SOME FUNCTORIAL PROLONGATIONS OF GENERAL CONNECTIONS

Ivan Kolář

Abstract

We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.

0. Introduction

Our approach to connections on an arbitrary fibered manifold $p: Y \rightarrow M$ is slightly different from the approach by C. Ehresmann, [2], p. 186. Roughly speaking, the fundamental idea in [2] is the development along the individual curves, while the main idea of our approach is the absolute differentiation of the sections of Y. This is explained in Chapter 1 of the present paper. But the theory of general connections on Y can be well developed even by using the concept of tangent valued form on Y. This was invented by L. Mangiarotti and M. Modugno in [7] and first systematically presented in the book [6]. We repeat the basic ideas in Chapter 2. Chapter 3 is devoted to the case of product preserving bundle functors on the category $\mathcal{M} f$ of smooth manifolds and smooth maps. Our geometrical description of them uses the language of Weil algebras, [5], 6].

All manifolds and maps are assumed to be infinitely differentiable. Unless otherwise specified, we use the terminology and notation from [6].

1. General connections

Let $\pi_{Y}: T Y \rightarrow Y$ denote the tangent bundle of a fibered manifold $p: Y \rightarrow M$. In [6], a general connection of Y is defined as a lifting map

$$
\begin{equation*}
\Gamma: Y \times_{M} T M \rightarrow T Y \tag{1}
\end{equation*}
$$

linear in $T M$ and satisfying $\pi_{Y} \circ \Gamma=p r_{1}, T p \circ \Gamma=p r_{2}, Y \leftarrow^{p r_{1}} Y \times_{M} T M \xrightarrow{p r_{2}} T M$. If x^{i}, y^{p} are some local fiber coordinates on Y, then the equations of Γ are

$$
\begin{equation*}
d y^{p}=F_{i}^{p}(x, y) d x^{i} \tag{2}
\end{equation*}
$$

[^0]with arbitrary smooth functions F_{i}^{p}. Every vector field X on M defines the Γ-lift $\Gamma(X): Y \rightarrow T Y, \Gamma(X)(y)=\Gamma(y, X)$. Write $\pi_{M}: T M \rightarrow M$ for the bundle projection.

Equivalently, Γ can be interpreted as a section $Y \rightarrow J^{1} Y$ of the first jet prolongation $J^{1} Y$ of Y. It is well known that $J^{1} Y \rightarrow Y$ is an affine bundle with associated vector bundle $V Y \otimes T^{*} M$, where $V Y$ is the vertical tangent bundle of Y. For a section $s: M \rightarrow Y$, its absolute differential $\nabla_{\Gamma} s$ with respect to Γ is a section $\nabla_{\Gamma} s: M \rightarrow V Y \otimes T^{*} M$ defined by

$$
\begin{equation*}
\nabla_{\Gamma} s(x)=j_{x}^{1} s-\Gamma(s(x)) \tag{3}
\end{equation*}
$$

$x \in M$. Hence the coordinate form of (3) is

$$
\begin{equation*}
\frac{\partial s^{p}}{\partial x^{i}}-F_{i}^{p}(x, s(x)) \tag{4}
\end{equation*}
$$

The curvature $C \Gamma: Y \times{ }_{M} \Lambda^{2} T^{*} M \rightarrow V Y$ can be characterized as the obstruction for lifting the bracket

$$
\begin{equation*}
(C \Gamma)\left(y, X_{1}, X_{2}\right)=\left[\Gamma\left(X_{1}\right), \Gamma\left(X_{2}\right)\right](y)-\Gamma\left(\left[X_{1}, X_{2}\right]\right)(y) \tag{5}
\end{equation*}
$$

By direct evaluation, we find that (5) depends on the values of the vector fields X_{1}, X_{2} at $p(y)$ only and the coordinate form of (5) is

$$
\begin{equation*}
2\left(\frac{\partial F_{i}^{p}}{\partial x^{j}}+\frac{\partial F_{i}^{p}}{\partial y^{q}} F_{j}^{q}\right) \frac{\partial}{\partial y^{p}} \otimes d x^{i} \wedge d x^{j} \tag{6}
\end{equation*}
$$

Using the flow prolongation of vector fields, we construct an induced connection $\mathcal{V} \Gamma: V Y \times_{M} T M \rightarrow T V Y$ on $V Y$ as follows, [6]. Consider the flow $\mathrm{Fl}_{t}^{\Gamma(X)}$ of the vector filed $\Gamma(X)$ and its vertical flow prolongation

$$
\begin{equation*}
\mathcal{V}(\Gamma(X))=\left.\frac{\partial}{\partial t}\right|_{0} V\left(\mathrm{Fl}_{t}^{\Gamma(X)}\right): V Y \rightarrow T V Y \tag{7}
\end{equation*}
$$

Write $\eta^{p}=d y^{p}$ for the induced coordinates on $V Y$. Then the coordinate form of (7) is

$$
\begin{align*}
& d y^{p}=F_{i}^{p}(x, y) d x^{i} \\
& d \eta^{p}=\frac{\partial F_{i}^{p}}{\partial y^{q}} \eta^{q} d x^{i} \tag{8}
\end{align*}
$$

that determines a general connection $\mathcal{V} \Gamma$ on $V Y \rightarrow M$. The theoretical meaning of the vertical operator \mathcal{V} is underlined by the following assertion, 6].

Proposition 1. \mathcal{V} is the only natural operator transforming general connections on $Y \rightarrow M$ into general connections on $V Y \rightarrow M$.

Consider a section $\varphi: Y \rightarrow V Y \otimes \Lambda^{k} T^{*} M$ with the coordinate expression

$$
\eta^{p}=\varphi_{i_{1} \ldots i_{k}}^{p}(x, y) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

According to [6], we construct its absolute exterior differential

$$
d_{\nu \Gamma} \varphi: Y \rightarrow V Y \otimes \bigwedge^{k+1} T^{*} M
$$

as follows. Take (at least locally) an auxiliary linear symmetric connection Λ on M. Then $\mathcal{V} \Gamma \otimes \bigwedge^{k} \Lambda^{*}$ is a connection on $V Y \otimes \bigwedge^{k} T^{*} M \rightarrow Y$ and we can construct the absolute differential

$$
\nabla_{\mathcal{V} \Gamma \otimes \bigwedge^{k} \Lambda^{*}} \varphi: Y \rightarrow V\left(V Y \otimes \bigwedge^{k} T^{*} M\right) \otimes T^{*} M
$$

[6]. Applying antisymmetrization and natural identifications, we obtain a section $d_{\nu \Gamma} \varphi: Y \rightarrow V Y \otimes \Lambda^{k+1} T^{*} M$ independent of Λ with the coordinate expression

$$
\begin{equation*}
\eta^{p}=\left(\frac{\partial \varphi_{i_{1} \ldots i_{k}}^{p}}{\partial x^{i}}+\frac{\partial \varphi_{i_{1} \ldots i_{k}}^{p}}{\partial y^{q}} F_{i}^{q}-\frac{\partial F_{i}^{p}}{\partial y^{q}} \varphi_{i_{1} \ldots i_{k}}^{q}\right) d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \tag{9}
\end{equation*}
$$

In [6], we deduced by direct evaluation
Proposition 2 (Bianchi identity). We have

$$
\begin{equation*}
d_{\nu \Gamma} C \Gamma=0 . \tag{10}
\end{equation*}
$$

2. TANGENT valued forms

Mangiarotti and Modugno studied systematically the general connections by using the concept of tangent valued forms, [7]. A tangent valued k-form P on a manifold M is a section $P: M \rightarrow T M \otimes \Lambda^{k} T^{*} M$, that can be also interpreted as a map

$$
\begin{equation*}
P: T M \underbrace{\times_{M} \cdots \times_{M}}_{k \text {-times }} T M \rightarrow T M . \tag{11}
\end{equation*}
$$

If Q is another tangent valued l-form on M, Mangiarotti and Modugno defined a tangent valued $(k+l)$-form $[P, Q]$ on M by the formula

$$
\begin{align*}
{[P, Q](} & \left.X_{1} \ldots, X_{k+l}\right) \\
= & \frac{1}{k!l!} \sum_{\sigma} \bar{\sigma}\left[P\left(X_{\sigma_{1}}, \ldots, X_{\sigma_{k}}\right), Q\left(X_{\sigma_{(k+1)}}, \ldots, X_{\left.\sigma_{(k+l)}\right)}\right)\right] \\
& +\frac{-1}{k!(l-1)!} \sum_{\sigma} \bar{\sigma} Q\left(\left[P\left(X_{\sigma_{1}}, \ldots, X_{\sigma_{k}}\right), X_{\sigma_{(k+1)}}\right], X_{\sigma_{(k+2)}}, \ldots\right) \\
& +\frac{(-1)^{k l}}{(k-1)!l!} \sum_{\sigma} \bar{\sigma} P\left(\left[Q\left(X_{\sigma_{1}}, \ldots, X_{\sigma_{l}}\right), X_{\sigma_{(l+1)}}\right], X_{\sigma_{(l+2)}}, \ldots\right) \\
& +\frac{(-1)^{k-1}}{(k-1)!(l-1)!2} \sum_{\sigma} \bar{\sigma} Q\left(P\left(\left[X_{\sigma_{1}}, X_{\sigma_{2}}\right], X_{\sigma_{3}}, \ldots\right), X_{\sigma_{(k+2)}}, \ldots\right) \\
& +\frac{(-1)^{(k-1) l}}{(k-1)!(l-1)!2} \sum_{\sigma} \bar{\sigma} P\left(Q\left(\left[X_{\sigma_{1}}, X_{\sigma_{2}}\right], X_{\sigma_{3}}, \ldots\right), X_{\sigma_{(l+2)}}, \ldots\right) \tag{12}
\end{align*}
$$

where X_{1}, \ldots, X_{k+l} are vector fields on M, the bracket on the right-hand side are the classical Lie bracket of vector fields, the summations are with respect to all permutations σ of $k+l$ letters and $\bar{\sigma}$ denotes the signum of σ. The tangent valued

0 -forms are the vector fields and (12) reduces to the classical Lie bracket in the case $k=l=0$.

Later it was clarified, [6], that (12) was introduced in a quite different situation by Frölicher-Nijenhuis, so that this bracket is related with their names today.

The identity of $T M$ is a special tangent valued 1-form on M and we have

$$
\begin{equation*}
\left[\mathrm{id}_{T M}, P\right]=0 \tag{13}
\end{equation*}
$$

for every tangent valued form P. By [6],

$$
\begin{equation*}
[P, Q]=-(-1)^{k l}[Q, P] \tag{14}
\end{equation*}
$$

and the graded Jacobi identity holds

$$
\begin{equation*}
\left[P_{1},\left[P_{2}, P_{3}\right]\right]=\left[\left[P_{1}, P_{2}\right], P_{3}\right]+(-1)^{k_{1} k_{2}}\left[P_{2},\left[P_{1}, P_{3}\right]\right] \tag{15}
\end{equation*}
$$

for tangent valued k_{i}-forms $P_{i}, i=1,2,3$.
A general connection $\Gamma: Y \times_{M} T M \rightarrow T Y$ defines a tangent valued 1-form ω_{Γ} on Y

$$
\begin{equation*}
\omega_{\Gamma}(Z)=\Gamma(y, T p(Z)), \quad Z \in T_{y} Y \tag{16}
\end{equation*}
$$

Even $C \Gamma$ can be interpreted as a tangent valued 2-form C_{Γ} on Y,

$$
\begin{equation*}
C_{\Gamma}\left(Z_{1}, Z_{2}\right)=C \Gamma\left(y, T p\left(Z_{1}\right), T p\left(Z_{2}\right)\right), \quad Z_{1}, Z_{2} \in T_{y} Y \tag{17}
\end{equation*}
$$

Proposition 3. We have $C_{\Gamma}=\frac{1}{2}\left[\omega_{\Gamma}, \omega_{\Gamma}\right]$.
Proof. This follows directly from Lemma 8.13 in [6].
Consider an arbitrary tangent valued 1-form ψ of Y. Put $P_{1}=P_{2}=P_{3}=\psi$ into (14) and (15) This yields

$$
[\psi,[\psi, \psi]]=0
$$

If $\psi=\omega_{\Gamma}$, we obtain
Proposition 4. We have $\left[\omega_{\Gamma},\left[\omega_{\Gamma}, \omega_{\Gamma}\right]\right]=0$.
A simple evaluation shows that this relation coincides with the identity from Proposition 2. This gives a simple geometric proof of the Bianchi identity of a general connection Γ on Y.

3. Weilian prolongations

We recall that Weil algebra is a finite dimensional, commutative, associative and unital algebra of the form $A=\mathbb{R} \times N$, where N is the ideal of all nilpotent elements of A. Since A is finite dimensional, there exists an integer r such that $N^{r+1}=0$. The smallest r with this property is called the order of A. On the other hand, the dimension $w A$ of the vector space N / N^{2} is the width of A, 8]. Using systematically our point of view, we say that a Weil algebra of width k and order r is a Weil (k, r)-algebra, [5].

The simpliest example of a Weil (k, r)-algebra is

$$
\mathbb{D}_{k}^{r}=\mathbb{R}\left[x_{1}, \ldots, x_{k}\right] /\left\langle x_{1}, \ldots, x_{k}\right\rangle^{r+1}=J_{0}^{r}\left(\mathbb{R}^{k}, \mathbb{R}\right)
$$

For $k=r=1, \mathbb{D}_{1}^{1}=\mathbb{D}$ is the algebra of Study numbers. In [3] we deduced

Lemma 1. Every Weil (k, r)-algebra is a factor algebra of \mathbb{D}_{k}^{r}. If $\varrho, \sigma: \mathbb{D}_{k}^{r} \rightarrow A$ are two algebra epimorphisms, then there exists an algebra isomorphism $\chi: \mathbb{D}_{k}^{r} \rightarrow \mathbb{D}_{k}^{r}$ such that $\varrho=\sigma \circ \chi$.

We are going to present the covariant approach to Weil functors, [5].
Definition 1. Two maps $\gamma, \delta: \mathbb{R}^{k} \rightarrow M$ determine the same A-velocity $j^{A} \gamma=j^{A} \delta$, if for every smooth function $\varphi: M \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\varrho\left(j_{0}^{r}(\varphi \circ \gamma)\right)=\varrho\left(j_{0}^{r}(\varphi \circ \delta)\right) \tag{18}
\end{equation*}
$$

By Lemma 1 this is independent of the choice of ϱ. We say that

$$
\begin{equation*}
T^{A} M=\left\{j^{A} \gamma ; \gamma: \mathbb{R}^{k} \rightarrow M\right\} \tag{19}
\end{equation*}
$$

is the bundle of all A-velocities on M. For every smooth map $f: M \rightarrow N$, we define $T^{A} f: T^{A} M \rightarrow T^{A} M$ by

$$
\begin{equation*}
T^{A} f\left(j^{A} \gamma\right)=j^{A}(f \circ \gamma) \tag{20}
\end{equation*}
$$

Clearly, $T^{A} \mathbb{R}=A$.
We say that 19 and 20 represent the covariant approach to Weil functors. The following result is a fundamental assertion, see [6] or [5] for a survey.

Theorem. The product preserving bundle functors on $\mathcal{M} f$ are in bijection with T^{A}. The natural transformations $T^{A_{1}} \rightarrow T^{A_{2}}$ are in bijection with the algebra homomorphisms $\mu: A_{1} \rightarrow A_{2}$.

We write $\mu_{M}: T^{A_{1}} M \rightarrow T^{A_{2}} M$ for the value of $\mu: A_{1} \rightarrow A_{2}$ on M.
The iteration $T^{A_{2}} \circ T^{A_{1}}$ corresponds to the tensor product of A_{1} and A_{2}. The algebra exchange homomorphism ex: $A_{1} \otimes A_{2} \rightarrow A_{2} \otimes A_{1}$ defines a natural exchange transformation $T^{A_{2}} T^{A_{1}} \rightarrow T^{A_{1}} T^{A_{2}}$. We have $T=T^{\mathbb{D}}$.

The canonical exchange $\varkappa_{M}^{A}: T^{A} T M \rightarrow T T^{A} M$ is called flow natural. Indeed, if Fl_{t}^{X} is the flow of a vector field $X: M \rightarrow T M$, then

$$
\mathcal{T}^{A} X=\left.\frac{\partial}{\partial t}\right|_{0} T^{A}\left(\mathrm{Fl}_{t}^{X}\right): T^{A} M \rightarrow T T^{A} M
$$

is the flow prolongation of X. It is related with the functorial prolongation $T^{A} X: T^{A} M \rightarrow T^{A} T M$ by

$$
\begin{equation*}
\mathcal{T}^{A} X=\varkappa_{M}^{A} \circ T^{A} X \tag{21}
\end{equation*}
$$

Consider a tangent valued k-form P on a manifold M

$$
P: T M \times_{M} \cdots \times_{M} T M \rightarrow T M .
$$

Applying functor T^{A}, we obtain

$$
T^{A} P: T^{A} T P \times_{M} \cdots \times_{M} T^{A} T P \rightarrow T^{A} T P
$$

Using the flow natural exchange \varkappa_{M}^{A}, we construct

$$
\begin{equation*}
\mathcal{T}^{A} P=\varkappa_{M}^{A} \circ T^{A} P \circ\left(\left(\varkappa_{M}^{A}\right)^{-1} \times \cdots \times\left(\varkappa_{M}^{A}\right)^{-1}\right) \tag{22}
\end{equation*}
$$

This is an antisymmetric tensor field of type $(1, k)$, so a tangent valued k-form on $T^{A} M$.

In [1] the following result is deduced.

Proposition 5. The Frölicher-Nijenhuis bracket is preserved under \mathcal{T}^{A}, i.e. for every tangent valued k-form P and every tangent valued l-form Q on the same manifold M, we have

$$
\begin{equation*}
\mathcal{T}^{A}([P, Q])=\left[\mathcal{T}^{A} P, \mathcal{T}^{A} Q\right] \tag{23}
\end{equation*}
$$

Further, consider a tangent valued k-form P on a manifold M, a tangent valued k-form Q on a manifold N and a smooth map $f: M \rightarrow N$. We say that P and Q are f-related, if the following diagram commutes

In 6], p. 74, one has deduced
Proposition 6. Consider a smooth map $f: M \rightarrow N$. Let P_{1}, Q_{1} or P_{2}, Q_{2} be two f-related pairs of k-forms or l-forms, respectively. Then the Frölicher-Nijenhuis brackets $\left[P_{1}, Q_{1}\right]$ and $\left[P_{2}, Q_{2}\right]$ are also f-related.

Consider a general connection Γ on Y in the lifting form $\Gamma: Y \times_{M} T M \rightarrow T Y$. Applying T^{A}, \varkappa_{M}^{A} and \varkappa_{Y}^{A}, [4, 5], we can construct the induced connection on $T^{A} Y \rightarrow T^{A} M$

$$
\begin{equation*}
\mathcal{T}^{A} \Gamma: T^{A} Y \times_{T^{A} M} T T^{A} M \rightarrow T T^{A} Y \tag{24}
\end{equation*}
$$

Consider the connection form $\omega_{\Gamma}: T Y \rightarrow T Y$ of Γ. Then Proposition 5 and 24) imply

$$
\begin{equation*}
\mathcal{T}^{A} C_{\Gamma}=\frac{1}{2}\left[\mathcal{T}^{A} \omega_{\Gamma}, \mathcal{T}^{A} \omega_{\Gamma}\right] \tag{25}
\end{equation*}
$$

Hence the curvature of $\mathcal{T}^{A} \Gamma$ is the \mathcal{T}^{A}-prolongation of the curvature of Γ.
Further, the Bianchi identity of $\mathcal{T}^{A} \Gamma$ is the \mathcal{T}^{A}-prolongation of the Bianchi identity of Γ.

References

[1] Cabras, A., Kolář, I., Prolongation of tangent valued forms to Weil bundles, Arch. Math. (Brno) 31 (1995), 139-145.
[2] Ehresmann, C., Oeuvres complètes et commentés, Cahiers Topol. Géom. Diff. XXIV (Suppl. 1 et 2) (1983).
[3] Kolář, I., Handbook of Global Analysis, ch. Weil Bundles as Generalized Jet Spaces, pp. 625-665, Elsevier, Amsterdam, 2008.
[4] Kolář, I., On the functorial prolongations of fiber bundles, Miskolc Math. Notes 14 (2013), 423-431.
[5] Kolář, I., Covariant Approach to Weil Bundles, Folia, Masaryk University, Brno (2016).
[6] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
[7] Mangiarotti, L., Modugno, M., Graded Lie algebras and connections on a fibered space, J. Math. Pures Appl. (9) 63 (1984), 111-120.
[8] Weil, A., Théorie des points proches sur les variétes différentielles, Colloque de topol. et géom. diff., Strasbourg (1953), 111-117.

Institute of Mathematics and Statistics,
Masaryk University, Kotlářská 2,
61137 Brno, Czech Republic
E-mail: kolar@math.muni.cz

[^0]: 2010 Mathematics Subject Classification: primary 53C05; secondary 58A20, 58A32.
 Key words and phrases: general connection, tangent valued form, functorial prolongation, Weil functor.

 Received November 29, 2017. Editor J. Slovák.
 DOI: 10.5817/AM2018-2-111

