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HIGHER SIMPLE STRUCTURE SETS OF LENS SPACES

WITH THE FUNDAMENTAL GROUP OF ARBITRARY ORDER

L’udovít Balko, Tibor Macko, Martin Niepel, and Tomáš Rusin

Abstract. Extending work of many authors we calculate the higher simple
structure sets of lens spaces in the sense of surgery theory with the fundamental
group of arbitrary order. As a corollary we also obtain a calculation of the
simple structure sets of the products of lens spaces and spheres of dimension
grater or equal to 3.

Introduction

This paper is to be considered a second part of [1]. There we calculated the
topological higher simple structure sets Ss∂(L×Dm) in the sense of surgery theory for
L a fake lens space with the fundamental group Z/N ∼= G = π1(L) for N = 2K and
m ≥ 1. The main result of the present paper, Theorem 1.1, calculates Ss∂(L×Dm)
when Z/N ∼= G = π1(L) has N arbitrary and m ≥ 1.

Let us recall that the case m = 0 was done for N = M odd in [9, 14.E], for
N = 2 in [9, 14.D] and [3], and for N = 2K with K ≥ 2 in [4]. These results were
then combined in [5] to obtain the general case N = 2K ·M with M odd.

For the case m ≥ 1 calculations for N = M odd and N = 2 appeared in [7]. As
already mentioned, the case N = 2K is done in [1]. The present paper combines
these results to obtain the general case N = 2K ·M with M odd. We follow the
same general idea about the combination as in [5], but we need to make some
adjustments. Recall that the key part of the calculations concerns in all of the above
papers the kernel of the so-called ρ-invariant on the group of normal invariants.
When m = 0 all the groups of normal invariants are finite. However, when m ≥ 1
this is no longer the case. This is the main technical obstacle that we address
in this paper. Roughly speaking, our key idea in doing so is to use the formula
for the ρ-invariant from Theorem 5.5 in [1], which we proved in the general case
N = 2K ·M with M odd, to show that the ρ-invariant map in all the cases factors
through a certain convenient finite group, see Lemmas 4.1, 4.2, 4.3. We then obtain
the desired kernel by combining the kernels of the two factoring maps. One of them
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is obvious and the other is obtained by the method of [5] since its source is finite,
see Theorem 4.8 and Corollary 4.9.

The paper is organized as follows. In Section 1 we state the main Theorem 1.1
and Corollary 1.2. These are deliberately formulated to be analogues of the main
results from [1] where N = 2K ·M with M odd in the present case. In Section 2 we
describe the changes to the setup of [1] for the normal invariants that are necessary
to accommodate the present case, and in Sections 3 and 4 we present the techniques
and calculations for the proof of the main theorem.

1. Results

A fake lens space L = L(α) is a topological manifold given as the orbit space
of a free action α of a finite cyclic group G = Z/N on a sphere S2d−1. The main
result of this paper is the following theorem about them.

Theorem 1.1. Let L = L(α) be a (2d− 1)-dimensional fake lens space for some
free action α of the cyclic group G = Z/N with N = 2K ·M for some K ≥ 1 and
M odd on S2d−1 with d ≥ 2 and let k ≥ 1. Then we have isomorphisms

(ρ̃∂ , r̄0, r̄, r) :Ss∂(L×D2k)
∼=−→


F+ ⊕ Z⊕ T ′2K ⊕ T2 d = 2e, k = 2l
F− ⊕ Z/2⊕ T ′2K ⊕ T2 d = 2e, k = 2l + 1
F− ⊕ Z⊕ T ′2K ⊕ T2 d = 2e+ 1, k = 2l
F+ ⊕ Z/2⊕ T ′2K ⊕ T2 d = 2e+ 1, k = 2l + 1

(r̄, r) :Ss∂(L×D2k+1)
∼=−→ T2(odd) also k = 0 ,

where the meaning of the symbols in the target is as follows:
(1) F+ is a free abelian group of rank 2K−1 ·M ;
(2) F− is a free abelian group of rank 2K−1 ·M − 1;
(3) Let cN (d, k) = e − 1 when (d, k) = (2e, 2l) and let cN (d, k) = e in other

cases. Then

T ′2K
∼=
cN (d,k)⊕
i=1

Z/2min{2i,K} ;

(4) Let c2(d, k) = e when (d, k) = (2e+ 1, 2l) and let c2(d, k) = e− 1 in other
cases. Then

T2 ∼=
c2(d,k)⊕
i=1

Z/2 ;

(5) Let c2(d, k, odd) = e− 1 when (d, k) = (2e, 2l+ 1) and let c2(d, k, odd) = e
in other cases. Then

T2(odd) ∼=
c2(d,k,odd)⊕

i=1
Z/2 ;

(6) The symbol ρ̃∂ denotes the reduced ρ-invariant for manifolds with boundary;
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(7) The invariant r̄ is an invariant derived from the splitting invariants along
4i-dimensional submanifolds;

(8) The invariant r consists of the splitting invariants along (4i−2)-dimensional
submanifolds;

(9) The invariant r̄0 is an invariant derived from the splitting invariants along
2k-dimensional submanifolds.

The definitions of the invariants ρ̃∂ , r, r̄0 and r̄ are taken from [1].

Corollary 1.2. For k ≥ 2 we have isomorphisms

(red∂ , r′, r′′, r′′′) :Ss(L× S2k) ∼= Ss∂(L×D2k)⊕ T2K (d)⊕ T2(d)⊕ TM (d)

and for k ≥ 1 we have isomorphisms

(red∂ , r′, r′′, r′′′) :Ss(L× S2k+1) ∼= Ss∂(L×D2k+1)⊕ T2K (d)⊕ T2(d)⊕ TM (d)

where for c = b(d− 1)/2c

T2K (d) ∼=
b(d−1)/2c⊕

i=1
Z/2K and T2(d) ∼=

bd/2c⊕
i=1

Z/2 and |TM (d)| = M c .

The definitions of the map red∂ and the invariants r′, r′′ are taken from [1], the
invariant r′′′ is addressed in Section 2. Together with Theorem 1.1 this shows that
Ss(L× Sm) is calculated by the invariants ρ̃∂ , r̄0, r̄, r, r′, r′′, r′′′ where each symbol
has to be appropriately interpreted depending on parity of d and m.

2. The surgery exact sequence

The basic setup of the paper [1] fits the general case handled in this paper as
well. In particular, the material of Sections 2 and 3 of [1] serves as background
and motivation also here. Similarly, Section 5 about the ρ-invariant is written for
the general case. Hence we refer the reader there for these topics as well as for the
notation. Modifications are needed in Section 4 and, of course, in Section 6 which
contains calculations. Hence, we concentrate on these in this paper.

As in [1] it is enough to deal with the case L2d−1 = L2d−1
(1,...,1). We recall that we

need to study the surgery exact sequence:

(2.1) N∂(L×Dm+1) θ−→ Lsn+1(ZG) ∂−→ Ss∂(L×Dm) η−→ N∂(L×Dm) θ−→ Lsn(ZG),

where n = dim(L×Dm) = 2d− 1 +m.
For the L-groups we have the following theorem where the symbol RC(G) denotes

the complex representation ring of a group G and the superscripts ± denote the
±-eigenspaces with respect to the involution given by complex conjugation. The
symbol G-sign means the G-signature and Arf is the Arf invariant.
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Theorem 2.1 ([2]). For G = ZN with N = 2K ·M , M odd, we have that

Lsn(ZG) ∼=


4 ·R+

C (G) n ≡ 0 (mod 4) (G-sign, purely real)
0 n ≡ 1 (mod 4)
4 ·R−C (G)⊕ Z/2 n ≡ 2 (mod 4) (G-sign, purely imaginary,Arf)
0 or Z/2 n ≡ 3 (mod 4) (codimension 1 Arf)

L̃s2k(ZG) ∼= 4 ·R(−1)k

Ĝ
where R(−1)k

Ĝ
is R(−1)k

C (G) modulo the regular representation.
In the case n ≡ 3 (mod 4) we have 0 if K = 0 and Z/2 if K ≥ 1.

For the normal invariants N∂(Y ) ∼= [Y/∂Y ; G/TOP], we first notice that for the
products Y = L×Dm we have
(2.2) Y/∂Y = L×Dm/L× Sm−1 ' L+ ∧ Sm ' (L ∧ Sm) ∨ Sm.
Using localization at 2 and away from 2, we have in general the following homotopy
pullback square [6]

G/TOP //

��

∏
i>0K(Z(2), 4i)×K(Z/2, 4i− 2)

��
BO[1/2] // BOQ '

∏
i>0K(Q, 4i)

(2.3)

which induces a Mayer-Vietoris sequence for the homotopy sets of mapping spaces.
It is a good idea to combine both of these results in a way that suits a particular

purpose. Therefore, slightly differently from [1], we first use (2.2) to obtain
(2.4) N∂(L×Dm) ∼= [Sm,G/TOP]⊕ [L ∧ Sm,G/TOP].
We also have

[L ∧ Sm,G/TOP] ∼= H−m(L,G/TOP) .
Hence, when m is even we have

N∂(LN ×Dm) ∼=

Lm(Z)⊕i H4i−m(LN ; Z(2))⊕i H4i−2−m(LN ; Z/2)⊕ K̃O
−m

(LN ; Z[1/2]) ,
(2.5)

since then K̃O
−m

(LN ; Q) = 0. When m is odd, the left hand side includes into
the right hand side and the more precise information can be obtained from the
Atiyah-Hirzebruch spectral sequence as described in the next paragraph. We have
enough information about all these groups, see Theorem 3.2 from [5]. It is convenient
to distinguish the two cases when m is odd and when m is even.

Case m = 2k + 1. The Atiyah-Hirzebruch spectral sequence reveals that
(2.6)

N∂(L×D2k+1) ∼=

{
Z⊕

⊕
i∈JN2 (d,k,odd) Z/2 if (d, k) = (2e, 2l) or (2e+ 1, 2l + 1)⊕

i∈JN2 (d,k,odd) Z/2 otherwise ,

where the indexing set JN2 (d, k, odd) is as in (4.3) of [1]. Note that when (d, k) =
(2e, 2l), then 2d− 1 + 2k + 1 = 4(e+ l), and when (d, k) = (2e+ 1, 2l + 1), then
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2d− 1 + 2k + 1 = 4(e+ l + 1). The Z/2 summands are detected by the invariants
t4i−2, until we reach the dimension of 2d− 1 + 2k + 1. (The symbols t4i−2 are as
in [1].)

Case m = 2k. From (2.5) we see that this case is a shifted copy of the case k = 0
plus a summand coming from the sphere S2k. We also see that for N = 2K ·M with
M odd the singular cohomology part is the same as for 2K and M only influences
the KO-theory part. From the Atiyah-Hirzebruch spectral sequence one sees that
this part has order M c where c = b(d− 1)/2c. Hence we get

(2.7) N∂(LN ×Dm) ∼= Lm(Z)⊕
⊕
i

Z/2K ⊕
⊕
i

Z/2⊕ K̃O
−m

(L; Z[1/2])

where the order of the last summand is M c with c = b(d− 1)/2c. As in [1] all but
the last summand are detected by the splitting invariants t4i and t4i−2, where the
index i runs through indexing sets denoted as JN4 (d, k), JN2 (d, k). (The symbols
t4i and t4i−2 are as in [1].)

Proposition 4.2 from [1], which influences both cases of m, is valid for general
2|N . If N = M is odd, then Ls2d−1+2k(ZG) = 0. Therefore we denote here as well

(2.8) Ñ∂(L×Dm) := ker θ :N∂(L2d−1 ×Dm)→ Ls2d−1+m(ZG)

and the corresponding indexing sets as J tN4 (d, k), J tN2 (d, k) and J tN2 (d, k, odd).

We can now summarize what we know. Our information is enough to solve the
case m = 2k + 1, the other case will take more effort.

Case m = 2k + 1. We have the isomorphism

(2.9) Ss∂(L×D2k+1) ∼= Ñ∂(L×D2k+1) ∼=
⊕

JtN2 (d,k,odd)

Z/2.

This follows from (2.6) combined with Proposition 4.2 from [1].

Case m = 2k. We obtain the short exact sequence

(2.10) 0→ L̃s2d+2k(ZG) ∂−→ Ss∂(L2d−1 ×D2k) η−→ Ñ∂(L2d−1 ×D2k)→ 0 ,
where

n = 4u− 1 : Ñ∂(L2d−1 ×D2k) = ker
(
t4u−2 :N∂(L2d−1 ×D2k)→ Z/2

)
,

n = 4u+ 1 : Ñ∂(L2d−1 ×D2k) = N∂(L2d−1 ×D2k).
(2.11)

It will be convenient to use the decomposition

(2.12) Ñ∂(L2d−1 ×D2k) ∼= TF (d, k)⊕ T2K (d, k)⊕ T2(d, k)⊕ TM (d, k),
where

TF (d, k) ∼=

{
Z(t4l) k = 2l
0 k = 2l + 1
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and
T2K (d, k) =

⊕
i∈rJtN4 (d,k)

Z/2K(t4i), T2(d, k) =
⊕

i∈JtN2 (d,k)

Z/2(t4i−2)

and
|TM (d, k)| = M c.

Here the indexing sets rJ tN4 (d, k) and rJ tN4 (d, k), rJ tN2 (d, k) and rJ tN2 (d, k) are as
in [1] after display (4.11). The cardinality of rJ tN4 (d, k) is equal to cN (d, k) and the
cardinality of rJ tN2 (d, k) is equal to c2(d, k) from the statement of Theorem 1.1.

We will also sometimes use the notation
(2.13) TN (d, k) := T2K (d, k)⊕ T2(d, k)⊕ TM (d, k)
for the torsion part of (2.12). Note that for M odd TM (d, k) = TM (d, k).

The first term in the sequence (2.10) is understood by Theorem 2.1, the third
term is understood by (2.12). Hence we are left with an extension problem, which
we solve in Section 4 using techniques from Section 3.

3. The ρ-invariant

By the preceding section we now understand the surgery exact sequence for
L2d−1×D2k up to an extension problem which we solve by studying the ρ-invariant.
In Subsections 5.1 to 5.3 of [1] its definition and main properties are recalled. These
all work in the general case. Hence, just as in [1], we now have all the ingredients
we need to analyze the surgery exact sequence for X = L2d−1 ×D2k. Denoting
n = 2d− 1 + 2k we can summarize everything in the commutative ladder:

0 // L̃n+1(ZG) //

G−sign
��

Ss∂(L×D2k)

ρ̃∂
��

// Ñ∂(L×D2k)

[ρ̃∂ ]
��

// 0

0 // 4 ·R±
Ĝ

// QR±
Ĝ

// QR±
Ĝ
/4 ·R±

Ĝ
// 0

By Theorem 5.4 of [1] we need to understand the kernel of [ρ̃∂ ]. Since in this paper
we only work with the ρ-invariant for manifolds with boundary, but we will be
switching between the ρ-invariant maps for different groups G = Z/N and different
dimensions (d, k), we introduce the following notation.

Notation 3.1. When G = Z/N we denote the ρ-invariant map from Definition
5.3 of [1] as

ρ̃N (d, k) :Ss∂(L2d−1
N ×D2k)→ QR±

Ĝ

and the induced map on the normal invariants as
[ρ̃N (d, k)] :N∂(L2d−1

N ×D2k)→ QR±
Ĝ
/4 ·R±

Ĝ
.

Hence our task is to calculate ker[ρ̃N (d, k)]. Imitating [5] we will relate it to
ker[ρ̃2K (d, k)] and ker[ρ̃M (d, k)]. In order to do that we need to use the transfer
maps and their compatibility with the ρ-invariant.
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Given a natural number N = U · V and d ≥ 1 let pNU :L2d−1
U → L2d−1

N be the
covering1 induced by the inclusion of a subgroup Z/U ⊂ Z/N . Via pullback these
define transfer maps on the normal invariants [8], which are compatible with the
ρ-invariant so that we have the following commutative diagrams:

L2k(Z)⊕ TN (d, k)
∼= //

��

Ñ∂(L2d−1
N ×D2k)

(pN
2K

)!

��

[ρ̃N (d,k)]// QR±
ẐN
/4 ·R±

ẐN

��

L2k(Z)⊕ T2K (d, k)
∼= // Ñ∂(L2d−1

2K ×D2k)
[ρ̃2K (d,k)]

// QR±
Ẑ2K

/4 ·R±
Ẑ2K

(3.1)

and

L2k(Z)⊕ TN (d, k)
∼= //

��

Ñ∂(L2d−1
N ×D2k)

(pNM )!

��

[ρ̃N (d,k)]// QR±
ẐN
/4 ·R±

ẐN

��
L2k(Z)⊕ TM (d, k)

∼= // Ñ∂(L2d−1
M ×D2k)

[ρ̃M (d,k)]// QR±
ẐM
/4 ·R±

ẐM
.

(3.2)

In addition, given N ≥ 1 there is the S1-bundle pS1

N :L2d−1
N → CP d−1 which also

induces a transfer map on the normal invariants compatible with the ρ-invariant.
The key property of the ρ-invariant is Theorem 5.5 in [1] which we reproduce

here for convenience. The indexing set IS4 (d, k) in the statement is defined in
Section 3 of [1].

Theorem 3.2. Let h :Q → CP d−1 × D2k represent an element in the higher
structure set S∂(CP d−1 ×D2k). Then for 1 6= t ∈ S1 we have

ρ̃S1,∂(d, k)(t, [h]) =
∑

i∈IS4 (d,k)

8 · s4i(η([h])) · (fd+k−2i − fd+k−2i−2) ∈ C

where f = (1 + t)/(1− t).

Also recall that we showed that the composition

(3.3) S∂(CP d−1 ×D2k) η−→ N∂(CP d−1 ×D2k) proj◦(pS
1
G )!

−−−−−−−→ Ñ∂(L2d−1 ×D2k)

is surjective for n− 1 = 2d− 2 + 2k = 4u+ 2, which can be phrased as saying that
any representative of any element in Ss∂(L2d−1 ×D2k) is normally cobordant to a
representative of possibly another element of the same group which fibers over a
fake CP d−1×D2k. In case n−1 = 2d−2+2k = 4u this map is close to be surjective,
which can be phrased by saying that in case n−1 = 2d−2+2k = 4u the suspension
of any element of Ss∂(L2d−1 ×D2k) is normally cobordant to a representative of an
element of Ss∂(L2d+1 ×D2k) which fibers over a fake CP d ×D2k. Compare to [9,
Lemma 14E.9]

1Here we include the subscript to indicate which lens space is meant.
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In [1] a consequence of these ideas was a formula for the ρ-invariant map
[ρ̃2K (d, k)] in Proposition 5.7. Here we will not need the exact formula, but we will
use another consequence, which is formulated as Proposition 3.3.

To start, we need some notation which is at first unrelated to the above remarks.
Let Z(d, k) be the free abelian group defined as follows:

(3.4) Z(d, k) :=
{
⊕i∈IS4 (d,k)Z(s4i) if n− 1 = 2d− 2 + 2k = 4u+ 2
⊕i∈IS4 (d+2,k)Z(s4i) if n− 1 = 2d− 2 + 2k = 4u

Slightly abusing notation as in [1], define maps

(3.5) ρN (d, k) : Z(d, k)→ QR(−1)d+k

Ĝ

by

(3.6) ρN (d, k)((s4i)i) =
∑

i∈IS4 (d,k)

8 · s4i · (fd+k−2i − fd+k−2i−2) ∈ QR+
Ĝ
,

when n− 1 = 2d− 2 + 2k = 4u+ 2 and by

(3.7) ρN (d, k)((s4i)i) =
∑

i∈rIS4 (d+2,k)

8·s4i ·(fd+k−2i−fd+k−2i−2)+8·s4u ·f ∈ QR−
Ĝ

when n− 1 = 2d− 2 + 2k = 4u with rIS4 (d+ 2, k) = IS4 (d+ 2, k) r {u}.
Correspondingly, let

(3.8) [ρN (d, k)] : Z(d, k) ρN (d,k)−−−−−→ QR(−1)d+k

Ĝ
→ QR(−1)d+k

Ĝ
/4 ·R(−1)d+k

Ĝ

Also denote by projN (d, k) the map Z(d, k) → Ñ∂(L2d−1
N ×D2k) obtained by

including Z(d, k) into S∂(CP a−1×D2k) for a = d when n−1 = 2d−2+2k = 4u+2
and a = d + 2 when n − 1 = 2d − 2 + 2k = 4u and then applying the transfer
map. The symbol redS

1

N below denotes the appropriately restricted reduction map
R
Ŝ1 → RẐ/N induced by the inclusion Z/N ⊂ S1.

Proposition 3.3. We have

redS
1

N ◦ ρS1(d, k) = [ρN (d, k)] = [ρ̃N (d, k)] ◦ projN (d, k).

Proof. This follows from the formulas for the various ρ-maps, Theorem 3.2,
displays (3.6) and (3.7), and the fact that the ρ-invariant is natural together with
the property described in the paragraph around equation (3.3). It can be phrased
as saying that the following diagram

S∂(CP a−1 ×D2k)

ρ̃S1 (d,k)
��

Z(d, k)oo projN (d,k) //

ρN (d,k)
��

Ñ∂(L2d−1 ×D2k)

[ρ̃N (d,k)]
��

QR±
Ŝ1

redS
1
N

// QR±
Ẑ/N

// QR±
Ẑ/N

/4 ·R±
Ẑ/N

is commutative. �
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The meaning of the equation in Proposition 3.3 is that the map [ρ̃N ] in whose
kernel we are interested is described by the above formulas when precomposed with
the map projN (d, k) which surjects onto T2K (d, k)⊕ TM (d, k).

4. Calculations

As indicated in the introduction, it is convenient to observe that the maps
[ρ̃N (d, k)] factor through finite groups. In the case k = 2l + 1 the source (2.12)
already is a finite group so there is nothing to do. In the case k = 2l we need a
proof, which we divide into three cases, N = 2K , N = M odd, and N = 2K ·M .
In all the cases the key technical idea is to look at the corresponding situation
in the case when k = 0 and d increases by 2, that means we will be looking at
calculations of the composition

S(CP d+1) proj◦(pS
1
G )!◦η−−−−−−−−−→ Ñ (L2d+3) [ρ̃N (d+2,0)]−−−−−−−→ QR(−1)d

Ẑ/N
/4 ·R(−1)d

Ẑ/N
.

The source S(CP d+1) is calculated in (3-8) of [4] to be a direct sum of severeal
copies of Z and several copies of Z/2 and the middle term is calculated in the general
case in Theorem 3.2 of [5] to be a finite group where we completely understand the
2-primary torsion and we know the order of the odd-primary torsion.

Lemma 4.1. Let N = 2K . If k = 2l the map [ρ̃2K (d, k)] factors as

[ρ̃2K (d, k)] : Z⊕ T2K (d, k) proj−−→ Z/2K ⊕ T2K (d, k) [ρ̄N (d,k)]−−−−−−→ QR±
Ẑ/2K

/4 ·R±
Ẑ/2K

.

Proof. Consider the equation from Proposition 3.3. The right hand part tells us
that if we precompose the map [ρ̃2K ] with a projection from Z(d, k) we obtain a
map given by the formula (3.6) or (3.7).

Next we notice that upon suitable identification of a subgroup of S(CP d+1) with
a direct sum of several copies of Z this formula is identical with the formula for
the composition

(4.1) S(CP d+1) proj◦(pS
1
G )!◦η−−−−−−−−−→ Ñ (L2d+3)

[ρ̃2K (d+2,0)]
−−−−−−−−→ QR(−1)d

Ẑ/2K
/4 ·R(−1)d

Ẑ/2K

from Theorem 4.12 in [5] (see also Theorem 14C.4 in [9]).
To see this note that the indexing set for (4.1) is IS4 (d+ 2, 0) = {1, . . . , e}. The

appropriate bijection IS4 (d+ 2, 0)→ IS4 (d, k) is given by i 7→ i+ (l − 1).
However, in the composition (4.1) every element in the middle term has order

which divides 2K . Hence the same is true for every element in the image of the
composition. But then it also means that every element in the image of [ρ̃2K (d, k)]
is of such an order and consequently we have a factorization as claimed. �

Lemma 4.2. Let N = M odd. If k = 2l the map [ρ̃M (d, k)] factors as

[ρ̃M (d, k)] : Z⊕ TM (d, k) proj−−→ TM (d+ 2, 0) [ρ̄M (d,k)]−−−−−−→ QR±
Ẑ/M

/4 ·R±
Ẑ/M

,

where TM (d+ 2, 0) is isomorphic to the image of [ρ̃M (d, k)] which is a finite group
of order M c+1 with c = b(d− 1)/2c.
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Proof. We would like to use the same logic as in the proof of the previous lemma.
However, the information that we have about the normal invariants in this case is
weaker, so we have to modify the arguments somewhat.

We still have Proposition 3.3 and the formulas (3.6) and (3.7), which upon
suitable identification of S(CP d+1) with a direct sum of several copies of Z and
Z/2 are identical with the formula for the composition

(4.2) S(CP d+1) proj◦(pS
1
G )!◦η−−−−−−−−−→ Ñ (L2d+3) [ρ̃M (d+2,0)]−−−−−−−−→ QR(−1)d

Ẑ/M
/4 ·R(−1)d

Ẑ/M

from Theorem 4.12 in [5] via the same bijection of the indexing sets.
What is different is that in this case we only know that the middle group in the

composition (4.1) has cardinality M c+1. On the other hand we also know that the
map [ρ̃M (d+ 2, 0)] is injective by [9, 14E] (see also Theorem 5.2 in [5]). Since the
first map is surjective, the image of the composition has the same cardinality. Now,
the desired map [ρ̃M (d, k)], as any map, factors through its image. Because of the
identification via Proposition 3.3 this image is the same as the image of (4.2). This
proves the claim. �

Lemma 4.3. Let N = M be odd. If k = 2l the map [ρ̃N (d, k)] factors as

Z⊕ TN (d, k) proj−−→ Z/2K ⊕ T2K (d, k)⊕ TM (d+ 2, 0) [ρ̄N (d,k)]−−−−−−→ QR±
Ẑ/N

/4 ·R±
Ẑ/N

,

where TM (d+ 2, 0) is a finite group of order M c+1 with c = b(d− 1)/2c.

Proof. Again, we would like to use the same logic as in the proof of the previous
two lemmas, but clearly we have to modify the ideas about the factorization, since
two different arguments were used.

Even in this case we still have Proposition 3.3 and the formulas (3.6) and (3.7),
which upon suitable identification of a subgroup of S(CP d+1) with a direct sum of
several copies of Z are identical with the formula for the composition

(4.3) S(CP d+1) proj◦(pS
1
G )!◦η−−−−−−−−−→ Ñ (L2d+3) [ρ̃N (d+2,0)]−−−−−−−→ QR(−1)d

Ẑ/N
/4 ·R(−1)d

Ẑ/N

from Theorem 4.12 in [5] via the same bijection of the indexing sets.
In the present case notice that the middle term is a direct sum of a 2-primary

torsion and a group whose cardinality is M c+1. Therefore the image will also be a
direct sum of a 2-primary torsion group and an odd order torsion group. Moreover,
due to naturality and the fact that [ρ̃M (d+ 2, 0)] was injective in the above lemma,
our map is also injective on the odd part and so the cardinality of the odd part
summand of the image is M c+1. On the 2-primary part we know that the order of
every element divides 2K . This proves the claim. �

Notation 4.4. Denote

KN := ker[ρ̃N (d, k)] and K̄N := ker[ρ̄N (d, k)] if k = 2l ,
KN := ker[ρ̃N (d, k)] =: K̄N if k = 2l + 1 .
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Lemma 4.5. If k = 2l we have a short exact sequence

0→ N · Z→ KN → K̄N → 0.

Proof. This follows from the commutative ladder

0 // N ·Z //

��

Z⊕TN (d, k) //

[ρ̃N (d,k)]
��

Z/2K⊕T2K (d, k)⊕TM (d+ 2, 0) //

[ρ̄N (d,k)]
��

0

0 // 0 // QR±
ẐN
/4·R±

ẐN
// QR±

ẐN
/4·R±

ẐN
// 0

with exact rows. �

In order to proceed we need to reformulate known results for N = 2K and
N = M odd in terms [ρ̄2K (d, k)] and [ρ̄M (d, k)].

Proposition 4.6. We have
K̄M = 0

and as a consequence

KM = ker[ρ̃M (d, k)] = M · Z when k = 2l ,
KM = 0 when k = 2l + 1 .

Proof. The structure sets Ss(L2d−1
M × Dm) were studied in [7, §3], but their

calculation is not suitable for us, so we use a different argument. Note that in the
case k = 0 we have that the map [ρ̃M (d + 2, 0)] is injective by [9, 14E]. When
k = 2l, then arguing as in the proof of Lemma 4.2 we observe that upon suitable
identification of a summand of S(CP d+1) with a direct sum of several copies of Z
the map ρM (d, k) has the same formula as the composition of [ρ̃M (d+ 2, 0)] with
proj ◦ (pS1

G )! ◦ η for k = 0 and so the map [ρ̄M (d, k)] is identified with this map.
When k = 2l+ 1 then upon a suitable re-indexing the map [ρ̃M (d, k)] has the same
formula as [ρ̃M (d+ 2, 0)]. �

Proposition 4.7. For any k = 2l ≥ 0 we have

K̄2K =
cN (d,k)+1⊕

i=1
Z/2min{2i,K} ⊕

c2(d,k)⊕
i=1

Z/2 .

Proof. This follows from the proofs of Propositions 6.1 and 6.2 in [1]. The second
summand comes from the fact that the formula for ρ-invariant does not depend on
the invariants t4i−2. �

Next we would like to combine the two results for N = 2K and N = M odd.

Theorem 4.8. For any k ≥ 0 we have

(pN2K )! : K̄N

∼=−→ K̄2K .
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Proof. We use the same logic as the proof of Proposition 6.1 in [5]. When k = 2l
the situation can be summarized in the diagram

Z/2K⊕T2K (d, k)

[ρ̄2K (d,k)]
��

Z/2K⊕T2K (d, k)⊕TM (d+ 2, 0)
(pN

2K
)!

oo (pNM )!
//

[ρ̄N (d,k)]
��

TM (d+2, 0)

[ρ̄M (d,k)]
��

QR±
Ẑ/2K

/4·R±
Ẑ/2K

QR±
Ẑ/N

/4·R±
Ẑ/N

oo // QR±
Ẑ/M

/4·R±
Ẑ/M

.

Just as in that proof the splitting of the middle term into the 2-primary part and
the odd part is used to show

K̄N =
(

ker[ρ̄N (d, k)]|Z/2K⊕T2K (d,k)
)
⊕
(

ker[ρ̄N (d, k)]|TM (d+2,0)
)

in exactly the same way.
Next it needs to be shown that

ker[ρ̄N (d, k)]|Z/2K⊕T2K (d,k) ∼=
(
(pN2K )!)−1

K̄2K

and
ker[ρ̄N (d, k)]|TM (d+2,0) ∼=

(
(pNM )!)−1

K̄M = 0 .
The second equation follows from the commutativity of the diagram and from
Proposition 4.6. The first equation is proved in exactly the same way as in [5],
it is basically a purely algebraic statement whose proof involves purely algebraic
Lemma 6.2 and 6.3 of that paper.

When k = 2l + 1 then at the beginning we already have

TN (d, k) ∼= T2K (d, k)⊕ TM (d, k)

and then we use the same logic. �

Corollary 4.9. When k = 2l we have

KN
∼= Z⊕

cN (d,k)⊕
i=1

Z/2min{K,2i} ⊕
c2(d,k)⊕
i=1

Z/2 .

When k = 2l + 1 we have

KN
∼=
cN (d,k)⊕
i=1

Z/2min{K,2i} ⊕
c2(d,k)+1⊕

i=1
Z/2 .

Proof. The case k = 2l + 1 follows from KN = K̄N . The numbers cN (d, k) and
c2(d, k) + 1 are cardinalities of the indexing sets from (2.13). The case k = 2l goes
as follows. By Lemma 4.5 the group KN is an extension of Z and K̄N , which is
determined by Theorem 4.8. Now inspecting the calculations in [1] shows that these
are essentially done by studying the kernel of ρ2K (d, k) and then passing to the
quotient. There the extension is as we claim. Inspecting the commutative ladder in
the proof of Lemma 4.5 proves the general case. �
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Proof of Theorem 1.1. The proof is the same as the proof of Theorem 1.1 in
the paper [1] except now we have L-groups calculated in Theorem 2.1 and the
group T̄ (d, k) is denoted KN in this paper and it is calculated in Corollary 4.9. In
the case k = 2l + 1 the Z/2-summand from Corollary 4.9 corresponding to t4l+2 is
separated in the statement of Theorem 1.1 as being detected by r̄0. �

Proof of Corollary 1.2. The proof is the same as the proof of Corollary 1.2 in
the paper [1] except the normal invariants N (L2d−1

N ) now contain a KO-theory
summand, see Theorem 3.2 in [5]. The invariant r′′′ was denoted t(odd) in [5]. �

5. Final Remarks

The last section of [1] holds verbatim in the general case handled here as well.
In addition one might seek a deeper understanding of the KO-part of the normal
invariants in the general case, which does not appear in [1]. This involves different
techniques, so we postpone it to further projects.
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