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NATURALLY REDUCTIVE HOMOGENEOUS
(α, β)-METRIC SPACES

M. Parhizkar and H.R. Salimi Moghaddam

Abstract. In the present paper we study naturally reductive homogeneous
(α, β)-metric spaces. We show that for homogeneous (α, β)-metric spaces,
under a mild condition, the two definitions of naturally reductive homogeneous
Finsler space, given in the literature, are equivalent. Then, we compute the
flag curvature of naturally reductive homogeneous (α, β)-metric spaces.

1. Introduction

The study of (α, β)-metrics, which are introduced by M. Matsumoto (see [13]),
is one of interesting and important fields in Finsler geometry. These metrics are
considered not only by Finsler geometers because of their simple and interesting
structure, but also by physicists because of their applications in physics. In fact the
first type of (α, β)-metrics, Randers metric, was introduced by G. Randers in 1941
for its application in general relativity (see [15]). In recent years these metrics have
found more applications, for example they are used by G.S. Asanov for formulation
pseudo-Finsleroid gravitational field equations (see [1] and [2]).
Some important examples of (α, β)-metrics are Randers metric α+β, Kropina metric
α2

β , and Matsumoto metric α2

α−β , where α(x, y) =
√
ãij(x)yiyj and β(x, y) = bi(x)yi

and ã and β are a Riemannian metric and a 1-form respectively as follows:
ã = ãijdx

i ⊗ dxj(1.1)
β = bidx

i .(1.2)

In this article we study naturally reductive homogeneous (α, β)-metric spaces.
There are two different definitions for naturally reductive homogeneous Finsler
spaces in the literature. The first one was given by S. Deng and Z. Hou in [5] and
the second one was given by D. Latifi in [10] (also see [11]). In [7], Deng and Hou
showed that if a homogeneous Finsler space is naturally reductive in the sense
of Latifi then it must be Berwaldian and is naturally reductive in the sense of
Deng and Hou. The authors of [7] pointed out that it is not clear whether there
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is a naturally reductive Finsler space in the sense of Deng and Hou which is not
a naturally reductive Finsler space in the sense of Latifi.

In this paper we show that for homogeneous (α, β)-metric spaces, under a mild
condition, these two definitions are equivalent. Then we compute the flag curvature
of naturally reductive homogeneous (α, β)-metric spaces in the sense of Deng and
Hou.
Now we give some preliminaries of Finsler geometry.
Let M be a smooth n−dimensional manifold and TM be its tangent bundle.
A Finsler metric on M is a non-negative function F : TM → R which has the
following properties:

(1) F is smooth on the slit tangent bundle TM0 := TM \ {0},
(2) F (x, λy) = λF (x, y) for any x ∈M , y ∈ TxM and λ > 0,
(3) the n×n Hessian matrix [gij(x, y)] =

[ 1
2
∂2F 2

∂yi∂yj

]
is positive definite at every

point (x, y) ∈ TM0.
The concept of flag curvature is an important quantity which is associated with
a Finsler manifold. This quantity is a generalization of the concept of sectional
curvature. Flag curvature is defined as follows

(1.3) K(P, y) = gy(R(u, y)y, u)
gy(y, y) · gy(u, u)− g2

y(y, u) ,

where gy(u, v) = 1
2
∂2

∂s∂t (F
2(y + su + tv))|s=t=0, P = span{u, y}, R(u, y)y =

∇u∇yy − ∇y∇uy − ∇[u,y]y and ∇ is the Chern connection induced by F (see
[3] and [16]).

Definition 1.1. A Finsler space (M,F ) is called a Berwald space if the Chern
connection coefficients Γijk in natural coordinates have no y dependence.

Definition 1.2. Suppose that α is a Riemannian metric and β is a 1-form as
above. Let

(1.4) ‖β(x)‖α :=
√
ãij(x)bi(x)bj(x) .

Now, let the function F be defined as follows

(1.5) F := αφ(s) , s = β

α
,

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying
(1.6) φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0 , |s| ≤ b < b0 .

Then by Lemma 1.1.2 of [4], F is a Finsler metric if ‖β(x)‖α < b0 for any x ∈M .
A Finsler metric in the form (1.5) is called an (α, β)-metric.

For example if we consider φ(s) = 1 + s, φ(s) = 1
1−s and φ(s) = 1

s then we have
Randers, Matsumoto and Kropina metrics respectively.
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The Riemannian metric ã induces an inner product on any cotangent space
T ∗xM such that < dxi(x), dxj(x) >= ãij(x). The induced inner product on T ∗xM
induces a linear isometry between T ∗xM and TxM . Then the 1-form β corresponds
to a vector field X on M such that

(1.7) ã
(
y,X(x)

)
= β(x, y) .

Also we have ‖β(x)‖α = ‖X(x)‖α (for more details see [6] and [14]). Therefore we
can write (α, β)-metrics as follows:

(1.8) F (x, y) = α(x, y)φ
( ã(X(x), y)

α(x, y)

)
,

where for any x ∈M ,
√
ã(X(x), X(x)) = ‖X(x)‖α < b0.

2. Naturally reductive homogeneous (α, β)-metric spaces

In order to study the geometric properties of (α, β)-metrics, we need a formula for
the spray coefficients of an (α, β)-metric. Let ∇β = bi|jy

idxj denote the covariant
derivative of β with respect to α. Let Gi and G̃i denote the spray coefficients of F
and α, respectively, given by

(2.1) Gi = gil

4
{

[F 2]xkylyk − [F 2]xl
}
, G̃i = ãil

4
{

[α2]xkylyk − [α2]xl
}
,

where (gij) = (gij)−1 and (ãij) = (ãij)−1. Let

rij := 1
2(bi|j + bj|i) , sij := 1

2(bi|j − bj|i) ,

sij := ãikskj , sj := bis
i
j = bkskj , bij := rij + bisj + bjsi ,

and
r00 := rijy

iyj , s0 := siy
i , si0 := sijy

j .

By a direct computation, one gets the following formula:

(2.2) Gi = G̃i + αQsi0 + Θ
{
− 2Qαs0 + r00

}yi
α

+ Ψ
{
− 2Qαs0 + r00

}
bi ,

where

Q := φ

φ− sφ′
,

Θ := (φ− sφ′)φ′

2
(
(φ− sφ′) + (b2 − s2)φ′′

)
φ
− sΨ ,

Ψ := φ
′′

2
(
(φ− sφ′) + (b2 − s2)φ′′

) ,
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where s := β
α and b := ‖βx‖α (see [4]).

Thus the above, after some manipulation, becomes

Gi := 1
2Γijkyjyk

= 1
2Γ̃ijkyjyk

+ 1
2αQbj|k

(
ãijyk − ãikyj

)
+ Θbj|k

{
−Qα(yjbk − ykbj) + yjyk

}yi
α

+ Ψbj|k
{
−Qα(ykbj − yjbk) + yjyk

}
bi ,(2.3)

where Γijk are the Christoffel symbols of the Chern connection of F and Γ̃ijk are
the Christoffel symbols of the Levi-Civita connection of α.
Let F = αφ(βα ) be an (α, β)-metric. If β is parallel with respect to α (bj|k = 0),
then by (2.3), Γijk = Γ̃ijk. Thus F is of Berwald type. The converse is also true(see
[12] and [8]).

Definition 2.1 (see [9]). A homogeneous manifold M = G
H with an invariant

Riemannian metric ã is said to be naturally reductive if it admits an Ad(H)-invariant
decomposition g = h⊕m satisfying the condition
(2.4) 〈[x, y]m, z〉+ 〈y, [x, z]m〉 = 0, x, y, z ∈ m,

where 〈 , 〉 is the bilinear form on m induced by ã and [, ]m is the projection to m
with respect to the decomposition g = h⊕m.

In particular case if we consider H = {e} then m = g which shows that the
condition (2.4) reduces to the condition
(2.5) 〈[x, y], z〉+ 〈y, [x, z]〉 = 0 ,
for a bi-invariant Riemannian metric on G.

In literature, there are two versions of the definition of naturally reductive
Finsler metrics on a manifold. The first version has been introduced by the S. Deng
and Z. Hou in [5] and the second one has been introduced by D. Latifi in [10].

Definition 2.2 ([5], Deng and Hou). A homogeneous manifold G
H with an invariant

Finsler metric F is called naturally reductive if there exists an invariant Riemannian
metric ã on G

H such that
(
G
H , ã

)
is naturally reductive and the connections of ã

and F coincide.
In this definition, they assume that such a metric must be of Berwald type.

Definition 2.3. ([10], Latifi) A homogeneous manifold G
H with an invariant Finsler

metric F is called naturally reductive if there exists an Ad(H)-invariant decompo-
sition g = h⊕m such that
(2.6) gy([x, u]m, v) + gy(u, [x, v]m) + 2Cy([x, y]m, u, v) = 0 ,
where y 6= 0, x, u, v ∈ m.
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In [7], Deng and Hou proved the following theorem.

Theorem 2.4. If a homogeneous Finsler space
(
G
H , F

)
is naturally reductive in

the sense of Definition 2.3, then it must be naturally reductive in the sense of
Definition 2.2.

Corollary 2.5. Let
(
G
H , F

)
be a naturally reductive homogeneous Finsler space in

the sense of Definition 2.3 then it must be of Berwald type.

Corollary 2.6. Let
(
G
H , F

)
be a homogeneous Finsler manifold, where F is an

invariant (α, β)-metric defined by an invariant Riemannian metric ã and an
invariant vector field X. If

(
G
H , F

)
is naturally reductive in the sense of 2.3 then(

G
H , ã

)
is naturally reductive.

Proof.
(
G
H , F

)
is naturally reductive in the sense of 2.3, therefore it is naturally

reductive in the sense of 2.2 and it is Berwaldian. Hence
(
G
H , ã

)
is naturally

reductive. �

We show that, under a mild condition, two definitions of naturally reductive
(α, β)-metric space are equivalent.

Theorem 2.7. Let
(
G
H , F

)
be a homogeneous Finsler manifold, where F is an

invariant (α, β)-metric defined by an invariant Riemannian metric ã and an
invariant vector field X such that φ′(r) 6= 0, where r := ã(X,y)√

ã(y,y)
= β

(
y
‖y‖α

)
. Then,

the two Definitions 2.2 and 2.3 are equivalent.

Proof. By attention to Theorem 2.4 it is sufficient to prove if
(
G
H , F

)
is a naturally

reductive Finsler space in the sense of 2.2 then it is naturally reductive in the sense
of 2.3. Suppose that

(
G
H , F

)
is a naturally reductive Finsler space in the sense of

2.2, hence it is of Berwald type and also
(
G
H , ã

)
is naturally reductive. We show

that for all 0 6= y, z, u, v ∈ m

(2.7) gy([z, u]m, v) + gy(u, [z, v]m) + 2Cy([z, y]m, u, v) = 0 .

By using the formula gy(u, v) = 1
2
∂2

∂t∂sF
2(y+su+tv)|s=t=0 and some computations,

for the (α, β)-metric F defined by relation (1.8) we have:

gy(u, v) = ã(u, v)φ2(r) + ã(y, u)φ(r)φ′(r)
( ã(X, v)√

ã(y, y)
− ã(X, y)ã(y, v)

(ã(y, y)) 3
2

)
+
(
(φ′(r))2 + φ(r)φ′′(r)

)( ã(X, v)√
ã(y, y)

− ã(X, y)ã(y, v)
(ã(y, y)) 3

2

)
×
(
ã(X,u)

√
ã(y, y)− ã(y, u)ã(X, y)√

ã(y, y)

)
+ φ(r)φ′(r)√

ã(y, y)
(
ã(X,u)ã(y, v)− ã(u, v)ã(X, y)

)
,(2.8)
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where r = ã(X,y)√
ã(y,y)

.
So for any y 6= 0, z ∈ m we have

gy(y, [y, z]m) = ã(y, [y, z]m)
(
φ2(r)− φ(r)φ′(r)r

)
+ ã(X, [y, z]m)

(
φ′(r)F (y)

)
.(2.9)(

G
H , ã

)
is naturally reductive, therefore the equation (2.4) shows that

(2.10) ã(y, [y, z]m) = 0 , ∀y 6= 0, z ∈ m .

By attention to the Definition 2.2,
(
G
H , F

)
and

(
G
H , ã

)
have the same connection, the

same geodesics and so the same geodesic vectors. Therefore by using Theorem 3.1
of [10] for all y 6= 0, z ∈ m we have

(2.11) gy(y, [y, z]m) = 0 .

On the other hand we have φ′(r) 6= 0 therefore for all 0 6= y, z ∈ m we have

(2.12) ã(X, [y, z]m) = 0 .

By using the relations (2.8), (2.10), (2.12) and some computations we have

gy([z, u]m, v) = ã([z, u]m, v)
(
φ2(r)− φ(r)φ′(r)r

)
+ ã([z, u]m, y)

( ã(X, v)√
ã(y, y)

− ã(y, v)
ã(y, y)r

)
×
(
φ(r)φ′(r)− ((φ′(r))2 + φ(r)φ′′(r))r

)
,(2.13)

and

gy([z, v]m, u) = ã([z, v]m, u)
(
φ2(r)− φ(r)φ′(r)r

)
+ ã([z, v]m, y)

( ã(X,u)√
ã(y, y)

− ã(y, u)
ã(y, y) r

)
×
(
φ(r)φ′(r)− ((φ′(r))2 + φ(r)φ′′(r))r

)
.(2.14)

Now by using the definition

Cy(z, u, v) = 1
4
∂

∂s

∂

∂t

∂

∂h
[F 2(y + sz + tu+ hv)]

∣∣∣
s=t=h=0

,

for Cartan tensor we have,

2Cy(u, v, z) =
(3φ′(r)φ′′(r) + φ(r)φ′′′(r)

ã(y, y)

)(
ã(X, v)− ã(v, y)ã(X, y)

ã(y, y)

)
×
(
ã(X,u)

√
ã(y, y)− ã(u, y)ã(X, y)√

ã(y, y)

)(
ã(X, z)− ã(z, y)ã(X, y)

ã(y, y)

)
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+
( (φ′(r))2 + φ(r)φ′′(r)

ã(y, y)

)(
ã(X, v)− ã(v, y)ã(X, y)

ã(y, y)

)
×
(
ã(X,u)ã(z, y)− ã(u, z)ã(X, y)− ã(u, y)ã(z,X) + ã(z, y)ã(u, y)ã(X, y)

ã(y, y)

)
−
( (φ′(r))2 + φ(r)φ′′(r)

ã(y, y)
√
ã(y, y)

)(
ã(X,u)

√
ã(y, y)− ã(u, y)ã(X, y)√

ã(y, y)

)
×
(
ã(z, y)ã(X, v) + ã(v, z)ã(X, y) + ã(v, y)ã(X, z)− 3ã(v, y)ã(X, y)ã(z, y)

ã(y, y)

)
+
( (φ′(r))2 + φ(r)φ′′(r)

ã(y, y)

)(
ã(X, z)− ã(z, y)ã(X, y)

ã(y, y)

)
×
(
ã(X,u)ã(v, y)− ã(u, v)a(X, y) + ã(u, y)ã(X, v)− ã(v, y)ã(u, y)ã(X, y)

ã(y, y)

)
+ φ(r)φ′(r)√

ã(y, y)

(
ã(X,u)ã(v, z) + ã(u, v)ã(X, z) + ã(u, z)ã(X, v)

− ã(z, y)ã(v, y)ã(X,u) + ã(u, v)ã(X, y)ã(z, y) + ã(u, y)ã(X, v)ã(z, y)
ã(y, y)

− ã(v, z)ã(u, y)ã(X, y) + ã(v, y)ã(u, z)ã(X, y) + ã(v, y)ã(u, y)ã(X, z)
ã(y, y)

+ 3ã(z, y)ã(v, y)ã(u, y)ã(X, y)
(ã(y, y))2

)
.(2.15)

So we have

2Cy([z, y]m, u, v) = ã([z, y]m, u)
( ã(X, v)√

ã(y, y)
− ã(v, y)
ã(y, y)r

)
×
(
φ(r)φ′(r)−

(
(φ′(r))2 + φ(r)φ′′(r)

)
r
)

+ ã([z, y]m, v)
( ã(X,u)√

ã(y, y)
− ã(u, y)
ã(y, y) r

)
×
(
φ(r)φ′(r)−

(
(φ′(r))2 + φ(r)φ′′(r)

)
r
)
.(2.16)

Therefore

gy([z, u]m, v) + gy(u, [z, v]m) + 2Cy([z, y]m, u, v)

=
(
ã([z, u]m, v) + ã([z, v]m, u)

)(
(φ(r))2 − φ(r)φ′(r)r

)
+
(
ã([z, u]m, y) + ã([z, y]m, u)

)( ã(X, v)√
ã(y, y)

− ã(v, y)
ã(y, y)r

)
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×
(
φ(r)φ′(r)−

(
(φ′(r))2 + φ(r)φ′′(r)

)
r
)

+
(
ã([z, v]m, y) + ã([z, y]m, v)

)( ã(X,u)√
ã(y, y)

− ã(u, y)
ã(y, y) r

)
×
(
φ(r)φ′(r)−

(
(φ′(r))2 + φ(r)φ′′(r)

)
r
)

= 0 ,(2.17)

for all y 6= 0, u, v, z ∈ m. �

Remark 2.8. The condition φ′(r) 6= 0 which is assumed in the previous theorem
is not a restrictive condition. For example the famous (α, β)-metrics of Randers,
Kropina and Matsumoto satisfy this condition because for any y 6= 0 ∈ m we have:

Randers: φ′(r) = 1 6= 0

Kropina: φ′(r) = − ã(y,y)
ã(X,y) = −F (y) 6= 0

Matsumoto: φ′(r) = ã(y,y)
(
√
ã(y,y)−ã(X,y))2

6= 0.

Theorem 2.9. Suppose that (GH , F ) is a homogeneous Finsler manifold, where F
is an invariant (α, β)-metric defined by an invariant Riemannian metric ã and an
invariant vector field X such that φ′(r) 6= 0. Then the homogeneous Finsler manifold
(GH , F ) is naturally reductive in the sense of 2.2 (or equivalently 2.3) if and only if
(adx)m, for every x ∈ g, is skew-adjoint with respect to ã and ã(X, [m,m]m) = 0.

Proof. Suppose that, for every x ∈ g, (adx)m is skew-adjoint and ã(X, [m,m]m) = 0.
Therefore by attention to the proof of Theorem 2.7, the equations (2.10), (2.12)
and therefore (2.17) hold.
Conversely Let (GH , F ) be naturally reductive. By using Theorem 2.7, for any 0 6= y,
z ∈ m we have

(2.18) gy(y, [y, z]m) = 0 ,

and

(2.19) ã(y, [y, z]m) = 0 .

Equation (2.19) shows that (adx)m is skew-adjoint, for every x ∈ g.
Now equations (2.18), (2.19) and (2.9) together with the condition φ′(r) 6= 0 show
that

(2.20) ã(X, [m,m]m) = 0 .

�

Corollary 2.10. Let G be a connected Lie group with a left invariant Finsler
metric F , where F is an (α, β)-metric defined by a left invariant Riemannian
metric ã and a left invariant vector field X such that φ′(r) 6= 0. Then the (α, β)-
metric F is bi-invariant if and only if adx is skew-adjoint with respect to ã for
every x ∈ g, and ã(X, [g, g]) = 0.

Proof. It is sufficient, in Theorem 2.9, to consider H = {e} and use Theorem 2.3
of [5]. �
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Now we give the formula of the flag curvature of naturally reductive (α, β)-metric
spaces, in the sense of 2.2, explicitly.

Theorem 2.11. Let (GH , F ) be a naturally reductive homogeneous Finsler manifold
in the sense of Definition 2.2, where F is an invariant (α, β)-metric defined by an
invariant Riemannian metric ã and an invariant vector field X. Let {P, y} be a
flag constructed in (e, y), and {u, y} be an orthonormal basis of P with respect to
the inner product induced by the Riemnnian metric ã on m. Then the flag curvature
of the flag {P, y} in m is given by

K(P, y) = 1
θ

{(
φ2(r)− φ(r)φ′(r)r

)(1
4 ã([y, [u, y]m]m, u) + ã([y, [u, y]h], u)

)
+
(
(φ′)2(r) + φ(r)φ′′(r)

)
ã(X,u)

×
(1

4 ã([y, [u, y]m]m, X) + ã([y, [u, y]h], X)
)}

,(2.21)

where r = ã(X,y)
ã(y,y) = ã(X, y) and θ = φ2(r)

(
φ2(r) +φ(r)φ′′(r)ã2(X,u)−φ(r)φ′(r)r

)
.

Proof. Since the (α, β)-metric F is naturally reductive in the sense of Definition
2.2 therefore there exists an invariant Riemannian metric g on G

H such that (GH , g)
is naturally reductive and the Levi-Civita connection of g and the Chern connection
of F and therefore their curvature tensors coincide. So we have (see [9])

(2.22) R(u, y)y = 1
4[y, [u, y]m]m + [y, [u, y]h] , ∀u, y ∈ m .

Now by using the relations (2.22) and (2.8) we have:

gy(R(u, y)y, u) =
(
φ2(r)− φ(r)φ′(r)r

)(1
4 ã([y, [u, y]m]m, u) + ã([y, [u, y]h], u)

)
+
(
φ(r)φ′(r)ã(X,u)−

(
(φ′)2(r) + φ(r)φ′′(r)

)
ã(X,u)r

)
×
(1

4 ã([y, [u, y]m]m, y) + ã([y, [u, y]h], y)
)

+
(
(φ′)2(r) + φ(r)φ′′(r)

)
ã(X,u)

×
(1

4 ã([y, [u, y]m]m, X) + ã([y, [u, y]h], X)
)
,(2.23)

gy(u, u) = φ2(r) +
(
(φ′)2(r) + φ(r)φ′′(r)

)
ã2(X,u)− φ(r)φ′(r)r ,(2.24)

gy(y, y) = φ2(r) ,(2.25)

and

gy(y, u) = φ(r)φ′(r)ã(X,u) .(2.26)

We know that for any Riemannian manifold (M, g) we have g(R(X1, X2)X3, X4) =
−g(R(X1, X2)X4, X3) so by using equation (2.22) we have

(2.27) ã(R(u, y)y, y) = 1
4 ã([y, [u, y]m]m, y) + ã([y, [u, y]h], y) = 0 .
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Now it is sufficient to substitute the equations (2.23), (2.24), (2.25) and (2.26) in
(1.3). �

Remark 2.12. In Theorem 2.11 if we let (GH , F ) be a naturally reductive homo-
geneous Finsler manifold in the sense of Definition 2.3 then the results are true by
Theorem 2.4.
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