac{\beta(\beta-1) p_{1}^{2}}{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
-(1+\alpha)(2 \lambda-s-t) a_{2}=\beta q_{1} \tag{8}
\end{equation*}
$$

$$
\left[\left(6 \lambda-s^{2}-t^{2}\right)-2 \lambda(s+t-\lambda+1)-\alpha\left(6 \lambda(s+t-\lambda-1)+(s-t)^{2}\right)\right] a_{2}^{2}
$$

$$
\begin{equation*}
-(1+2 \alpha)\left(3 \lambda-s^{2}-s t-t^{2}\right) a_{3}=\beta q_{2}+\frac{\beta(\beta-1) q_{1}^{2}}{2} \tag{9}
\end{equation*}
$$

(6) and (8) together gives

$$
\begin{equation*}
p_{1}=-q_{1} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+\alpha)^{2}(2 \lambda-s-t)^{2} a_{2}^{2}=\beta^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{11}
\end{equation*}
$$

Adding (7) and (9) and using (11), it yields

$$
\begin{align*}
{[(2 \lambda-4 \lambda(s+t-\lambda)+2 s t)} & \left.+2 \alpha\left(\left(s^{2}+4 s t+t^{2}\right)-6 \lambda(s+t-\lambda)\right)\right] a_{2}^{2} \\
= & \beta\left(p_{2}+q_{2}\right)+\frac{(\beta-1)(1+\alpha)^{2}(2 \lambda-s-t)^{2} a_{2}^{2}}{\beta} . \tag{12}
\end{align*}
$$

(12) gives
(13) $a_{2}^{2}=$

$$
\frac{\beta^{2}\left(p_{2}+q_{2}\right)}{\beta\left[(2 \lambda-4 \lambda(s+t-\lambda)+2 s t)+2 \alpha\left(\left(s^{2}+4 s t+t^{2}\right)-6 \lambda(s+t-\lambda)\right)\right]-(\beta-1)(1+\alpha)^{2}(2 \lambda-s-t)^{2}} .
$$

On applying Lemma 1.1 to the coefficients p_{2} and q_{2}, we can easily obtain (2).
Now subtracting (9) from (7), we get
(14) $-2(1+2 \alpha)\left(3 \lambda-s^{2}-s t-t^{2}\right) a_{2}^{2}+2(1+2 \alpha)\left(3 \lambda-s^{2}-t^{2}-s t\right) a_{3}=\beta\left(p_{2}-q_{2}\right)$.

Using (10) and (11) in (14), using Lemma 1.1 and on applying triangle inequality, (3) can be easily obtained.

On putting $\eta=0$, Theorem 2.1] gives the following result:
Corollary 2.1. If $f \in \mathcal{S}_{\Sigma}^{\lambda, \alpha, \beta}(A, B ; s, t)$, then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \\
& \frac{\beta \sqrt{2(A-B)}}{\sqrt{\beta\left[(2 \lambda-4 \lambda(s+t-\lambda)+2 s t)+2 \alpha\left(\left(s^{2}+4 s t+t^{2}\right)-6 \lambda(s+t-\lambda)\right)\right]-(\beta-1)(1+\alpha)^{2}(2 \lambda-s-t)^{2}}}
\end{aligned}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta(A-B)}{(1+2 \alpha)\left(3 \lambda-s^{2}-s t-t^{2}\right)}+\frac{(A-B)^{2} \beta^{2}}{(1+\alpha)^{2}(2 \lambda-s-t)^{2}} .
$$

For $\eta=0, \lambda=1, s=1, t=-1$, Theorem 2.1 gives the following result due to Singh [14]:
Corollary 2.2. If $f \in \mathcal{M}_{\Sigma}^{s}(\beta, \alpha ; A, B)$, then

$$
\left|a_{2}\right| \leq \frac{\beta \sqrt{A-B}}{\sqrt{2\left((1+\alpha)^{2}-\beta \alpha^{2}\right)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta^{2}(A-B)^{2}}{4(1+\alpha)^{2}}+\frac{\beta(A-B)}{2(1+2 \alpha)}
$$

3. The class $\mathcal{S}_{\Sigma}^{\lambda, \delta, \eta}(k, \beta ; A, B)$

Theorem 3.1. If $f \in \mathcal{S}_{\Sigma}^{\lambda, \delta, \eta}(k, \beta ; A, B)$, then
(15) $\left|a_{2}\right| \leq$

$$
\frac{\beta \sqrt{2(A-B)(1-\eta)}}{\sqrt{4 \beta(3 \lambda-1)(1+2 \delta)^{k}+\left[4 \beta\left(2 \lambda^{2}-4 \lambda+1\right)-(\beta-1)(2 \lambda-1)^{2}(1+\delta)\right](1+\delta)^{2 k}}}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\beta(A-B)(1-\eta)}{(3 \lambda-1)(1+2 \delta)^{k}}+\frac{2 \beta^{2}(A-B)^{2}(1-\eta)^{2}}{(2 \lambda-1)^{2}(1+\delta)^{2 k+1}} \tag{16}
\end{equation*}
$$

Proof. From Definition 1.4, by principle of subordination, we have

$$
\begin{equation*}
\frac{z\left[\left(D_{\delta}^{k} f(z)\right)^{\prime}\right]^{\lambda}}{D_{\delta}^{k} f(z)}=\left(\frac{1+[B+(A-B)(1-\eta)] u(z)}{1+B u(z)}\right)^{\beta}=[p(z)]^{\beta}, u \in \mathcal{U} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[\left(D_{\delta}^{k} g(w)\right)^{\prime}\right]^{\lambda}}{D_{\delta}^{k} g(w)}=\left(\frac{1+[B+(A-B)(1-\eta)] v(w)}{1+B v(w)}\right)^{\beta}=[q(w)]^{\beta}, v \in \mathcal{U} \tag{18}
\end{equation*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ and $q(w)=1+q_{1} w+q_{2} w^{2}+\ldots$.
On expanding and equating the coefficients of z and z^{2} in (17) and of w and w^{2} in (18), we obtain

$$
\begin{equation*}
(2 \lambda-1)(1+\delta)^{k} a_{2}=\beta p_{1} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
(3 \lambda-1)(1+2 \delta)^{k} a_{3}+\left(2 \lambda^{2}-4 \lambda+1\right)(1+\delta)^{2 k} a_{2}^{2}=\beta p_{2}+\frac{\beta(\beta-1) p_{1}^{2}}{2} \tag{20}
\end{equation*}
$$

and

$$
\begin{gather*}
-(2 \lambda-1)(1+\delta)^{k} a_{2}=\beta q_{1} \tag{21}\\
\left.[2(3 \lambda-1)(1+2 \delta))^{k}+\left(2 \lambda^{2}-4 \lambda+1\right)(1+\delta)^{2 k}\right] a_{2}^{2}-(3 \lambda-1)(1+2 \delta)^{k} a_{3}
\end{gather*}
$$

$$
\begin{equation*}
=\beta q_{2}+\frac{\beta(\beta-1) q_{1}^{2}}{2} \tag{22}
\end{equation*}
$$

(19) and (21) together give

$$
\begin{equation*}
p_{1}=-q_{1} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 \lambda-1)^{2}(1+\delta)^{2 k+1} a_{2}^{2}=\beta^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{24}
\end{equation*}
$$

Adding (20) and 22) and using (24), it yields
$\left[2 \beta(3 \lambda-1)(1+2 \delta)^{k}+\left\{2 \beta\left(2 \lambda^{2}-4 \lambda+1\right)-\frac{(\beta-1)}{2}(2 \lambda-1)^{2}(1+\delta)\right\}(1+\delta)^{2 k}\right] a_{2}^{2}$

$$
\begin{equation*}
=\beta^{2}\left(p_{2}+q_{2}\right) . \tag{25}
\end{equation*}
$$

(25) gives
(26) $a_{2}^{2}=$
$\frac{2 \beta^{2}\left(p_{2}+q_{2}\right)}{4 \beta(3 \lambda-1)(1+2 \delta)^{k}+\left\{4 \beta\left(2 \lambda^{2}-4 \lambda+1\right)-(\beta-1)(2 \lambda-1)^{2}(1+\delta)\right\}(1+\delta)^{2 k}}$.
On applying Lemma 1.1 to the coefficients p_{2} and q_{2} in 26), we can easily obtain (15).

Now subtracting (22) from 20, we get

$$
\begin{equation*}
2(3 \lambda-1)(1+2 \delta)^{k} a_{3}-2(3 \lambda-1)(1+2 \delta)^{k} a_{2}^{2}=\beta\left(p_{2}-q_{2}\right) \tag{27}
\end{equation*}
$$

Using (e24), (e27) yields

$$
\begin{equation*}
a_{3}=\frac{\beta^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{(2 \lambda-1)^{2}(1+\delta)^{2 k+1}}+\frac{\beta\left(p_{2}-q_{2}\right)}{2(3 \lambda-1)(1+2 \delta)^{k}} . \tag{28}
\end{equation*}
$$

Applying Lemma 1.1 to the coefficients p_{2}, q_{2} and p_{1} in 28, 16) is obvious.
For $\delta=1, \eta=0$, the following result can be easily obtained from Theorem 3.1;
Corollary 3.1. If $f \in \mathcal{S}_{\Sigma}^{\lambda}(k, \beta ; A, B)$, then

$$
\left|a_{2}\right| \leq \frac{\beta \sqrt{2(A-B)}}{\sqrt{2 \beta(3 \lambda-1) 3^{k}+\left[2 \beta\left(2 \lambda^{2}-4 \lambda+1\right)-(\beta-1)(2 \lambda-1)^{2}\right] 2^{2 k}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta(A-B)}{(3 \lambda-1) 3^{k}}+\frac{\beta^{2}(A-B)^{2}}{(2 \lambda-1)^{2} 2^{2 k}} .
$$

For $\delta=1, \eta=0, A=1, B=-1$, Theorem 3.1 gives the following result due to Joshi et al. [6]:

Corollary 3.2. If $f \in \mathcal{S}_{\Sigma}^{\lambda}(k, \beta ; A, B)$, then

$$
\left|a_{2}\right| \leq \frac{2 \beta}{\sqrt{2 \beta(3 \lambda-1) 3^{k}+\left\{2 \beta\left(2 \lambda^{2}-4 \lambda-1\right)-(\beta-1)(2 \lambda-1)^{2}\right\} 2^{2 k}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \beta}{(3 \lambda-1) 3^{k}}+\frac{4 \beta^{2}}{(2 \lambda-1)^{2} 2^{2 k}}
$$

Putting $\delta=1, \eta=0, A=1-2 \gamma, B=-1$ and $\beta=1$ in Theorem 3.1 we obtain the following result due to Joshi et al. [6]:

Corollary 3.3. If $f \in \mathcal{S}_{\Sigma}^{\lambda}(k, \gamma)$, then

$$
\left|a_{2}\right| \leq \frac{2 \sqrt{1-\gamma}}{\sqrt{2(3 \lambda-1) 3^{k}+\left[(2 \lambda-1)^{2}-(4 \lambda-1)\right] 2^{2 k}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4(1-\gamma)^{2}}{(2 \lambda-1)^{2} 2^{2 k}}+\frac{2(1-\gamma)}{(3 \lambda-1) 3^{k}}
$$

Acknowledgement. The authors are very thankful to the referee for his/her valuable comments.

References

[1] Abirami, C., Magesh, N., Gati, N.B., Yamini, J., Horadam polynomial coefficient estimates for a class of λ-bi-pseudo-starlike functions, J. Anal. 2020 (2020), 1-10, https://doi.org/ 10.1007/s41478-020-00224-2
[2] Al-Oboudi, F.M., On univalent functions defined by a generalized Sãlãgean operator, Int. J. Math. Math. Sci. 27 (2004), 1429-1436.
[3] Aouf, M.K., On a class of p-valent starlike functions of order α, Int. J. Math. Math. Sci. 10 (4) (1987), 733-744.
[4] Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Mathematical Analysis and its Applications, Kuwait, February 18-21, 1985 (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60, 1985, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2), 70-77.
[5] Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[6] Joshi, S., Altinkya, S., Yalcin, S., Coefficient estimates for Sãlãgean type λ-bi-pseudo-starlike functions, Kyungpook Math. J. 57 (2017), 613-621.
[7] Joshi, S., Pawar, H., On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (2016), 522-525.
[8] Juma, A.R S., Aziz, F.S., Applying Ruscheweyh derivative on two subclasses of bi-univalent functions, Int. J. Basic Appl. Sci. 12 (6) (2012), 68-74.
[9] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[10] Magesh, N., Bulut, S., Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afrika Mat. 29 (2018), 203-209.
[11] Magesh, N., Rosy, T., Varma, S., Coefficient estimate problem for a new subclass of bi-univalent functions, J. Complex Anal. 2013 (2013), 3 pp., Article ID 474231.
[12] Mazi, E.P., Opoola, T.O., On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions, Gen. Math. 25 (2017), 85-95.
[13] Sããgean, G.S., Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest 1 (1983), 362-372.
[14] Singh, Gagandeep, Coefficient estimates for bi-univalent functions with respect to symmetric points, J. Nonlinear Func. Anal. 1 (2013), 1-9, Article ID 2013.
[15] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, Certain subclasses of Sakaguchi-type bi-univalent functions, Ganita 69 (2) (2019), 45-55.
[16] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, A generalized subclass of alpha-convex bi-univalent functions of complex order, Jnanabha 50 (1) (2020), 65-71.
[17] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, Certain subclasses of univalent and bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Gen. Math. 28 (1) (2020), 1258-140.
[18] Sivapalan, J., Magesh, N., Murthy, S., Coefficient estimates for bi-univalent functions with respect to symmetric conjugate points associated with Horadam Polynomials, Malaya J. Mat. 8 (2) (2020), 565-569.
${ }^{1}$ Department of Mathematics, Khalsa College, Amritsar, Punjab, India
E-mail: kamboj.gagandeep@yahoo.in
${ }^{2}$ Department of Mathematics, GNDU College, Chungh(Tarn-Taran), Punjab, India
E-mail: dhillongs82@yahoo.com
${ }^{3}$ Department of Mathematics, GSSDGS Khalsa College, Patiala, Punjab, India
E-mail: meetgur111@gmail.com

[^0]: 2020 Mathematics Subject Classification: primary 30C45; secondary 30C50.
 Key words and phrases: coefficient estimates, analytic functions, univalent functions, bi-univalent functions, generalized Sãlãgean operator, subordination.

 Received January 17, 2021, revised September 2021. Editor M. Kolář.
 DOI: 10.5817/AM2022-2-105

