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ON A DECOMPOSITION OF NON-NEGATIVE RADON
MEASURES

BERENGER AKON KPATA

ABSTRACT. We establish a decomposition of non-negative Radon measures on
R? which extends that obtained by Strichartz [6] in the setting of a-dimensional
measures. As consequences, we deduce some well-known properties concerning
the density of non-negative Radon measures. Furthermore, some properties
of non-negative Radon measures having their Riesz potential in a Lebesgue
space are obtained.

1. INTRODUCTION — MAIN RESULTS

Let d be a positive integer. Let 0 < § < 1. We denote by dx the Lebesgue
measure on RY. For any Lebesgue measurable subset E of R%, |E| stands for its
Lebesgue measure. For 1 < p < oo, || - ||, denotes the usual norm on the classical
Lebesgue space LP = LP(R?). The df-dimensional Hausdorff measure on R? is
denoted by Hag (see Section 2 for the definition of this measure and some of its
basic properties). If p is a measure on R? and A C RY, we denote by u|A the
restriction of u to A.

A Borel measure p on R? is locally uniformly df-dimensional if there exists a
constant C' > 0 such that

N(B(x7 T)) < Cr )

for every open ball B(x,r) centered at x with radius r < 1.

This definition easily implies that p is absolutely continuous with respect to Hgg,
but since Hgp is not o-finite, the Radon-Nikodym theorem does not apply. Instead
Strichartz proved in [6] the following substitute.

Proposition 1.1. If u is a locally uniformly df-dimensional measure, then there
exists a function @ and a measure v such that = ¢dHag + v, where v has the
property Hag(A) < oo implies v(A) = 0 for any Borel subset A of R%.

Next, he gave the following definition motivated by Proposition [I.1
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Definition 1.2. Let v and p be two Borel measures on R%. The measure v is null
with respect to p on R? and we will denote this with v <« p, if for any Borel subset
A of R?,

pu(A) <oo=rv(A)=0.

In [6] the author established the following result concerning the density of
non-negative Radon measures that are null with respect to H 4.

Proposition 1.3. Suppose that v is a non-negative Radon measure on R?. If
v <& Hag then
limsup r~%v(B(z,r)) =0

r—0

for Hag-almost every x.

A generalization of Proposition and Proposition |1.3| was obtained in [4].
In the present note, we establish the following decomposition of non-negative
Radon measures.

Proposition 1.4. Suppose that p is a non-negative Radon measure on R?. Let us
consider the following subsets of R%:

Ny = {x e R : limsupr~ ¥ u(B(z,r)) = 0} ,

r—0

Py={z¢€ R : 0 < limsupr~®u(B(zx, 1)) < oo},

r—0

Eg = {x cR?: lim sup r_dgu(B(%?“)) = OO}‘

r—0
Then p = p|Ng + | Py + p| EF° and
(i) for any Borel set F C Ny, Hag(F) < 0o = u(F) =0,
(ii) Py is Hap o-finite and for any Borel set F C Py, Hao(F) = 0= p(F) =0,
(iii) Hao(£5°) = 0.
The remark below shows that in the setting of non-negative Radon measures,
Proposition [I.1] derives from Proposition [T.4]

Remark 1.5. If p is a non-negative locally uniformly df-dimensional measure,
then
0 <lim supr_‘wu(B(m,r)) < 00.
r—0

Therefore, by applying Proposition [I.4] p has the following decomposition: p =
1| Ng + | Pp. In addition, on Py, Hae and p are o-finite and p is absolutely
continuous with respect to Hgg. Therefore, according to the Radon-Nikodym
theorem there exists a function ¢ > 0 such that for all Borel sets E C Py, we have

W(E) = /E () dHa ().

As immediate consequences of Proposition we have Proposition [[.3] and the
following result.
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Corollary 1.6. Suppose that 0 < 8 < 1 and p is a non-negative Radon measure
on R? that is absolutely continuous with respect to the Lebesque measure. Let

A= {zeR: limsup r ®u(B(z,r)) >0}.
r—0

Then Hap(A) = 0.
In particular, foru € LP, 1 < p < oo, if E is defined by

E= {xGRd:limsup dee/ |u(:c)pdx>0},
B(z,r)

r—0

then Hqo(E) = 0.

Let us stress that Corollary was already established in [§] in order to
investigate the Lebesgue points for Sobolev functions.
For 0 < 7 < 1, we define the Riesz potential operator I, by

Lute) = [ o=yl Vduty), @ €Y,

for any suitable Radon measure ; on R9.
The next results that give some properties of non-negative Radon measures having
their Riesz potential in a classical Lebesgue space also arise from Proposition

Proposition 1.7. Suppose that 0 < v < 1 and 1 < p < oo. Then for any
non-negative Radon measure ;1 on RY satisfying L,p € LP, we have

. d(y—1) P
}1_1)% g (r v u(B(x,r))) dr =0.

_d_

707 < p < 00 and p is a non-negative Radon

Proposition 1.8. Suppose that
measure. Then we have

Iipel? = lir% P =4(B(z, 7)) =0 p-almost everywhere,

where p’ = %.

Notice that Proposition [I.7] and Proposition [I.8| are related to the solvability in
LP(R4, R?) of the equation
(1) div FF = p

with measure data pu.
Indeed, Phuc and Torres have obtained the following criterion.

Proposition 1.9 ([5]). Suppose that p is a non-negative Radon measure on R¢
and ﬁ < p < oo. Then the following conditions are equivalent:
(i) Equation has a solution in LP(R?, RY).

(ii) 11 p belongs to LP(R?, R).

The remainder of this paper is organized as follows. In Section 2 we prove
Proposition Proposition and Corollary Section 3 is devoted to the
proof of Proposition In Section 4 we establish the proof of Proposition
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2. PROOFS OF PROPOSITION [T.4], PROPOSITION [I.3] AND COROLLARY [I.0]
In the sequel, we shall use the following notation.

Notation 2.1. For any non-empty subset B of R? we denote by diam B its
diameter.

Let us recall the definition of the {-dimensional Hausdorff measure H¢ in R?,
where 0 < < d (see [3] for a detailed exposition on this measure). Let A be a
subset of R%. For any § > 0,

H‘g(A) = inf { ;(diam Ut : AcC iglUi’ I countable and diam U; < ¢ for i € I}
and
He(A) = lim H2(A).
Remark 2.2. (i) If 0 < t < r, then for any subset E of R? we have
H(E) < oo = H,(E)=0.

(ii) There exists a positive constant C(d) such that for any Lebesgue measurable
subset E of RY,
Ha(E) = C(d)|E].

The following result (see [8]) will be useful in the proof of Proposition
Lemma 2.3. Let u be a non-negative Radon measure on R%. Let 0 < A < oo.

Suppose that F is a Borel subset of R% such that
limsup =% u(B(x,7)) > A,

r—0

for each x € F. Then there exists a constant C' = C(d, 0) such that

Hao(F) < Su(F).

Proof of Proposition [L.4} a) Let F be a Borel subset of R% Let 0 < A < oo

and 0 < § < oo. Let us set [ = {x € F: sup 7 ¥u(B(x,r)) < A} and
0<r<é

F* ={x € F :limsup v~ %u(B(z,7)) < A\}.
r—0
For any countable covering {U; : i € I'} of F such that diam U; < % for all 7 € I,
we have
UNF)#0=>3zcUnNF=3zcF} : U C B(x, 2diam U;)

UNFy#£0=3zeF : wU;) < p(B(z, 2diam U;)) < A (2 diam U;)™ ..
It follows that
p(FH < D u(U;) < A2 (diam U;) %

i€l el
UmF{;;ﬁ(I)
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Hence,
() < X 2HG(F) < X 2%Hgp(F), A>0,6>0.

Notice that for any A > 0, (Fg)
F*. So we have

(2) p(FY) <X 2% Hap(F), A>0.

b) Suppose that F is a Borel set such that F' C Ny and Hgg(F') < oo. Then, for
any A > 0, we have F = F* = {z € F : lir:lj(l)lp =P u(B(z,r)) < A}. So by (@),

we have u(F) = 0.

¢) Suppose that F' is a Borel set such that F' C Py and Hge(F) = 0. It follows
from that for any A > 0, u(F*) = 0. Since the increasing sequence (Fk)
converges to F', we obtain u(F) = 0.

>1 18 an increasing sequence which converges to

k>1

d) Let us set

1
AR — {z € B(0O,m) : 7 < limsup r~“p(B(z,r)) < oo}, keN*, meN*

r—0

and
Bg”’k = {z € B(0,m) : k < limsup 7~ u(B(x, 7)) < oo}, keN*, meN*.
r—0

By Lemma there exists a real constant C = C(d, ) such that for any positive
integers k and m

(3) Hag(A5"") < Chu(AG™") < Chu(B(0,m)) < oo
and
(4) Hdg(B;n’k) < %u(B(O,m)) < 0.

Since

m,k
P= A
(m,k)EN= x N~

we deduce from that Py is Hgg o-finite.
From we have

lim Hde(Bg’m) =0, meN~*.
k—o0
In addition, for any positive integer m, (Bg ")k>1 is a decreasing sequence which
converges to Eg° N B(0,m). So, by ,
Hao(Eg° N B(0,m)) =0, meN*
and therefore Hqg(E5°) = 0. O
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Proof of Proposition Since v is a non-negative Radon measure on R? then
Proposition holds with p replaced by v. Let Py and Eg° be as in Proposition
Since by Proposition Hao(Eg°) = 0 then it is enough to prove that Hag(Py) = 0.
Let (m, k) be an element of N* x N*. Let Ag“k be as in the proof of Proposition
By (3), Hag(A"") < co. Therefore v(A7"*) = 0 by the hypothesis on v. Using
again (3), we obtain Hag(A;"") = 0. But

= J AP
(m,k)EN* x N*
S0 Hde(Pg) =0. O

Proof of Corollary a) Let Py and EJ° be as in Proposition Let us
notice that A = Py U Eg°. Since Proposition ensures that Hqg(Eg°) = 0 then it
is enough to prove that Ha9(Pp) = 0 to establish the general case.

Let (m, k) be an element of N* x N*. Let Agn’k be as in the proof of PrOposition
By , Hdg(A;n’k) < o0. Since 0 < df < d, it follows from Remark that
Ha(A)"") = 0 and |A)"*
Lebesgue measure implies ,u(A;n’k) = 0 and consequently Hgp (A;n’k) = 0 thanks to
(13). But

= 0. The absolute continuity of p with respect to the

Py = U A”amk 7
(m, k) EN* XN~

SO Hdg(Pe) =0.

b) The particular case follows from the general case by defining a measure p as

du(z) = |u(z)[Pd. O
3. PROOF OF PROPOSITION

Let us introduce the fractional maximal operator mg, 1 < 8 < oo, defined by

map(x) = sup|B(z,r)| 7 u(B(z, 1)), xR,
r>0

for any non-negative Radon measure p on R?.
We have the following result.

Proposition 3.1. Suppose that 1 < f < oo and 1 < p < oo. Let p be a
non-negative Radon measure on R? such that mgp € LP. Then, we have

}i_r)r(i) y (rd(fl*_l)/i(B(L r)))pdx =0.

Proof. By hypothesis, 0 <1 -4 < 1.
Define Ny_1, P,_1 and Ei’i% as in Proposition Then Hy1— 1) (Elo‘i%) =0 and

there exists a countable family {A; : i € I} of subsets of R? satisfying P17% = 'UIAi
1€

and Hd(lfﬁ)(Ai) < oo foralliel.
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SO, according to Remark we have ’PI 1 U El 1 | =0.
B B
Recall that

lim rd(%_l),u(B(x,r)) =0, z€N;_1

r—0
In addition,
wj’_lrd(%fl)u (B(z, r)) <mgu(z), zcRY,
where wy is the volume of the unit ball in R and mgp € LP.
An application of the dominated convergence theorem ends the proof. [l

For the proof of Proposition [1.7] we need the following well-known connexions
between the fractional maximal operator mg and the Riesz potential operator I .

Proposition 3.2 ([1]). Suppose that 1 < 8 < co. Let p be a non-negative Radon
measure on R%. Then,

(i) mgp < Iyp,
B
(i) of 1 — % > % > 0, there is a real constant C > 0 not depending on p such that

CHImppllp < Iy pllp < Cllmapllp -

It follows that Proposition is a consequence of Proposition [3.1

4. PROOF OF PROPOSITION [L.8]

In the sequel, for 1 < p < 0o, we shall denote by p’ the conjugate of p: p’ = %‘

For the proof of Proposition [1.8] we need some basic properties of the Bessel
capacity of order (¢, p) (¢t > 0, p > 1) denoted by C,. So we refer the reader to
[, [2] or [7] for a detailed exposition on this capacity.
To prove the sufficiency part of Proposition [[.9) Phuc and Torrés remarked that if
1 1B E LP then the non-negative Radon measure p belongs to the dual space of the
Sobolev space W ' (R9). Therefore such a measure is absolutely continuous with
respect to the Bessel capacity C1, , (see Section 2 in [2]). Thus we may state the
following result.

Proposition 4.1. Suppose that ffl < p < oo and i is a non-negative Radon
measure such that I%,u € LP. Then for any Borel subset E of R we have

Cip(E)=0= p(E)=0.

Another useful result is the following well-known relation between the Hausdorff
measure and the Bessel capacity (see [I] for a proof).

Proposition 4.2. Suppose that 1 < p < d. Then for any subset E of R% we have
Hi—p(E) <o0=C1,(E)=0.

We may now prove Proposition |1.8
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Proof of Proposition Let i be a non-negative Radon measure on R¢ such
that Ié/i € LP and let % < p < co. Applying Propositionto powith 0 =1-12,

we get that P, is Hq—p o-finite and Hq—p (E‘fo p,) = 0. We then deduce from
a -7

that C1p'(P1 » UE>® ,) :Oandsou(P » UE>® ,) =0 by
> -7 1—2 1-5 1—%

d

Proposition

We conclude that lirr(l) r? ~d(B(x,r)) = 0 p-almost everywhere.
r—
O

Proposition

REFERENCES
1

Adams, D.R., Hedberg, L.I., Function spaces and potential theory, Grundlehren der mathe-
matischen Wissenschaften, vol. 314, Springer-Verlag, London-Berlin-Heidelberg-New York,
1996.

2

Dal Maso, G., On the integral representation of certain local functionals, Ric. Mat. 32 (1)
(1983), 85-113.

Falconner, K.J., Fractal geometry, Wiley, New York, 1990.

Molter, U.M., Zuberman, L., A fractal Plancherel theorem, Real Anal. Exchange 34 (1)
(2008/2009), 69-86.

Phuc, N.C., Torrés, M., Characterizations of the existence and removable singularities of
divergence-measure vector fields, Indiana Univ. Math. J. 57 (4) (2008), 1573-1597.

Strichartz, R.S., Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187.

Véron, L., Elliptic equations involving measures, Handbook of Differential Equations: Statio-
nary Partial Differential Equations, vol. 1, 2004, pp. 593-712.

Ziemer, W.P., Weakly Differentiable Functions, Springer-Verlag, New York, 1989.

3
[4

5

6
[7

8

LABORATOIRE DE MATHEMATIQUES ET INFORMATIQUE,

UFR DES SCIENCES FONDAMENTALES ET APPLIQUEES, UNIVERSITE NANGUI ABROGOUA,
02 BP 801 ABIDJAN 02, COTE D’IVOIRE

E-mail: kpata_akon@yahoo.fr


mailto:kpata_akon@yahoo.fr

	1. Introduction -- main results
	2. Proofs of Proposition 1.4, Proposition 1.3 and Corollary 1.6
	3. Proof of Proposition 1.7
	4. Proof of Proposition 1.8
	References

