ON A DECOMPOSITION OF NON-NEGATIVE RADON MEASURES

BÉRENGER AKON KPATA

ABSTRACT. We establish a decomposition of non-negative Radon measures on \mathbb{R}^d which extends that obtained by Strichartz [6] in the setting of α -dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.

1. INTRODUCTION - MAIN RESULTS

Let d be a positive integer. Let $0 < \theta \leq 1$. We denote by dx the Lebesgue measure on \mathbb{R}^d . For any Lebesgue measurable subset E of \mathbb{R}^d , |E| stands for its Lebesgue measure. For $1 \leq p < \infty$, $\|\cdot\|_p$ denotes the usual norm on the classical Lebesgue space $L^p = L^p(\mathbb{R}^d)$. The $d\theta$ -dimensional Hausdorff measure on \mathbb{R}^d is denoted by $\mathcal{H}_{d\theta}$ (see Section 2 for the definition of this measure and some of its basic properties). If μ is a measure on \mathbb{R}^d and $A \subset \mathbb{R}^d$, we denote by $\mu \lfloor A$ the restriction of μ to A.

A Borel measure μ on \mathbb{R}^d is locally uniformly $d\theta$ -dimensional if there exists a constant C > 0 such that

$$\mu(B(x,r)) \le Cr^{d\theta}$$

for every open ball B(x, r) centered at x with radius $r \leq 1$.

This definition easily implies that μ is absolutely continuous with respect to $\mathcal{H}_{d\theta}$, but since $\mathcal{H}_{d\theta}$ is not σ -finite, the Radon-Nikodym theorem does not apply. Instead Strichartz proved in [6] the following substitute.

Proposition 1.1. If μ is a locally uniformly $d\theta$ -dimensional measure, then there exists a function φ and a measure ν such that $\mu = \varphi d\mathcal{H}_{d\theta} + \nu$, where ν has the property $\mathcal{H}_{d\theta}(A) < \infty$ implies $\nu(A) = 0$ for any Borel subset A of \mathbb{R}^d .

Next, he gave the following definition motivated by Proposition 1.1.

²⁰¹⁰ Mathematics Subject Classification: primary 28A33; secondary 28A78, 28A12, 42B25. Key words and phrases: Bessel capacity, fractional maximal operator, Hausdorff measure,

non-negative Radon measure, Riesz potential.

Received October 6, 2016. Editor W. Kubiś.

DOI: 10.5817/AM2019-4-203

Definition 1.2. Let ν and μ be two Borel measures on \mathbb{R}^d . The measure ν is null with respect to μ on \mathbb{R}^d and we will denote this with $\nu \ll \mu$, if for any Borel subset A of \mathbb{R}^d ,

$$\mu(A) < \infty \Rightarrow \nu(A) = 0.$$

In [6] the author established the following result concerning the density of non-negative Radon measures that are null with respect to $\mathcal{H}_{d\theta}$.

Proposition 1.3. Suppose that ν is a non-negative Radon measure on \mathbb{R}^d . If $\nu \ll \mathcal{H}_{d\theta}$ then

$$\limsup_{r \to 0} r^{-d\theta} \nu(B(x,r)) = 0$$

for $\mathcal{H}_{d\theta}$ -almost every x.

A generalization of Proposition 1.1 and Proposition 1.3 was obtained in [4].

In the present note, we establish the following decomposition of non-negative Radon measures.

Proposition 1.4. Suppose that μ is a non-negative Radon measure on \mathbb{R}^d . Let us consider the following subsets of \mathbb{R}^d :

$$N_{\theta} = \left\{ x \in \mathbb{R}^{d} : \limsup_{r \to 0} r^{-d\theta} \mu(B(x, r)) = 0 \right\},$$
$$P_{\theta} = \left\{ x \in \mathbb{R}^{d} : 0 < \limsup_{r \to 0} r^{-d\theta} \mu(B(x, r)) < \infty \right\},$$
$$E_{\theta}^{\infty} = \left\{ x \in \mathbb{R}^{d} : \limsup_{r \to 0} r^{-d\theta} \mu(B(x, r)) = \infty \right\}.$$

Then $\mu = \mu \lfloor N_{\theta} + \mu \lfloor P_{\theta} + \mu \lfloor E_{\theta}^{\infty}$ and

- (i) for any Borel set $F \subset N_{\theta}$, $\mathcal{H}_{d\theta}(F) < \infty \Rightarrow \mu(F) = 0$,
- (ii) P_{θ} is $\mathcal{H}_{d\theta} \sigma$ -finite and for any Borel set $F \subset P_{\theta}$, $\mathcal{H}_{d\theta}(F) = 0 \Rightarrow \mu(F) = 0$,
- (iii) $\mathcal{H}_{d\theta}(E^{\infty}_{\theta}) = 0.$

The remark below shows that in the setting of non-negative Radon measures, Proposition 1.1 derives from Proposition 1.4.

Remark 1.5. If μ is a non-negative locally uniformly $d\theta$ -dimensional measure, then

$$0 \le \limsup_{r \to 0} r^{-d\theta} \mu \big(B(x, r) \big) < \infty \,.$$

Therefore, by applying Proposition 1.4, μ has the following decomposition: $\mu = \mu \lfloor N_{\theta} + \mu \lfloor P_{\theta}$. In addition, on P_{θ} , $\mathcal{H}_{d\theta}$ and μ are σ -finite and μ is absolutely continuous with respect to $\mathcal{H}_{d\theta}$. Therefore, according to the Radon-Nikodym theorem there exists a function $\varphi \geq 0$ such that for all Borel sets $E \subset P_{\theta}$, we have

$$\mu(E) = \int_E \varphi(x) \, d\mathcal{H}_{d\theta}(x) \, .$$

As immediate consequences of Proposition 1.4, we have Proposition 1.3 and the following result.

Corollary 1.6. Suppose that $0 < \theta < 1$ and μ is a non-negative Radon measure on \mathbb{R}^d that is absolutely continuous with respect to the Lebesgue measure. Let

$$A = \left\{ x \in \mathbb{R}^d : \limsup_{r \to 0} \ r^{-d\theta} \mu \big(B(x, r) \big) > 0 \right\}$$

Then $\mathcal{H}_{d\theta}(A) = 0$. In particular, for $u \in L^p$, $1 \le p < \infty$, if E is defined by

$$E = \left\{ x \in \mathbb{R}^d : \limsup_{r \to 0} r^{-d\theta} \int_{B(x,r)} |u(x)|^p dx > 0 \right\},$$

then $\mathcal{H}_{d\theta}(E) = 0.$

Let us stress that Corollary 1.6 was already established in [8] in order to investigate the Lebesgue points for Sobolev functions.

For $0 < \gamma < 1$, we define the Riesz potential operator I_{γ} by

$$I_{\gamma}\mu(x) = \int_{\mathbb{R}^d} |x-y|^{d(\gamma-1)} d\mu(y), \quad x \in \mathbb{R}^d,$$

for any suitable Radon measure μ on \mathbb{R}^d .

The next results that give some properties of non-negative Radon measures having their Riesz potential in a classical Lebesgue space also arise from Proposition 1.4.

Proposition 1.7. Suppose that $0 < \gamma < 1$ and $1 . Then for any non-negative Radon measure <math>\mu$ on \mathbb{R}^d satisfying $I_{\gamma}\mu \in L^p$, we have

$$\lim_{r \to 0} \int_{\mathbb{R}^d} \left(r^{d(\gamma-1)} \mu \big(B(x,r) \big) \right)^p dx = 0.$$

Proposition 1.8. Suppose that $\frac{d}{d-1} and <math>\mu$ is a non-negative Radon measure. Then we have

$$I_{\frac{1}{d}}\mu \in L^p \Rightarrow \lim_{r \to 0} r^{p'-d}\mu(B(x,r)) = 0 \quad \mu\text{-almost everywhere} ,$$

= $\frac{p}{d}$

where $p' = \frac{p}{p-1}$.

Notice that Proposition 1.7 and Proposition 1.8 are related to the solvability in $L^p(\mathbb{R}^d, \mathbb{R}^d)$ of the equation

(1) $\operatorname{div} F = \mu$

with measure data μ .

Indeed, Phuc and Torrès have obtained the following criterion.

Proposition 1.9 ([5]). Suppose that μ is a non-negative Radon measure on \mathbb{R}^d and $\frac{d}{d-1} . Then the following conditions are equivalent:$ $(i) Equation (1) has a solution in <math>L^p(\mathbb{R}^d, \mathbb{R}^d)$. (ii) $I_{\frac{1}{d}}\mu$ belongs to $L^p(\mathbb{R}^d, \mathbb{R})$.

The remainder of this paper is organized as follows. In Section 2 we prove Proposition 1.4, Proposition 1.3 and Corollary 1.6. Section 3 is devoted to the proof of Proposition 1.7. In Section 4 we establish the proof of Proposition 1.8. 2. PROOFS OF PROPOSITION 1.4, PROPOSITION 1.3 AND COROLLARY 1.6

In the sequel, we shall use the following notation.

Notation 2.1. For any non-empty subset B of \mathbb{R}^d , we denote by diam B its diameter.

Let us recall the definition of the ξ -dimensional Hausdorff measure \mathcal{H}_{ξ} in \mathbb{R}^d , where $0 < \xi \leq d$ (see [3] for a detailed exposition on this measure). Let A be a subset of \mathbb{R}^d . For any $\delta > 0$,

 $\mathcal{H}^{\delta}_{\xi}(A) = \inf \left\{ \sum_{i \in I} (\text{diam } U_i)^{\xi} : A \subset \bigcup_{i \in I} U_i, \ I \text{ countable and diam } U_i < \delta \text{ for } i \in I \right\}$

and

$$\mathcal{H}_{\xi}(A) = \lim_{\delta \to 0} \mathcal{H}_{\xi}^{\delta}(A) \,.$$

Remark 2.2. (i) If 0 < t < r, then for any subset *E* of \mathbb{R}^d we have

$$\mathcal{H}_t(E) < \infty \Rightarrow \mathcal{H}_r(E) = 0.$$

(ii) There exists a positive constant C(d) such that for any Lebesgue measurable subset E of \mathbb{R}^d ,

$$\mathcal{H}_d(E) = C(d)|E|.$$

The following result (see [8]) will be useful in the proof of Proposition 1.4.

Lemma 2.3. Let μ be a non-negative Radon measure on \mathbb{R}^d . Let $0 < \lambda < \infty$. Suppose that F is a Borel subset of \mathbb{R}^d such that

$$\limsup_{r \to 0} r^{-d\theta} \mu(B(x,r)) > \lambda \,,$$

for each $x \in F$. Then there exists a constant $C = C(d, \theta)$ such that

$$\mathcal{H}_{d\theta}(F) \leq \frac{C}{\lambda} \mu(F)$$

Proof of Proposition 1.4. a) Let F be a Borel subset of \mathbb{R}^d . Let $0 < \lambda < \infty$ and $0 < \delta < \infty$. Let us set $F_{\delta}^{\lambda} = \{x \in F : \sup_{0 < r \le \delta} r^{-d\theta} \mu(B(x,r)) < \lambda\}$ and $F^{\lambda} = \{x \in F : \limsup_{x \to 0} r^{-d\theta} \mu(B(x,r)) < \lambda\}.$

For any countable covering $\{U_i : i \in I\}$ of F such that diam $U_i < \frac{\delta}{2}$ for all $i \in I$, we have

$$U_i \cap F_{\delta}^{\lambda} \neq \emptyset \Rightarrow \exists x \in U_i \cap F_{\delta}^{\lambda} \Rightarrow \exists x \in F_{\delta}^{\lambda} : U_i \subset B(x, 2 \operatorname{diam} U_i)$$

 $U_i \cap F_{\delta}^{\lambda} \neq \emptyset \Rightarrow \exists x \in F_{\delta}^{\lambda} : \mu(U_i) \le \mu \big(B(x, \ 2 \text{ diam } U_i) \big) < \lambda \ (2 \text{ diam } U_i)^{d\theta} .$ It follows that

$$\mu(F^{\lambda}_{\delta}) \leq \sum_{\substack{i \in I \\ U_i \cap F^{\lambda}_{\delta} \neq \emptyset}} \mu(U_i) \leq \lambda \; 2^{d\theta} \sum_{i \in I} (\text{diam } U_i)^{d\theta} \, .$$

Hence,

$$\mu(F_{\delta}^{\lambda}) \leq \lambda \ 2^{d\theta} \mathcal{H}_{d\theta}^{\delta}(F) \leq \lambda \ 2^{d\theta} \mathcal{H}_{d\theta}(F) \,, \quad \lambda > 0, \ \delta > 0 \,.$$

Notice that for any $\lambda > 0$, $\left(F_{\frac{1}{k}}^{\lambda}\right)_{k \ge 1}$ is an increasing sequence which converges to F^{λ} . So we have

(2)
$$\mu(F^{\lambda}) \le \lambda \ 2^{d\theta} \ \mathcal{H}_{d\theta}(F) , \quad \lambda > 0 .$$

b) Suppose that F is a Borel set such that $F \subset N_{\theta}$ and $\mathcal{H}_{d\theta}(F) < \infty$. Then, for any $\lambda > 0$, we have $F = F^{\lambda} = \{x \in F : \limsup_{r \to 0} r^{-d\theta} \mu(B(x,r)) < \lambda\}$. So by (2), we have $\mu(F) = 0$.

c) Suppose that F is a Borel set such that $F \subset P_{\theta}$ and $\mathcal{H}_{d\theta}(F) = 0$. It follows from (2) that for any $\lambda > 0$, $\mu(F^{\lambda}) = 0$. Since the increasing sequence $(F^k)_{k \ge 1}$ converges to F, we obtain $\mu(F) = 0$.

d) Let us set

$$A^{m,k}_{\theta} = \left\{ x \in B(0,m) : \frac{1}{k} < \limsup_{r \to 0} \ r^{-d\theta} \mu(B(x,r)) < \infty \right\}, \quad k \in \mathbb{N}^*, \ m \in \mathbb{N}^*$$

and

$$B_{\theta}^{m,k} = \left\{ x \in B(0,m) : k < \limsup_{r \to 0} \ r^{-d\theta} \mu(B(x,r)) < \infty \right\}, \quad k \in \mathbb{N}^*, \ m \in \mathbb{N}^*.$$

By Lemma 2.3, there exists a real constant $C = C(d, \theta)$ such that for any positive integers k and m

(3)
$$\mathcal{H}_{d\theta}(A^{m,k}_{\theta}) \le Ck\mu(A^{m,k}_{\theta}) \le Ck\mu(B(0,m)) < \infty$$

and

(4)
$$\mathcal{H}_{d\theta}(B^{m,k}_{\theta}) \leq \frac{C}{k} \mu \big(B(0,m) \big) < \infty \,.$$

Since

$$P_{\theta} = \bigcup_{(m,k) \in \mathbb{N}^* \times \mathbb{N}^*} A_{\theta}^{m,k} ,$$

we deduce from (3) that P_{θ} is $\mathcal{H}_{d\theta} \sigma$ -finite. From (4) we have

$$\lim_{k \to \infty} \mathcal{H}_{d\theta}(B^{k,m}_{\theta}) = 0, \quad m \in \mathbb{N}^*.$$

In addition, for any positive integer m, $(B^{k,m}_{\theta})_{k\geq 1}$ is a decreasing sequence which converges to $E^{\infty}_{\theta} \cap B(0,m)$. So, by (4),

$$\mathcal{H}_{d\theta}(E^{\infty}_{\theta} \cap B(0,m)) = 0, \quad m \in \mathbb{N}^*$$

and therefore $\mathcal{H}_{d\theta}(E^{\infty}_{\theta}) = 0.$

207

Proof of Proposition 1.3. Since ν is a non-negative Radon measure on \mathbb{R}^d then Proposition 1.4 holds with μ replaced by ν . Let P_{θ} and E_{θ}^{∞} be as in Proposition 1.4. Since by Proposition 1.4 $\mathcal{H}_{d\theta}(E_{\theta}^{\infty}) = 0$ then it is enough to prove that $\mathcal{H}_{d\theta}(P_{\theta}) = 0$. Let (m, k) be an element of $\mathbb{N}^* \times \mathbb{N}^*$. Let $A_{\theta}^{m,k}$ be as in the proof of Proposition 1.4. By (3), $\mathcal{H}_{d\theta}(A_{\theta}^{m,k}) < \infty$. Therefore $\nu(A_{\theta}^{m,k}) = 0$ by the hypothesis on ν . Using again (3), we obtain $\mathcal{H}_{d\theta}(A_{\theta}^{m,k}) = 0$. But

$$P_{\theta} = \bigcup_{(m,k) \in \mathbb{N}^* \times \mathbb{N}^*} A_{\theta}^{m,k} \,,$$

so $\mathcal{H}_{d\theta}(P_{\theta}) = 0.$

Proof of Corollary 1.6. a) Let P_{θ} and E_{θ}^{∞} be as in Proposition 1.4. Let us notice that $A = P_{\theta} \cup E_{\theta}^{\infty}$. Since Proposition 1.4 ensures that $\mathcal{H}_{d\theta}(E_{\theta}^{\infty}) = 0$ then it is enough to prove that $\mathcal{H}_{d\theta}(P_{\theta}) = 0$ to establish the general case.

Let (m, k) be an element of $\mathbb{N}^* \times \mathbb{N}^*$. Let $A_{\theta}^{m,k}$ be as in the proof of Proposition 1.4. By (3), $\mathcal{H}_{d\theta}(A_{\theta}^{m,k}) < \infty$. Since $0 < d\theta < d$, it follows from Remark 2.2 that $\mathcal{H}_d(A_{\theta}^{m,k}) = 0$ and $|A_{\theta}^{m,k}| = 0$. The absolute continuity of μ with respect to the Lebesgue measure implies $\mu(A_{\theta}^{m,k}) = 0$ and consequently $\mathcal{H}_{d\theta}(A_{\theta}^{m,k}) = 0$ thanks to (3). But

$$P_{\theta} = \bigcup_{(m,k) \in \mathbb{N}^* \times \mathbb{N}^*} A_{\theta}^{m,k} \,,$$

so $\mathcal{H}_{d\theta}(P_{\theta}) = 0.$

b) The particular case follows from the general case by defining a measure μ as $d\mu(x) = |u(x)|^p dx$.

3. Proof of Proposition 1.7

Let us introduce the fractional maximal operator m_{β} , $1 < \beta < \infty$, defined by

$$m_{\beta}\mu(x) = \sup_{r>0} |B(x,r)|^{\frac{1}{\beta}-1}\mu(B(x,r)), \quad x \in \mathbb{R}^d,$$

for any non-negative Radon measure μ on \mathbb{R}^d . We have the following result.

Proposition 3.1. Suppose that $1 < \beta < \infty$ and $1 \leq p < \infty$. Let μ be a non-negative Radon measure on \mathbb{R}^d such that $m_{\beta}\mu \in L^p$. Then, we have

$$\lim_{r \to 0} \int_{\mathbb{R}^d} \left(r^{d\left(\frac{1}{\beta} - 1\right)} \mu(B(x, r)) \right)^p dx = 0.$$

Proof. By hypothesis, $0 < 1 - \frac{1}{\beta} < 1$.

Define $N_{1-\frac{1}{\beta}}$, $P_{1-\frac{1}{\beta}}$ and $E_{1-\frac{1}{\beta}}^{\infty}$ as in Proposition 1.4. Then $\mathcal{H}_{d(1-\frac{1}{\beta})}(E_{1-\frac{1}{\beta}}^{\infty}) = 0$ and there exists a countable family $\{A_i : i \in I\}$ of subsets of \mathbb{R}^d satisfying $P_{1-\frac{1}{\beta}} = \bigcup_{i \in I} A_i$ and $\mathcal{H}_{d(1-\frac{1}{\beta})}(A_i) < \infty$ for all $i \in I$.

So, according to Remark 2.2 we have $|P_{1-\frac{1}{\beta}} \cup E^{\infty}_{1-\frac{1}{\beta}}| = 0$. Recall that

$$\lim_{r \to 0} r^{d(\frac{1}{\beta}-1)} \mu \left(B(x,r) \right) = 0, \quad x \in N_{1-\frac{1}{\beta}} = \mathbb{R}^d \setminus \left(P_{1-\frac{1}{\beta}} \cup E_{1-\frac{1}{\beta}}^{\infty} \right).$$

In addition,

$$\omega_d^{\overline{\beta}^{-1}} r^{d(\frac{1}{\beta}-1)} \mu\left(B(x,r)\right) \le m_\beta \mu(x) \,, \quad x \in \mathbb{R}^d \,,$$

where ω_d is the volume of the unit ball in \mathbb{R}^d and $m_\beta \mu \in L^p$. An application of the dominated convergence theorem ends the proof.

For the proof of Proposition 1.7 we need the following well-known connexions between the fractional maximal operator m_{β} and the Riesz potential operator $I_{\frac{1}{2}}$.

Proposition 3.2 ([1]). Suppose that $1 < \beta < \infty$. Let μ be a non-negative Radon measure on \mathbb{R}^d . Then,

(i) $m_{\beta}\mu \leq I_{\frac{1}{\beta}}\mu$, (ii) if $1 - \frac{1}{\beta} > \frac{1}{p} > 0$, there is a real constant C > 0 not depending on μ such that $C^{-1} \|m_{\beta}\mu\|_{p} \leq \|I_{\frac{1}{\beta}}\mu\|_{p} \leq C \|m_{\beta}\mu\|_{p}$.

It follows that Proposition 1.7 is a consequence of Proposition 3.1.

4. Proof of Proposition 1.8

In the sequel, for 1 , we shall denote by <math>p' the conjugate of $p: p' = \frac{p}{p-1}$. For the proof of Proposition 1.8, we need some basic properties of the Bessel capacity of order (t, p) (t > 0, p > 1) denoted by $C_{t,p}$. So we refer the reader to [1], [2] or [7] for a detailed exposition on this capacity.

To prove the sufficiency part of Proposition 1.9, Phuc and Torrès remarked that if $I_{\frac{1}{d}} \mu \in L^p$ then the non-negative Radon measure μ belongs to the dual space of the Sobolev space $W^{1, p'}(\mathbb{R}^d)$. Therefore such a measure is absolutely continuous with respect to the Bessel capacity $C_{1, p'}$ (see Section 2 in [2]). Thus we may state the following result.

Proposition 4.1. Suppose that $\frac{d}{d-1} and <math>\mu$ is a non-negative Radon measure such that $I_{\underline{1}} \mu \in L^p$. Then for any Borel subset E of \mathbb{R}^d we have

$$C_{1,p'}(E) = 0 \Rightarrow \mu(E) = 0.$$

Another useful result is the following well-known relation between the Hausdorff measure and the Bessel capacity (see [1] for a proof).

Proposition 4.2. Suppose that 1 . Then for any subset <math>E of \mathbb{R}^d we have $\mathcal{H}_{d-p}(E) < \infty \Rightarrow C_{1,p}(E) = 0$.

We may now prove Proposition 1.8.

Proof of Proposition 1.8. Let μ be a non-negative Radon measure on \mathbb{R}^d such that $I_{\frac{1}{d}}\mu \in L^p$ and let $\frac{d}{d-1} . Applying Proposition 1.4 to <math>\mu$ with $\theta = 1 - \frac{p'}{d}$, we get that $P_{1-\frac{p'}{d}}$ is $\mathcal{H}_{d-p'} \sigma$ -finite and $\mathcal{H}_{d-p'}\left(E_{1-\frac{p'}{d}}^{\infty}\right) = 0$. We then deduce from Proposition 4.2 that $C_{1,p'}\left(P_{1-\frac{p'}{d}} \cup E_{1-\frac{p'}{d}}^{\infty}\right) = 0$ and so $\mu\left(P_{1-\frac{p'}{d}} \cup E_{1-\frac{p'}{d}}^{\infty}\right) = 0$ by Proposition 4.1. We conclude that $\lim_{r \to 0} r^{p'-d}\mu(B(x,r)) = 0$ μ -almost everywhere.

References

- Adams, D.R., Hedberg, L.I., Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, vol. 314, Springer-Verlag, London-Berlin-Heidelberg-New York, 1996.
- [2] Dal Maso, G., On the integral representation of certain local functionals, Ric. Mat. 32 (1) (1983), 85–113.
- [3] Falconner, K.J., Fractal geometry, Wiley, New York, 1990.
- [4] Molter, U.M., Zuberman, L., A fractal Plancherel theorem, Real Anal. Exchange 34 (1) (2008/2009), 69–86.
- [5] Phuc, N.C., Torrès, M., Characterizations of the existence and removable singularities of divergence-measure vector fields, Indiana Univ. Math. J. 57 (4) (2008), 1573–1597.
- [6] Strichartz, R.S., Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154–187.
- [7] Véron, L., *Elliptic equations involving measures*, Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 1, 2004, pp. 593–712.
- [8] Ziemer, W.P., Weakly Differentiable Functions, Springer-Verlag, New York, 1989.

LABORATOIRE DE MATHÉMATIQUES ET INFORMATIQUE, UFR DES SCIENCES FONDAMENTALES ET APPLIQUÉES, UNIVERSITÉ NANGUI ABROGOUA, 02 BP 801 ABIDJAN 02, CÔTE D'IVOIRE *E-mail*: kpata_akon@yahoo.fr