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EXISTENCE RESULTS FOR SYSTEMS OF CONFORMABLE

FRACTIONAL DIFFERENTIAL EQUATIONS

Bouharket Bendouma, Alberto Cabada, and Ahmed Hammoudi

Abstract. In this article, we study the existence of solutions to systems
of conformable fractional differential equations with periodic boundary va-
lue or initial value conditions. where the right member of the system is
L1
α-carathéodory function. We employ the method of solution-tube and Schau-

der’s fixed-point theorem.

1. Introduction

Recently, a new fractional derivative called the conformable fractional derivative,
was introduced by Khalil et al. in [23]. For recent results on conformable fractional
derivatives we refer the reader to [1, 2, 3, 4, 5, 13, 17, 18, 21, 22]. Furthermore,
in [8, 19, 27, 32] the authors introduced a conformable fractional calculus on
an arbitrary time scale. For some recent contributions on fractional differential
equations, see [6, 10, 11, 12, 24, 25, 30, 31, 33, 34].

In this paper, we establish existence results for the following system of confor-
mable fractional differential equations:

(1.1)
{
x(α)(t) = f

(
t, x(t)

)
, for a.e. t ∈ I = [0, b], b > 0,

x ∈ (B) .

Where 0 < α ≤ 1, f : I × Rn → Rn is a L1
α-carathéodory function, x(α)(t) denotes

the conformable fractional derivative of x at t of order α, and (B) denotes the
initial value or the periodic boundary value conditions:

x(0) = x0 ,(1.2)

x(0) = x(b) .(1.3)
Existence results for problem (1.1), (1.2) were obtained in [29], by using the

Banach fixed point theorem with f a continuous function. In the particular case
where n = 1, existence results for problem (1.1) were obtained in [7] with nonlinear
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functional boundary conditions B(x(0), x) = 0 or H(x, x(b)) = 0, where B and
H are continuous functions that satisfy suitable monotonicity assumptions, their
results were established, for the scalar case, with the method of lower and upper
solutions and cover, as a particular cases, the boundary conditions (1.2) and (1.3).
In [5] the authors solved problem (1.1), (1.2) (for n = 1), with f a continuous
function by the help of the solution-tube method. As we will see, the used definition
is equivalent to the existence of a pair of lower and upper solutions of the considered
problem.

In order to obtain the existence results for problem (1.1), we introduce the
notion of solution-tube of 1.1 which generalizes the notions of lower and upper
solutions given in [7]. It is inspired by a notion of solution tube for first-order
systems of differential equations introduced in [26], (see also [14, 15] and [16] on
time scales).

This paper is organized as follows. In Section 2, we introduce the definition
of conformable fractional calculus and their important properties. In Section 3,
we prove the existence and uniqueness of solutions to problem (1.1) by using the
method of solution-tube and Schauder’s fixed-point theorem.

2. Preliminaries

In this section, we introduce some necessary definitions and properties of the
conformable fractional calculus which are used in this paper and can be found in
[1, 23, 20, 29] and in [32] (If T is a real interval [0,∞)) are given:

Definition 2.1 ([23]). Given a function f : [0,∞) → R and a real constant α ∈
(0, 1]. The conformable fractional derivative of f of order α is defined by,

(2.1) f (α)(t) := lim
ε→0

f(t+ εt1−α)− f(t)
ε

for all t > 0.
If f (α)(t) exists and is finite, we say that f is α-differentiable at t.
If f is α-differentiable in some interval (0, a), a > 0, and limt→0+ f (α)(t) exists,

then the conformable fractional derivative of f of order α at t = 0 is defined as

f (α)(0) = lim
t→0+

f (α)(t) .

Example 2.2. Conformable fractional derivatives of certain functions as follow:
(1) (tp)(α) = p tp−α, for all p ∈ R.
(2) (λ)(α) = 0, for all λ ∈ R.
(3) (ept)(α) = p t1−αept, and (e

p
α t
α)(α) = p e

p
α t
α , for all p ∈ R.

Definition 2.3 ([32]). Assume f : [0,∞) → Rn, f(t) := (f1(t), f2(t), . . . , fn(t))
and let α ∈ (0, 1] and t ≥ 0. Then one defines f (α)(t) = (f (α)

1 (t), f (α)
2 (t), . . . , f (α)

n (t))
(provided it exists). One calls f (α)(t) the conformable fractional derivative of f
of order α at t > 0. Function f is conformal fractional differentiable of order α
provided f (α)(t) exists for all t > 0, in such a case, we say that f is α-differentiable
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at t. We define the conformable fractional derivative at 0 as f (α)(0) = lim
t→0+

f (α)(t),
provided it exists.

Theorem 2.4 ([32]). If a function f : [0,∞) → Rn is α-differentiable at t > 0,
α ∈ (0, 1], then f is continuous at t.

Theorem 2.5 ([32]). Let α ∈ (0, 1] and assume f , g : [0,∞)→ Rn are α-differenti-
able at t > 0. Then, by denoting (fg)(t) = (f1(t) g1(t), . . . , fn(t) gn(t)), we have
the following properties:

(i) (af + bg)(α) = af (α) + bg(α), for all a, b ∈ R;
(ii) (fg)(α) = fg(α) + gf (α);

(iii) (f/g)(α) = gf (α) − fg(α)

g2 .

(iv) If, in addition, f is differentiable at a point t > 0, then

f (α)(t) = t1−αf ′(t) .

(v) If f is differentiable at t, then f is α-differentiable at t.

We introduce the following spaces:

Cα(I,Rn) = {f : I → Rn, is α-differentiable on I and f (α) ∈ C(I,Rn)} .
Cα0 (I,Rn) = {f ∈ Cα(I,Rn) : f(0) = f(b) = 0} .
Cα0,b(I,Rn) = {f ∈ Cα(I,Rn) : f(0) = f(b)} .

Definition 2.6 ([23]). Let α ∈ (0, 1] and f : [0,∞)→ R. The conformable fractio-
nal integral of f of order α from 0 to t, denoted by Iα(f)(t), is defined by

Iα(f)(t) := I1(tα−1f)(t) =
∫ t

0
f(s)dαs :=

∫ t

0
f(s)sα−1ds .

The considered integral is the usual improper Riemann one.

Definition 2.7 ([32]). Let f : [0,∞) → Rn and α ∈ (0, 1]. The conformable
fractional integral of f of order α from 0 to t, denoted by Iα(f)(t), is defined by

Iα(f)(t) =
∫ t

0
f(s)dαs =

(
Iα(f1)(t), Iα(f2)(t), . . . , Iα(fn)(t)

)
,

where Iα(fi)(t) is the conformable fractional integral of fi of order α from 0 to t,
for i = 1, . . . , n.

Lemma 2.8 ([29]). Let 0 < α ≤ 1 and f : [0,∞)→ Rn be a continuous function
in the domain of Iα. Then for all t ≥ 0 we have(

Iα(f)
)(α)(t) = f(t) .

Corollary 2.9 ([1, 32]). Let f : [0, b) → Rn be such that Iα (fα)(t) exists for
0 < t < b. Then, f is differentiable on (0, b).
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Lemma 2.10 ([1, 32]). Let f : (0, b)→ Rn be differentiable and 0 < α ≤ 1. Then,
for all t > 0 we have

(2.2) Iα(fα)(t) = f(t)− f(0).

The next result is an adaptation of Lemma 2 in [29].

Proposition 2.11. Let 0 < α ≤ 1, and W be an open set of Rn. If g : I → Rn is
α-differentiable at t > 0 and f : W → Rm is differentiable at g(t) ∈W . Then f ◦ g
is α-differentiable at t and

(f ◦ g)(α)(t) = f ′
(
g(t)

) (
g(α)(t)

)T
.

Here vT denotes the transpose vector of v.

Example 2.12. Let α ∈ (0, 1], and x : [0,∞)→ Rn α-differentiable at t. It is not
difficult to verify that the Euclidean norm ‖ · ‖ : Rn \ {0} → [0,∞) defined as

‖x(t)‖ =< x(t), x(t) >1/2 ,

with 〈·, ·〉 the usual scalar product in Rn, is differentiable.
By the previous Proposition, we have

‖x(t)‖(α) = 〈x(t), x(α)(t)〉
‖x(t)‖ .

Next, we develop the fractional Sobolev’s spaces via conformable fractional
calculus and their important properties. The basic definitions and relations based
on [32] (if T is a real interval [0,∞)) are given:

Definition 2.13. Let B ⊂ I. B is called null set if the measure of B is zero. We
say that a property P holds almost everywhere (a.e.) on B, or for almost all (a.a.)
t ∈ B if there is a null set E0 ⊂ B such that P holds for all t ∈ B \ E0.

Definition 2.14. Let A be a Lebesgue measurable subset of I. We say that
function f : I → R, is a function α-integrable on A if and only if tα−1f(t) is
Lebesgue integrable on A. In such a case, we denote∫

A

f(t) dαt =
∫
A

tα−1 f(t) dt .

Definition 2.15 ([32]). Let E ⊂ R be a measurable set, and let ϕ : E → R be a
measurable function. We say that ϕ belongs to L1

α(E,R) is the following property
is fulfilled ∫

E

|ϕ(s)| dαs =
∫
E

|ϕ(s)| sα−1ds < +∞ .

We say that a measurable function f : E → Rn is in the set L1
α (E,Rn) provided∫

E

‖f(s)‖ dαs =
∫
E

‖f(s)‖ sα−1ds < +∞.

i.e. fi ∈ L1
α (E,R), for each of its components fi : E → R, i = 1, . . . , n.
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Theorem 2.16 ([32]). The set L1
α (I,Rn) is a Banach space together with the

norm defined for ϕ ∈ L1
α (I,Rn) as

‖ϕ‖L1
α(I,Rn) :=

∫
I

‖ϕ(t)‖dαt .

Remark 2.17. It is not difficult to verify the following assertions for all α ∈ (0, 1]:
(i) L1

α(I,Rn) ⊂ L1(I,Rn).
(ii) For t ∈ I, t > 0 and ϕ : I → Rn, it is satisfied that ϕ(α) ∈ L1

α(I,Rn) if and
only if ϕ′ ∈ L1(I,Rn).

Definition 2.18. A function f : I → Rn is said to be absolutely continuous on I
(i.e., f ∈ AC(I,Rn)) if for every ε > 0, there exists η > 0 such that if {[ak, bk[}mk=1,
is a finite pairwise disjoint family of subintervals of I satisfying

k=m∑
k=1

(bk − ak) < η , then
k=m∑
k=1
‖f(bk)− f((ak))‖ < ε .

Theorem 2.19 ([32]). Assume function f : I → Rn is absolutely continuous on I,
then f is conformable fractional differentiable of order α a.e. on I and the following
equality is valid:

f(t) = f(0) +
∫

[0,t]
f (α)(s)dαs , for all t ∈ I.

Definition 2.20. Let α ∈ (0, 1] and f : I → Rn. One says that f ∈ Wα,1
0,b (I,Rn)

if and only if f ∈ L1
α (I,Rn) and there exists g : I → Rn such that g ∈ L1

α (I,Rn)
and

(2.3)
∫
I

f(t)φ(α)(t)dαt = −
∫
I

g(t)φ(t)dαt , for all φ ∈ Cα0,b(I,Rn) .

We denote

V α,10,b (I,Rn) = {f ∈ AC(I,Rn) : f (α) ∈ L1
α (I,Rn) , f(0) = f(b)} .

Remark 2.21. We have V α,10,b (I,Rn) ⊂Wα,1
0,b (I,Rn).

Theorem 2.22 ([32]). Assume that f ∈ Wα,1
0,b (I,Rn) and that (2.3) holds for

some g ∈ L1
α (I,Rn). Then, there exists a unique function x ∈ V α,pa,b ([a, b],Rn) such

that
x = f, x(α) = g a.e. on I.

Theorem 2.23 ([32]). The set Wα,1
0,b (I,Rn) is a Banach space together with the

norm defined as

‖ϕ‖Wα,1
0,b (I,Rn) :=

∫
I

‖ϕ(t)‖dαt+
∫
I

‖ϕ(α)(t)‖dαt ,

for every ϕ ∈Wα,1
0,b (I,Rn) .



74 B. BENDOUMA, A. CABADA AND A. HAMMOUDI

Proposition 2.24. Let x ∈Wα,1
0,b (I,Rn). Then ‖x‖ ∈Wα,1

0,b (I,R) and

‖x(t)‖(α) = < x(t), xα(t) >
‖x(t)‖ , a.e. on {t ∈ I : ‖x(t)‖ > 0}.

Proof. If x ∈ Wα,1
0,b (I,Rn). By Theorems 2.22 and 2.19, x is α-differentiable

a.e. on I. From Example 2.12, we obtain

‖x(t)‖(α) = < x(t), xα(t) >
‖x(t)‖ , a.e. on {t ∈ I : ‖x(t)‖ > 0}.

�

We now define a notion of L1
α-Carathéodory function.

Definition 2.25. A function f : I×Rn → Rn is called a L1
α-Carathéodory function

if the three following conditions hold.
(i) for every x ∈ Rn, the function t 7→ f(t, x) is Lebesgue measurable;
(ii) the function x 7→ f(t, x) is continuous almost every t ∈ I;
(iii) for every r > 0, there exists a function hr ∈ L1

α(I, [0,∞)) such that
‖f(t, x)‖ ≤ hr(t) for almost every t ∈ I and for all x ∈ Rn such that
‖x‖ ≤ r.

3. Main result

In this section, we establish an existence result for the problem (1.1). A solution
of problem (1.1) will be a function x ∈Wα,1

0,b (I,Rn) for which (1.1) is satisfied. We
introduce the notion of solution-tube of this problem as follows.

Definition 3.1. Let (v,M) ∈Wα,1
0,b (I,Rn)×Wα,1

0,b (I, [0,∞)). We say that (v,M)
is a solution tube to problem (1.1) if

(i) 〈x− v(t), f(t, x)− v(α)(t)〉 ≤M(t)M (α)(t) for a.e. t ∈ I and every x ∈ Rn
such that ‖x− v(t)‖ = M(t),

(ii) v(α)(t) = f(t, v(t)) and Mα(t) = 0 a.e. on {t ∈ I : M(t) = 0},
(iii) - if (B) denotes (1.2), then ‖x0 − v(0)‖ ≤M(0),

- if (B) denotes (1.3), then ‖v(b)− v(0)‖ ≤M(0)−M(b).

If α = 1, our definition of solution tube is equivalent to the notion of solution
tube introduced in [26] for first order systems of Ordinary Differential Equations.

Now, we introduce the following set
T(v,M) :=

{
x ∈Wα,1

0,b (I,Rn) : ‖x(t)− v(t)‖ ≤M(t) , for every t ∈ I
}
.

Remark 3.2. If n = 1, our definition of solution tube is equivalent to the notion
of solution tube introduced in [5]. We point out that in this case the solution-tube
method is equivalent of the lower and upper solutions one. To this end, we introduce
the following definition:

Definition 3.3. A function γ ∈Wα,1
a,b (I) is called a lower solution of (1.1), if

(i) γ(α)(t) ≥ f(t, γ(t)), for a.e. t ∈ I;
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(ii) - if (B) denotes (1.2), then γ(0) ≥ x0,
- if (B) denotes (1.3), then γ(0) ≥ γ(b).

A function δ ∈ Wα,1
0,b (I) is called an upper solution of (1.1) if it satisfies (i),(ii)

with the reversed inequalities.

Indeed, we consider the following assumptions:
(A) There exist δ ≤ γ respectively upper and lower solutions of (1.1), such that

δ < γ a.e. on I.
(B) There exists (v,M) a solution-tube of (1.1).

First, we prove the following assertion
If (B) is satisfied, then (A) is also fulfilled.

Define δ = v −M and γ = v +M .
(
δ − δ+γ

2 (t)
)(

f(t, δ)− (γ+δ)(α)(t)
2

)
≤ (γ−δ)(t)

2
(γ−δ)(α)(t)

2 for a.e. t ∈ I ,(
γ − δ+γ

2 (t)
)(

f(t, γ)− (γ+δ)(α)(t)
2

)
≤ (γ−δ)(t)

2
(γ−δ)(α)(t)

2 for a.e. t ∈ I .

It is not difficult to verify that, since δ < γ a.e. on I, thatδ
(α)(t) ≤ f(t, δ(t)) , for a.e. t ∈ I ,

γ(α)(t) ≥ f(t, γ(t)) , for a.e. t ∈ I .

Moreover, from condition (iii) it is immediate to conclude that δ(0) ≤ x0 ≤ γ(0),
provided (1.2) is considered, and δ(0)− δ(b) ≤ 0 ≤ γ(0)− γ(b) for conditions (1.3).

Now, let’s prove the reverse implication, i.e.
If (A) holds, then (B) is satisfied.

To this end, take v = (γ + δ)/2 and M = (γ − δ)/2, we have δ = v −M and
γ = v +M .
For x ∈ R such that |x− v(t)| = M(t), then x = γ or x = δ, and

(x−v(t))
(
f(t, x)−v(α)(t)

)
=


(
δ− δ+γ

2 (t)
)(

f(t, δ)− (δ+γ)(α)

2 (t)
)

for a.e. t ∈ I ,(
γ− δ+γ

2 (t)
)(

f(t, γ)− (δ+γ)(α)

2 (t)
)

for a.e. t ∈ I ,

≤


(
δ−γ

2 (t)
)(

δ(α)(t)− (δ+γ)(α)

2 (t)
)

for a.e. t ∈ I ,(
γ−δ

2 (t)
)(

γ(α)(t)− (δ+γ)(α)

2 (t)
)

for a.e. t ∈ I ,

= M(t)M (α)(t) for a.e. t ∈ I .

We consider the following modified problem:

(3.1)
{
x(α)(t) + α x(t) = f

(
t, x(t)

)
+ α x(t) , for a.e. t ∈ I ,

x ∈ (B) .
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where

(3.2) x(t) =
{ M(t)
‖x−v(t)‖ (x− v(t)) + v(t) , if ‖x− v(t)‖ > M(t),

x(t) , if ‖x− v(t)‖ ≤M(t).

We need the following auxiliary lemmas, which are direct generalizations of [7,
Corollary 3.3 and Corollary 3.6], and we omit the proofs.

Lemma 3.4. For every g ∈ L1
α(I,Rn), x0 ∈ Rn, 0 < α ≤ 1 and p ∈ R, problem

(3.3)
{
x(α)(t) + px(t) = g(t) , a.e. t ∈ I ,
x(0) = x0 ,

has a unique solution x ∈Wα,1
0,b (I,Rn) given by the expression:

(3.4) x(t) :=
∫ b

0
GIn(t, s)g(s)dαs+ x0e

− p
α t
α

,

where

(3.5) GIn(t, s) = e
p
α (sα−tα)

{
1 , 0 ≤ s ≤ t ≤ b ,

0 , 0 ≤ t ≤ s ≤ b ,

Lemma 3.5. For every g ∈ L1
α(I,Rn), λ ∈ Rn, 0 < α ≤ 1 and p ∈ R\{0}, problem

(3.6)
{
x(α)(t) + px(t) = g(t) , a.e. t ∈ I], ,

x(0)− x(b) = λ ,

has a unique solution x ∈Wα,1
0,b (I,Rn) given by the following expression:

(3.7) x(t) :=
∫ b

0
GPe(t, s)g(s)dαs+ λ

e−
p
α t
α

1− e− p
α b
α ,

where

(3.8) GPe(t, s) = e
p
α (sα−tα)

1− e− p
α b
α

{
1 , 0 ≤ s ≤ t ≤ b ,

e−
p
α b
α

, 0 ≤ t < s ≤ b .

The following lemma can be proved analogously to [5, Lemma 11].

Lemma 3.6. Let r ∈ Wα,1
0,b (I,R), such that r(α)(t) < 0 a.e. on {t ∈ I : r(t) > 0}.

If one of the two following conditions holds,
(i) r(0) ≤ 0,
(ii) r(0) ≤ r(b),

then r(t) ≤ 0 for every t ∈ I.

Let us define the operators A1,A2 : C(I,Rn)→ C(I,Rn) by

A1(x)(t) =
∫ b

0
GIn(t, s)

(
f(s, x(s)) + α x(s)

)
sα−1ds+ x0e

−tα
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and

A2(x)(t) =
∫ b

0
GPe(t, s)

(
f(s, x(s)) + α x(s)

)
sα−1ds ,

where GIn (resp., GPe) is the Green’s function related to the initial problem (3.3)
(resp., periodic problem (3.6)) and is given by expression (3.5) (resp., (3.8)) with
p = α.

Clearly, from Lemma 3.4 (resp. Lemma 3.5) with p = α, the solutions of problem
(3.1), (1.2) (resp. (3.1), (1.3) coincide with the fixed points of operator A1 (resp.
A2).

Proposition 3.7. Let f : I × Rn → Rn be a L1
α-Carathéodory function. Assume

there exists (v,M) ∈ Wα,1
0,b (I,Rn) × Wα,1

0,b (I, [0,∞)) a solution tube of problem
(1.1), (1.3), then operator A2 is compact.

Proof. We first observe that, from Definitions 2.25 and 3.1, there exists a function
h ∈ L1

α(I, [0,∞)) such that

‖f(t, x(t)) + α x(t)‖ ≤ h(t), for a.e. t ∈ I and all x ∈ C(I,Rn) .

Let {xn}n∈N be a sequence of C(I,Rn) converging to x ∈ C(I,Rn). In this case,
it is clear that∥∥A2(xn(t))−A2(x(t))

∥∥ ≤ ∫ b

0
sα−1|GPe(t, s)|

∥∥(f(s, xn(s)) + α xn(s)
)

−
(
f(s, x(s)) + α x(s)

)∥∥ ds
≤M

∫ b

0
sα−1∥∥(f(s, xn(s)) + α xn(s)

)
−
(
f(s, x(s)) + α x(s)

)∥∥ ds .
where M := maxs,t∈I |GPe(t, s)|.

The continuity of operator A2 follows from the continuous dependence with
respect to x of function f , the definition of x and the Lebesgue’s dominated
convergence theorem.

To see that A2(C(I,Rn)) is relatively compact set on C(I,Rn), consider x ∈
C(I,Rn). Therefore, ∥∥A2(x)(t)

∥∥ ≤M ‖h‖L1
α(I,Rn) .

So, A2(C(I,Rn)) is uniformly bounded.
This set is also equicontinuous since for every t1 < t2 ∈ I,∥∥A2 (x) (t2)−A2 (x) (t1)

∥∥
=
∥∥∥∫ t2

0
GPe(t2, s)

(
f(s, x(s)

)
+αx(s)

)
dαs+

∫ b

t2

GPe(t2, s)
(
f(s, x(s)

)
+αx(s)

)
dαs

−
∫ t1

0
GPe(t1, s)

(
f(s, x(s))+α x(s)

)
dαs−

∫ b

t1

GPe(t1, s)
(
f(s, x(s)

)
+αx(s)

)
dαs
∥∥∥
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≤ |e
−tα2 −e−tα1 |
1− e−bα

(∫ t1

0
es
α∥∥f(s, x(s)

)
+αx(s)

∥∥dαs+
∫ b

t2

es
α−bα∥∥f(s, x(s)

)
+αx(s)

∥∥dαs)
+
∫ t2

t1

|GPe(t2, s)−GPe(t1, s)|
∥∥f(s, x(s)

)
+ αx(s)

∥∥ dαs
≤ K|e−t

α
2 − e−t

α
1 |
(∫ t1

0
h(s)dαs+

∫ b

t2

h(s)dαs
)

+ 2M
∫ t2

t1

h(s)dαs ,

where

K := max
s∈I

{ es
α

1− e−bα ,
es
α−bα

1− e−bα
}

= 1
1− e−bα .

By Arzelà-Ascoli theorem, we conclude that the set A2(C(I,Rn)) is relatively
compact in C(I,Rn). Hence, A2 is compact. �

The following result can be proved as the previous one.

Proposition 3.8. Let f : I × Rn → Rn be a L1
α-Carathéodory function. Assume

there exists (v,M) ∈Wα,1
0,b (I,Rn)×Wα,1

0,b (I, [0,∞)) a solution tube of (1.1), (1.2),
then operator A1 is compact.

Now, we can obtain our main theorem. The proof is on the basis on the one
given in [16] for first order systems of ordinary differential equations.

Theorem 3.9. Let f : I × Rn → Rn be a L1
α-Carathéodory function. Assume

there exists (v,M) ∈Wα,1
0,b (I,Rn)×Wα,1

0,b (I, [0,∞)) a solution tube of (1.1). Then,
problem (1.1) has a solution x ∈Wα,1

0,b (I,Rn) ∩ T(v,M).

Proof. We will do the proof for the initial case (1.2). As we will see the proof for
the periodic problem (1.3) is analogous.
By Proposition 3.8 the operator A1 is compact. It has a fixed point by the Schauder
fixed-point theorem. Lemma 3.4 implies that this fixed point is a solution for
the problem (3.1). Then, it suffices to show that for every solution x of (3.1),
x ∈ T(v,M).
Consider the set B := {t ∈ I : ‖x(t)− v(t)‖ > M(t)}. By Proposition 2.24, a.e. on
B we have

(‖x(t)− v(t)‖ −M(t))(α) = 〈x(t)− v(t), x(α)(t)− v(α)(t)〉
‖x(t)− v(t)‖ −M (α)(t) .

Since (v,M) is a solution tube of problem (1.1), we have a.e. on {t ∈ B : M(t) > 0}
that (

‖x(t)− v(t)‖ −M(t)
)(α)

= 〈x(t)− v(t), x(α)(t)− v(α)(t)〉
‖x(t)− v(t)‖ −M (α)(t)
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= 〈x(t)−v(t), f(t, x̄(t))+ αx̄(t)− αx(t)− v(α)(t)〉
‖x(t)− v(t)‖ −M (α)(t)

= 〈x̄(t)−v(t), f(t, x̄(t))−v(α)(t)〉
M(t) +α 〈x̄(t)− v(t), x̄(t)− x(t)〉

M(t) −M (α)(t)

≤ M(t)M (α)(t)
M(t) + α

(
M(t)− ‖x(t)− v(t)‖

)
−M (α)(t)

< 0 .

On the other hand, we have a.e. on {t ∈ B : M(t) = 0} that(
‖x(t)− v(t)‖ −M(t)

)(α)

= 〈x(t)− v(t), f(t, x̄(t)) + αx̄(t)− αx(t)− v(α)(t)〉
‖x(t)− v(t)‖ −M (α)(t)

= 〈x(t)− v(t), f(t, v(t)) + αv(t)− αx(t)− v(α)(t)〉
‖x(t)− v(t)‖ −M (α)(t)

≤ 〈x(t)− v(t), f(t, v(t))− v(α)(t)〉
‖x(t)− v(t)‖ − α ‖x(t)− v(t)‖ −M (α)(t)

< 0 .

If we set, r(t) := ‖x(t)−v(t)‖−M(t), then r(α) < 0 a.e. on B := {t ∈ I : r(t) > 0}.
Moreover, since (v,M) is a solution tube to problem (1.1) and x satisfies (1.2), then
r(0) ≤ 0 and, as consequence, Lemma 3.6 (i) implies that B = ∅. So, x ∈ T (v,M)
and the result holds for this case.

When the periodic case is studied, we follow the same steps with operator A2
and we arrive to the fact that

r(0)− r(b) ≤ ‖v(0)− v(b)‖ − (M(0)−M(b)) ≤ 0,

and the result is fulfilled from Lemma 3.6 (ii). �

The following example is a modified version, considering a periodic condition, of
Example 4.6 in [16]:

Example 3.10. Consider the periodic problem:

(3.9)
{
x( 1

3 )(t) = a1‖x(t)‖2x(t)− a2x(t) + a3ϕ(t) , a.e. t ∈ I = [0, 1] ,

x(0) = x(1) ,

where α = 1/3, a1, a2, a3 ∈ R+ such that a1 − a2 + a3 = 0, ϕ : I → Rn is a
continuous function satisfying ‖ϕ(t)‖ = 1 for every t ∈ I. Take v(t) = 0 and
M(t) = 1.
So, v ∈W

1
3 ,1

0,1 (I,Rn), M ∈W
1
3 ,1

0,1 (I, [0,∞[), v( 1
3 )(t) = 0, M ( 1

3 )(t) = 0, and

‖v(1)− v(0)‖ ≤M(0)−M(1) .
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For x ∈ Rn such that ‖x− v(t)‖ = M(t), then ‖x‖ = 1, and we have, for a.e. t ∈ I

〈x− v(t), f(t, x)− v( 1
3 )(t)〉 = 〈x, a1‖x‖2x− a2x+ a3ϕ(t)〉

= a1‖x‖4 − a2‖x‖2 + a3〈x, ϕ(t)〉
≤ a1‖x‖4 − a2‖x‖2 + a3‖x‖‖ϕ(t)‖
= a1 − a2 + a3 = 0

≤M(t)M ( 1
3 )(t) .

Since the set {t ∈ I,M(t) = 0} = ∅, condition (ii) holds trivially.
So, (v,M) is a solution-tube of (3.9). By Theorem 3.9, problem (3.9) has a

solution x ∈W
1
3 ,1

0,1 (I,Rn) such that ‖x(t)‖ ≤ 1 for every t ∈ I.

Example 3.11. Consider the periodic problem:

(3.10)

x(1/2)(t) = −x
3(t) + 1− 2t

4
√
t

a.e. t ∈ [0, 1] ,

x(0) = x(1) .

This problem is a particular case of (1.1), (1.3), with n = 1, α = 1/2, and

f(t, x) = −x
3 + 1− 2t

4
√
t

. It is clear that f is a L1
1/2-Carathéodory function. Take

v(t) = 0 and M(t) = 1.
So, v ∈W

1
2 ,1

0,1 (I,R), M ∈W
1
2 ,1

0,1 (I, [0,∞[), v( 1
2 )(t) = 0, M ( 1

2 )(t) = 0, and
|v(1)− v(0)| ≤M(0)−M(1).

For x ∈ R such that |x− v(t)| = M(t), then x = 1 or x = −1, and we have for a.e.
t ∈ I, 〈

x− v(t), f(t, x)− v( 1
2 )(t)

〉
= (x)

(−x3 + 1− 2t
4
√
t

)
,

=


−2(1− t)

4
√
t

if x = −1 ,

−2 4
√
t3 if x = 1 ,

≤ 0 = M(t)M ( 1
2 )(t) for a.e. t ∈ I .

So, (v,M) is a solution-tube of (3.10). By Theorem 3.9, the problem (3.10) has a
solution x ∈W

1
2 ,1

0,1 (I) such that |x(t)| ≤ 1 for every t ∈ I.
Observe that δ = v −M and γ = v + M are, respectively, upper and lower

solutions of (3.10) follows from the fact that

δ( 1
2 )(t) = 0 ≤ f(t, δ(t)) = 2(1− t)

4
√
t

, t ∈ [0, 1], δ(0) ≤ δ(1) ,

and

γ( 1
2 )(t) = 0 ≥ f(t, γ(t)) = −2 4√

t3 , t ∈ [0, 1], γ(0) ≥ γ(1) ,
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such that −1 ≤ x(t) ≤ 1, for all t ∈ I.
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