POLYNOMIALS WITH VALUES WHICH ARE POWERS OF INTEGERS

Rachid Boumahdi and Jesse Larone

Abstract

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form $Q(m)$, where Q is a polynomial with integral coefficients, then $P(x)=Q(R(x))$ for some polynomial R. In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m^{q} where q is an integer greater than 1 , then $P(x)=(R(x))^{q}$ for some polynomial $R(x)$.

1. Introduction

Several authors have studied the integer solutions of the equation

$$
y^{m}=P(x)
$$

where $P(x)$ is a polynomial with rational coefficients, and $m \geq 2$ is an integer. If P is an irreducible polynomial of degree at least 3 with integer coefficients, then the above equation is called a hyperelliptic equation if $m=2$ and a superelliptic equation otherwise.

In 1969, Baker [1] gave an upper bound on the size of integer solutions of the hyperelliptic equation when $P(x) \in \mathbb{Z}[x]$ has at least three simple zeros, and for the superelliptic equation when $P(x) \in \mathbb{Z}[x]$ has at least two simple zeros.

Using a refinement of Baker's estimates and a criterion of Cassels concerning the shape of a potential integer solution to $x^{p}-y^{q}=1$, Tijdeman [11] proved in 1976 that Catalan's equation $x^{p}-y^{q}=1$ has only finitely many solutions in integers $p>1, q>1, x>1, y>1$.

Suppose that $y^{m}-P(x)$ is irreducible in $\mathbb{Q}[x, y]$ where P is monic and $\operatorname{gcd}(m, \operatorname{deg} P)>1$. Under these conditions, Masser [6] considered the equation $y^{m}=P(x)$ in the particular case $m=2$ and $\operatorname{deg} P=4$. In particular, setting $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ where $P(x)$ is not a perfect square, it was shown that for $H \geq 1$ and $X(H)$ defined as the maximum of $|x|$ taken over all integer solutions of all equations $y^{2}=P(x)$ with $\max \{|a|,|b|,|c|,|d|\} \leq H$, there are absolute constants $k>0$ and K such that $k H^{3} \leq X(H) \leq K H^{3}$. Walsh [13] later

[^0]obtained an effective bound on the integer solutions for the general case. Poulakis [7] described an elementary method for computing the solutions of the equation $y^{2}=P(x)$, where P is a monic quartic polynomial which is not a perfect square. Later, Szalay [10] established a generalization for the equation $y^{q}=P(x)$, where P is a monic polynomial and q divides $\operatorname{deg} P$.

Suppose that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ are the roots of $P(x)$ with respective multiplicities $e_{1}, e_{2}, \ldots, e_{r}$. Given an integer $m \geq 3$, we define, for each $i=1, \ldots, r$,

$$
m_{i}=\frac{m}{\left(e_{i}, m\right)} \in \mathbb{N}
$$

It has been shown by LeVeque [5] that the superelliptic equation $y^{m}=P(x)$ can have infinitely many solutions in \mathbb{Q} only if $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ is a permutation of either $(2,2,1, \ldots, 1)$ or $(t, 1,1, \ldots, 1)$ with $t \geq 1$. In 1995, Voutier [12] gave improved bounds for the size of solutions $\left(x_{0}, y_{0}\right)$ to the superelliptic equation with $x_{0} \in \mathbb{Z}$ and $y_{0} \in \mathbb{Q}$ under the conditions of LeVeque.

Given a polynomial $P(x) \in \mathbb{Z}[x]$ and an integer $q \geq 2$, it is then natural to ask when the equation

$$
y^{q}-P(x)=0
$$

will have infinitely many solutions $\left(x_{0}, y_{0}\right)$ with $x_{0} \in \mathbb{Z}$ and $y_{0} \in \mathbb{Q}$. It is clear that this will immediately be the case when $P(x)=(R(x))^{q}$ for some polynomial $R(x) \in \mathbb{Q}[x]$. Indeed, this serves as our motivation.

In 1913, Grösch solved a problem proposed by Jentzsch [4], showing that if a polynomial $P(x)$ with integral coefficients is a square of an integer for all integral values of x, then $P(x)$ is the square of a polynomial with integral coefficients. Kojima [4], Fuchs [2], and Shapiro [9] later proved more general results. In particular, Shapiro proved that if $P(x)$ and $Q(x)$ are polynomials of degrees p and q respectively, which are integer-valued at the integers, such that $P(n)$ is of the form $Q(m)$ for infinitely many blocks of consecutive integers of length at least $p / q+2$, then there is a polynomial $R(x)$ such that $P(x)=Q(R(x))$.

Recall that the height of a polynomial

$$
P(x)=a_{p} x^{p}+a_{p-1} x^{p-1}+\cdots+a_{1} x+a_{0} \in \mathbb{C}[x]
$$

is defined by

$$
H(P)=\max _{i=0, \ldots, p}\left|a_{i}\right|
$$

where $\left|a_{i}\right|$ denotes the modulus of $a_{i} \in \mathbb{C}$ for each $i=0, \ldots, p$. We will prove the following result:

Theorem 1. Let $P(x)=a_{p} x^{p}+a_{p-1} x^{p-1}+\cdots+a_{0}$ be a polynomial with integral coefficients where $a_{p}>0$, and let $q \geq 2$ be an integer that divides p. Suppose that there exist integers $m_{i}, i=0,1, \ldots, p / q+1$, such that $P\left(n_{0}+i\right)=m_{i}^{q}$ for some consecutive integers $n_{0}, n_{0}+1, \ldots, n_{0}+p / q+1$ where

$$
n_{0}>1+(p / q+1)!p q^{p / q+1} H(P)^{p / q+2} \prod_{j=2}^{p / q+2}(j p-j+1)^{2} .
$$

Set $M:=\sum_{i=0}^{p / q+1}\binom{p / q+1}{i}\left|m_{p / q+1-i}\right|$. If there exist at least M more blocks of such consecutive integers $n_{k}+i, i=0, \ldots, p / q+1$, such that $n_{k}>n_{k-1}+p / q+1$ for each $k=1, \ldots, M$ and $P\left(n_{k}+i\right)=m_{k, i}^{q}$ for all $k=1, \ldots, M$ and $i=0, \ldots, p / q+1$ for some integers $m_{k, i}$, then there exists a polynomial $R(x)$ such that $P(x)=(R(x))^{q}$.

2. Preliminaries

Let $P(x)$ and $Q(x)$ be non-zero polynomials with integral coefficients of degrees p and q respectively. The following properties are easily verified:
(i) $H(P) \geq 1$
(ii) $H\left(P^{\prime}\right) \leq p H(P)$
(iii) $H(P+Q) \leq H(P)+H(Q)$
(iv) $H(P Q) \leq(1+p+q) H(P) H(Q)$

The first and second properties are trivial, while the third follows immediately from the triangle inequality. The last property follows by noting that the coefficient of x^{k} in the product of $a_{p} x^{p}+a_{p-1} x^{p-1}+\cdots+a_{0}$ and $b^{q} x^{q}+b_{q-1} x^{q-1}+\cdots+b_{0}$ is given by $\sum_{i+j=k} a_{i} b_{j}$, where the number of summands is at most $\lceil(p+q) / 2\rceil+1 \leq 1+p+q$. We recall a result which can be found in Rolle [8.

Lemma 1. Let $f(x) \in \mathbb{R}[x]$ be a monic polynomial. If $t \geq 1+H(f)$, then $f(t)>0$.
Proof. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. The result follows from writing $f(t)$ as

$$
f(t)=t^{n-1}\left(t+\left(a_{n-1}+\frac{a_{n}-2}{t}+\cdots+\frac{a_{0}}{t^{n-1}}\right)\right)
$$

since from $t>1$, we deduce that

$$
\left|a_{n-1}+\frac{a_{n-2}}{t}+\cdots+\frac{a_{0}}{t^{n-1}}\right| \leq \sum_{i=0}^{n-1}\left|a_{i}\right|(1 / t)^{n-1-i} \leq H(f) \frac{t}{t-1}<t
$$

and we conclude that $t+\left(a_{n-1}+\frac{a_{n}-2}{t}+\cdots+\frac{a_{0}}{t^{n-1}}\right)$ is positive.
We will also require the following lemma, which is implicit in the proof of the sole lemma in 9$]$.

Lemma 2. Let $f(x)$ be a branch of an algebraic function, real and regular for all $x>x_{0}$ for some x_{0}, and satisfying $|f(x)|<C x^{\alpha}$ where $C>0$ and $\alpha>0$. Then $\lim _{x \rightarrow \infty} f^{(r+1)}(x)=0$, where r is the least integer greater than or equal to α.

We now establish a bound on the zeros of a particular class of algebraic functions.
Lemma 3. Let $P(x)$ be a polynomial of degree p with integral coefficients, and let $f(x)$ be a branch of the algebraic function defined by the equation $y^{q}=P(x)$ where q is an integer greater than 1. For any integer $k \geq 2, R_{k}(x)=q^{k} f(x)^{k q-1} f^{(k)}(x)$ is a polynomial with integral coefficients such that $\operatorname{deg} R_{k} \leq k(p-1)$ and $H\left(R_{k}\right) \leq$ $(k-1)!p q^{k-1} H(P)^{k} \prod_{j=2}^{k}(j p-j+1)^{2}$.

Proof. Differentiating $f^{q}=P$ with respect to x, we obtain $q f^{q-1} f^{\prime}=P^{\prime}$. We have $\operatorname{deg} P^{\prime}=p-1$ and $H\left(P^{\prime}\right) \leq p H(P)$. We now consider $R_{k}=q^{k} f^{k q-1} f^{(k)}$ and prove the result by induction on k.

For the base case $k=2$, we differentiate $q f^{q-1} f^{\prime}=P^{\prime}$ with respect to x to obtain

$$
q f^{q-1} f^{\prime \prime}+q(q-1) f^{q-2} f^{\prime} f^{\prime}=P^{\prime \prime}
$$

Multiplying both sides of this equation by $q f^{q}$, we obtain

$$
\begin{aligned}
q^{2} f^{2 q-1} f^{\prime \prime}+(q-1)\left(q f^{q-1} f^{\prime}\right)\left(q f^{q-1} f^{\prime}\right) & =q f^{q} P^{\prime \prime} \\
q^{2} f^{2 q-1} f^{\prime \prime}+(q-1) P^{\prime} P^{\prime} & =q P P^{\prime \prime}
\end{aligned}
$$

so that

$$
R_{2}=q^{2} f^{2 q-1} f^{\prime \prime}=q P P^{\prime \prime}-(q-1) P^{\prime} P^{\prime}
$$

We then have

$$
\begin{aligned}
\operatorname{deg} R_{2} & \leq \max \left\{p+\operatorname{deg} P^{\prime \prime}, \operatorname{deg} P^{\prime}+\operatorname{deg} P^{\prime}\right\} \\
& =\max \{p+(p-1)-1, p-1+p-1\} \\
& =2(p-1)
\end{aligned}
$$

and

$$
\begin{aligned}
H\left(R_{2}\right) & \leq q H\left(P P^{\prime \prime}\right)+(q-1) H\left(P^{\prime} P^{\prime}\right) \\
& \leq q\left(1+p+\operatorname{deg} P^{\prime \prime}\right) H(P) H\left(P^{\prime \prime}\right)+q\left(1+\operatorname{deg} P^{\prime}+\operatorname{deg} P^{\prime}\right) H\left(P^{\prime}\right) H\left(P^{\prime}\right) \\
& \leq q(1+p+p-2) H(P)\left[\operatorname{deg} P^{\prime} H\left(P^{\prime}\right)\right]+q(1+2 p-2)[p H(P)]^{2} \\
& \leq q(2 p-1) H(P)(p-1)[p H(P)]+q(2 p-1)[p H(P)]^{2} \\
& =p q(2 p-1) H(P)^{2}[(p-1)+p] \\
& =p q H(P)^{2}(2 p-1)^{2} .
\end{aligned}
$$

Therefore, the result holds for the base case.
We now assume that the result holds for some integer $k \geq 2$. Differentiating $R_{k}=q^{k} f^{k q-1} f^{(k)}$ with respect to x yields

$$
q^{k} f^{k q-1} f^{(k+1)}+q^{k}(k q-1) f^{k q-2} f^{\prime} f^{(k)}=R_{k}{ }^{\prime} .
$$

Multiplying both sides of the equation by $q f^{q}$, we obtain

$$
\begin{aligned}
q^{k+1} f^{[k+1] q-1} f^{(k+1)}+(k q-1)\left[q f^{q-1} f^{\prime}\right]\left[q^{k} f^{k q-1} f^{(k)}\right] & =q f^{q} R_{k}{ }^{\prime} \\
q^{k+1} f^{[k+1] q-1} f^{(k+1)}+(k q-1) P^{\prime} R_{k} & =q P R_{k}{ }^{\prime}
\end{aligned}
$$

so that

$$
R_{k+1}=q^{k+1} f^{[k+1] q-1} f^{(k+1)}=q P R_{k}^{\prime}-(k q-1) P^{\prime} R_{k} .
$$

By hypothesis, we have $\operatorname{deg} R_{k} \leq k(p-1)$. Thus,

$$
\begin{aligned}
\operatorname{deg} R_{k+1} & \leq \max \left\{p+\operatorname{deg} R_{k}{ }^{\prime}, \operatorname{deg} P^{\prime}+\operatorname{deg} R_{k}\right\} \\
& =\max \left\{p+\operatorname{deg} R_{k}-1, p-1+\operatorname{deg} R_{k}\right\} \\
& =p-1+\operatorname{deg} R_{k} \\
& \leq p-1+k(p-1) \\
& =(k+1)(p-1) .
\end{aligned}
$$

In addition,

$$
\begin{aligned}
H\left(R_{k+1}\right) \leq & q H\left(P R_{k}^{\prime}\right)+(k q-1) H\left(P^{\prime} R_{k}\right) \\
\leq & k q\left(1+p+\operatorname{deg} R_{k}^{\prime}\right) H(P) H\left(R_{k}^{\prime}\right) \\
& +k q\left(1+\operatorname{deg} P^{\prime}+\operatorname{deg} R_{k}\right) H\left(P^{\prime}\right) H\left(R_{k}\right) \\
\leq & k q\left(p+\operatorname{deg} R_{k}\right) H(P)\left[\operatorname{deg} R_{k} H\left(R_{k}\right)\right] \\
& +k q\left(p+\operatorname{deg} R_{k}\right)[p H(P)] H\left(R_{k}\right) \\
= & k q\left(p+\operatorname{deg} R_{k}\right)^{2} H(P) H\left(R_{k}\right) .
\end{aligned}
$$

By hypothesis, we have $\operatorname{deg} R_{k} \leq k(p-1)$ and

$$
H\left(R_{k}\right) \leq(k-1)!p q^{k-1} H(P)^{k} \prod_{j=2}^{k}(j p-j+1)^{2}
$$

Thus,

$$
\begin{aligned}
H\left(R_{k+1}\right) & \leq k q(p+k(p-1))^{2} H(P)(k-1)!p q^{k-1} H(P)^{k} \prod_{j=2}^{k}(j p-j+1)^{2} \\
& =k!p q^{k} H(P)^{k+1} \prod_{j=2}^{k+1}(j p-j+1)^{2},
\end{aligned}
$$

proving the result.
Corollary 1. Let $P(x)$ be a polynomial of degree p with integral coefficients, and let $f(x)$ be a branch of the algebraic function defined by the equation $y^{q}=P(x)$ where q is an integer greater than 1 . If β is a real zero of $f^{(k)}(x)$ for any integer $k \geq 2$ such that $\beta>1+H(P)$, then $\beta \leq 1+(k-1)!p q^{k-1} H(P)^{k} \prod_{j=2}^{k}(j p-j+1)^{2}$.

Proof. Let β be a zero of $f^{(k)}(x)$ such that $\beta>1+H(P)$. If $f(\beta)=0$, then $0=f(\beta)^{q}=P(\beta)$ and $\beta \leq 1+H(P)$ by Lemma 1. We conclude that β is not a zero of $f(x)$.

Since β must be a zero of the polynomial $R_{k}=q^{k} f^{k q-1} f^{(k)}$, we conclude from Lemma 1 and Lemma 3 that

$$
\beta \leq 1+H\left(R_{k}\right) \leq 1+(k-1)!p q^{k-1} H(P)^{k} \prod_{j=2}^{k}(j p-j+1)^{2},
$$

as claimed.

Defining the difference operator Δ by $\Delta f(x)=f(x+1)-f(x)$ and recursively defining higher order difference operators, we have the following lemma from [3]:

Lemma 4. Let $k \geq 1$ be an integer. Then $\Delta^{k} f(x)=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} f(x+k-i)$.

3. Proof of Theorem 1

Proof. Let $x=\phi(y)$ denote the branch of the algebraic function inverse to the polynomial $y=x^{q}$, that is, $\phi(y)=y^{1 / q}$. Then $\phi(y)$ is positive and free of singularities for all $y \geq 0$.

Set $f(x)=\phi(P(x))$. Then $f(x)$ is asymptotically $a_{p}^{1 / q} x^{p / q}$, and $f(n)= \pm m$ for any n such that $P(n)=m^{q}$.

We show by contradiction that $f(x)$ is a polynomial. Suppose that $f(x)$ is not a polynomial. Then $f^{(p / q+2)}(x)$ is not identically zero. By Corollary 1 any real zero β of $f^{(p / q+2)}(x)$ satisfying $\beta>1+H(P)$ must also satisfy

$$
\beta \leq 1+(p / q+1)!p q^{p / q+1} H(P)^{p / q+2} \prod_{j=2}^{p / q+2}(j p-j+1)^{2} .
$$

Thus, $f^{(p / q+1)}(x)$ is either monotone decreasing or monotone increasing for

$$
x>1+(p / q+1)!p q^{p / q+1} H(P)^{p / q+2} \prod_{j=2}^{p / q+2}(j p-j+1)^{2}
$$

Suppose that $f^{(p / q+1)}(x)$ is monotone decreasing. It must then be strictly positive for $x>1+(p / q+1)!p q^{p / q+1} H(P)^{p / q+2} \prod_{j=2}^{p / q+2}(j p-j+1)^{2}$, since $\lim _{x \rightarrow \infty} f^{(p / q+1)}(x)=$ 0 by Lemma 2

Applying the difference operator Δ to $f(x) p / q+1$ times, we find that $\Delta^{p / q+1} f\left(n_{0}\right)$ is an integer. We now apply the Mean Value Theorem repeatedly to obtain a number $c_{0} \in\left(n_{0}, n_{0}+p / q+1\right)$ such that $f^{(p / q+1)}\left(c_{0}\right)=\Delta^{p / q+1} f\left(n_{0}\right)$ is an integer.

For each $k=1, \ldots, M$, we repeat the above process with each block of consecutive integers $n_{k}+i, i=0, \ldots, p / q+1$, to obtain numbers c_{k} such that $c_{k} \in\left(n_{k}, n_{k}+\right.$ $p / q+1)$ and $f^{(p / q+1)}\left(c_{k}\right)=\Delta^{p / q+1} f\left(n_{k}\right)$ are integers.

By Lemma 4 the integer $f^{(p / q+1)}\left(c_{0}\right)=\Delta^{p / q+1} f\left(n_{0}\right)$ is such that

$$
\begin{aligned}
\left|f^{(p / q+1)}\left(c_{0}\right)\right| & =\left|\sum_{i=0}^{p / q+1}\binom{p / q+1}{i}(-1)^{i} f\left(n_{0}+p / q+1-i\right)\right| \\
& \leq \sum_{i=0}^{p / q+1}\binom{p / q+1}{i}\left|m_{p / q+1-i}\right| \\
& =M
\end{aligned}
$$

Since $f^{(p / q+1)}(x)$ is monotone decreasing, $f^{(p / q+1)}\left(c_{k}\right)<f^{(p / q+1)}\left(c_{k-1}\right)$ for each $k=1, \ldots, M$. Thus $f^{(p / q+1)}\left(c_{j}\right) \leq M-j$ for $j=0, \ldots, M$. This implies that
$f^{(p / q+1)}\left(c_{M}\right) \leq 0$, which contradicts $f^{(p / q+1)}(x)$ being strictly positive at

$$
c_{M}>c_{0}>n_{0}>1+(p / q+1)!p q^{p / q+1} H(P)^{p / q+2} \prod_{j=2}^{p / q+2}(j p-j+1)^{2}
$$

Similarly, the case where $f^{(p / q+1)}(x)$ is monotone increasing leads to a contradiction. Therefore, $f(x)$ is a polynomial and $P(x)=f(x)^{q}$.

References

[1] Baker, A., Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
[2] Fuchs, W.H.J., A polynomial the square of another polynomial, Amer. Math. Monthly 57 (1950), 114-116.
[3] Jordan, C., Calculus of Finite Differences, Chelsea Publishing Company, New York, N.Y., 1950, 2nd edition.
[4] Kojima, T., Note on number-theoretical properties of algebraic functions, Tohoku Math. J. 8 (1915).
[5] LeVeque, W.J., On the equation $y^{m}=f(x)$, Acta. Arith. IX (1964), 209-219.
[6] Masser, D.W., Polynomial bounds for Diophantine equations, Amer. Math. Monthly (1980), 486-488.
[7] Poulakis, D., A simple method for solving the Diophantine equation $Y^{2}=X^{4}+a X^{3}+b X^{2}+$ $c X+d$, Elem. Math. 54 (1) (1999), 32-36.
[8] Rolle, M., Traité d'algèbre, Paris, 1690.
[9] Shapiro, H.S., The range of an integer-valued polynomial, Amer. Math. Monthly 64 (1957).
[10] Szalay, L., Superelliptic equations of the form $y^{p}=x^{k p}+a_{k p-1} x^{k p-1}+\cdots+a_{0}$, Bull. Greek Math. Soc. 46 (2002), 23-33.
[11] Tijdeman, R., On the equation of Catalan, Acta Arith. 29 (2) (1976), 197-209.
[12] Voutier, P.M., An upper bound for the size of integral solutions to $Y^{m}=f(X)$, J. Number Theory 53 (1995), 247-271.
[13] Walsh, P.G., A quantitative version of Runge's theorem on Diophantine equations, Acta Arith. 62 (2) (1992), 157-172.

Laboratoire D'Arithmétique, Codage,
Combinatoire et Calcul Formel, Université des Sciences et Technologies Houari Boumédiène, 16111, El Alia, Algiers, Algeria
E-mail: r_boumehdi@esi.dz

Département de mathématiques et de statistiques,
Université Laval, Québec,
Canada, G1V 0A6
E-mail: jesse.larone.1@ulaval.ca

[^0]: 2010 Mathematics Subject Classification: primary 13F20.
 Key words and phrases: integer-valued polynomial.
 Received July 25, 2017, revised January 2018. Editor R. Kučera.
 DOI: 10.5817/AM2018-2-119

