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ON THE NATURAL TRANSFORMATIONS OF WEIL BUNDLES

Ivan Kolář

Abstract. First we deduce some general results on the covariant form of the
natural transformations of Weil functors. Then we discuss several geometric
properties of these transformations, special attention being paid to vector
bundles and principal bundles.

1. Introduction

All manifolds and maps are assumed to be infinitely differentiable and the
manifolds are paracompact. Unless otherwise specified, we use the terminology and
notation from the book [5].

In 1953, A. Weil used the concept of local algebra A (today called Weil algebra)
to introduce the bundle TAM of infinitely near points of type A over a manifold
M , [5], [6]. By definition, A is a finite dimensional, commutative, associative and
unital algebra of the form R×N , where R are the real multiples of the unit of A
and N is the ideal of all nilpotent elements of A. In [6], Weil defined
(1) TAM = Hom (C∞M,A)
as the set of all algebra homomorphisms of the algebra C∞M of all smooth
functions on M into A. Every map f : M → M̄ induces f∗ : C∞M̄ → C∞M . For
ϕ ∈ Hom (C∞M,A), one sets
(2) TAf(ϕ) = ϕ ◦ f∗ ∈ Hom (C∞M̄,A) .
This determines a bundle functor TA : Mf → FM called Weil functor. One verifies
easily that TA preserves products. If B is another Weil algebra and µ ∈ Hom (A,B)
is an algebra homomorphism, the rule
(3) µM (ϕ) = µ ◦ ϕ ∈ Hom (C∞M,B)
defines a natural transformation µM : TAM → TBM .

The simpliest example of a Weil algebra is
(4) Drk = R[x1, . . . , xk]

/
〈x1, . . . , xk〉r+1

where R[x1, . . . , xk] is the algebra of all polynomials in k undetermined. In particular,
D1

1 = D is the classical algebra of dual (or Study) numbers.

2010 Mathematics Subject Classification: primary 58A20; secondary 58A32.
Key words and phrases: Weil functor, natural transformation of Weil bundles.
The author was supported by GACR under the grant 201/09/0981.
DOI: 10.5817/AM2013-5-303

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2013-5-303


304 I. KOLÁŘ

About 1986, the following fundamental result was deduced, see [5] for details.
Let m : R× R→ R be the multiplication of reals.

Theorem 1. Let F be a product preserving bundle functor on Mf . Then FR is a
Weil algebra with respect to the multiplication Fm and F concides with the Weil
functor TFR. The natural transformations t : TA → TB are in bijection with the
algebra homomorphisms tR : A→ B.

One finds easily that TDrk coincides with the functor T rk of (k, r)-velocities by C.
Ehresmann, [1]. In particular, TD = T is the classical tangent functor.

Since A = R×N is finite dimensional, there is an integer r such that Nr+1 = 0.
The smallest r with this property will be called the order ord A of A. On the other
hand, the dimension wA of the vector space N/N2 is said to be the width of A. A
Weil algebra A of width k and order r will be called Weil (k, r)-algebra. In [3], we
deduced

Lemma. Every Weil (k, r)-algebra is a factor algebra of Drk. If π, % : Drk → A
are two surjective algebra homomorphisms, then there is an algebra isomorphism
σ : Drk → Drk satisfying π = % ◦ σ.

Having in mind (1) and (2), we can say that the original Weil’s approach is
contravariant. In [3], we developed systematically the following covariant approach.
Since π is determined up to an isomorphism Drk → Drk, the following definition is
independent of the choice of π.

Definition. We say that two maps γ, δ : Rk →M determine the same A-velocity
jAγ = jAδ, if for every smooth function ϕ : M → R,

(5) π
(
jr0(ϕ ◦ γ)

)
= π
(
jr0(ϕ ◦ δ)

)
.

In [3], we deduced

Proposition 1. The space {jAγ; γ : Rk →M} of all A-velocities on M coincides
with TAM . For every f : M → M̄ , we have

(6) TAf(jAγ) = jA(f ◦ γ) .

2. The covariant form of natural transformations

Consider an algebra homomorphism µ : A→ B, wB = p. Applying µ to a map
γ : Rk →M , we obtain a commutative diagram

(7) TARk
TAγ //

µRk

��

TAM

µM

��
TBRk

TBγ // TBM

Consider jA id Rk ∈ TARk. Then µRk(jA id Rk) ∈ TBRk is of the form jB(µ̄), where
µ̄ : Rp → Rk. Hence (7) implies
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Proposition 2. For every natural transformation µ : TA → TB there exists a
polynomial map µ̄ : Rp → Rk such that

(8) µM (jAγ) = jB(γ ◦ µ̄) . �

Conversely, let jB(µ̄) ∈ TBRk, µ̄(0) = 0, determines a natural transformation
TA → TB by (8). We may write A = R[x1, . . . , xk]/I, where I is an ideal satisfying
〈x1, . . . , xk〉r+1 ⊂ I. Let Ph(x1, . . . , xk) be some polynomials generating I, h =
1, . . . , s. Then bi = µ(π(xi)) determine an algebra homomorphism A→ B if and
only if Ph(b1, . . . , bk) = 0. This describes all algebra homomorphisms A→ B.

Remark. It is worth mentioning that the class of Weil functors is closed even with
respect to the existence of underlying lower order functors. For every q ≤ r, Nq+1

A

is an ideal in A. Write Aq = A/Nq+1
A for the factor algebra and πq : A→ Aq for the

factor projection. Since µ(NA) ⊂ NB , every natural transformation µ : TA → TB

is projectable over a natural transformation µq : TAq → TBq , q ≤ r. In the case
q = r − 1, we proved in [2] that TAM → TAr−1M is an affine bundle, whose
associated vector bundle is the pullback of TM ⊗Nr

A over TAr−1M .

In what follows, we study the geometric properties of the Weilian prolongations
of certain geometric structures by using the covariant approach. Special attention
is paid to the geometric properties of the natural transformations.

3. Prolongation of vector and affine bundles

Consider a vector bundle p : E →M . The vector addition in E and the multipli-
cation of vectors by real numbers are two maps

(9) E ×M E → E , R× E → E .

Applying TA, we construct

(10) TAE ×TAM TAE → TAE , A× TAE → TAE ,

If we restrict the second map to R ⊂ A, we obtain

Proposition 3. TAp : TAE → TAM is also a vector bundle.

Proof. This can be deduced by discussing the prolongation of all corresponding
diagrams. However, our concept of A-velocity offers a more geometric proof, that
is of jet-like character. We have

TAE = {jAγ, γ : Rk → E} .

For c ∈ R, we define c(jAγ(τ)) = jA(cγ(τ)), τ ∈ Rk. If p ◦ γ1 = p ◦ γ2, we set

jA
(
γ1(τ)

)
+ jA
(
γ2(τ)

)
= jA
(
γ1(τ) + γ2(τ)

)
with addition in the individual fibers of E. Then we verify easily that TAE is a
vector bundle. �

Let Ē → M̄ be another vector bundle and f : E → Ē be a VB-morphism over
f : M → M̄ . Analogously to Proposition 3, we deduce
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Proposition 4. TAf : TAE → TAĒ is a VB-morphism over TAf : TAM →
TAM̄ .

Consider an algebra homomorphism µ : A→ B. Applying µ to a vector bundle
p : E →M , we obtain a commutative diagram

(11) TAE
µE //

TAp

��

TBE

TBp

��
TAM

µM // TBM

Proposition 5. (11) is a VB-morphism.

Proof. By (8), we have µE(jAγ1 +jAγ2) = jB((γ1 +γ2)◦ µ̄) = jB(γ1 ◦ µ̄)+jB(γ2 ◦
µ̄) = µE(jAγ1) + µE(jAγ2). �

Let q : H →M be an affine bundle with the associated vector bundle p : E →M .

Proposition 6. TAq : TAH → TAM is an affine bundle with the associated vector
bundle TAp : TAE → TAM .

Proof. Every two points h1, h2 ∈ Hx determine a vector h1 − h2 ∈ Ex, x ∈ M .
For two maps δ1, δ2 : Rk → H satisfying q ◦ δ1 = q ◦ δ2, we have jAδ1, jAδ2 ∈ TAH
and jA(δ1 − δ2) ∈ TAE with the required properties. �

Proposition 7. Let µ : A→ B be an algebra homomorphism. Then

(12) TAH
µH //

TAq

��

TBH

TBq

��
TAM

µM // TBM

is an affine bundle morphism, whose associated VB-morphism is (11).

4. The flow natural exchange and connnections

In general, the Weil algebra corresponding to the iteration TB ◦TA is A⊗B, [6],
[3]. The exchange algebra homomorphism ex : A⊗B → B⊗A induces the following
natural transformation exM : TATBM → TBTAM . Let t ∈ Rk and τ ∈ Rp. Hence
every Z ∈ TATBM is of the form

Z = jA
(
t 7→ jB(τ 7→ δ(t, τ))

)
,

where δ : Rk × Rp →M . Then
(13) exM (Z) = jB

(
τ 7→ jA(t 7→ δ(t, τ))

)
.

Consider the case B = D, i.e. TB = T . Hence TATM → TAM and TTAM →
TAM are vector bundles. Write κA for ex : A⊗D→ D⊗A. Using (13), one deduces
easily that
(14) κAM : TATM → TTAM
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is a VB-morphism over TAM . Consider a vector field X : M → TM and write
T AX : TAM → TTAM for its flow prolongation. On the other hand, we have
TAX : TAM → TATM . By (13), we deduce
(15) T AX = κAM ◦ TAX .

That’s why κA is called the flow natural exchange.
Consider a general connection Γ on a fibered manifold p : Y →M in the form

of a lifting map
(16) Γ: Y ×M TM → TY .

In [5], we constructed the induced general connection T AΓ on TAp : TAY → TAM
by a commutative diagram

(17) TAY ×TAM TATM
TAΓ //

κAM
��

TATY

κAY
��

TAY ×TAM TTAM
T AΓ // TTAY

Analogously to Proposition 5, we deduce

Proposition 8. Let µ : A→ B be an algebra homomorphism. Then T AΓ and T BΓ
are µ-related, i.e. the following diagram commutes

(18) TAY

µY

��

×TAM TTAM
T AΓ //

TµM

��

TTAY

TµY

��
TBY ×TBM TTBM

T BΓ // TTBY

5. Principal and associated bundles

By [3], for a Lie group G, TAG and TBG are also Lie groups and µG : TAG→
TBG is a group homomorphism. For a principal bundle P (M,G), TAP (TAM,TAG)
is also a principal bundle.

Proposition 9. µP : TAP → TBP is a PB-morphism with the associated group
homomorphism µG : TAG→ TBG.

Proof. Write (u, g) 7→ u ·g for the right action of G on P . Consider v(τ) : Rk → P ,
γ(τ) : Rk → G. Then µP (jAv · jAγ) = jB

(
(v · γ) ◦ µ̄

)
= µP (jAv) ◦ µG(jAγ). �

Consider a left action l : G× S → S of a Lie group G on a manifold S.

Proposition 10. The actions TAl and TBl are µ-related, i.e. the following diagram
commutes

(19) TAG

µG

��

× TAS
TAl //

µS

��

TAS

µS

��
TBG × TBS

TBl // TBS
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Proof. Consider jAγ ∈ TAG, jAσ ∈ TAS. Clockwise we first obtain TAl(jAγ, jAσ)
and then TBl(γ ◦ µ̄, σ ◦ µ̄). Counterclockwise we first have jB(γ ◦ µ̄) and jB(σ ◦ µ̄)
and then TBl(γ ◦ µ̄, σ ◦ µ̄). �

According to [4], if Γ is a principal connection on a principal bundle P (M,G),
then T AΓ is a principal connection on the principal bundle TAP (TAM,TAG).

Every principal connection Γ on P induces a general connection ΓS on every
associated bundle P [S, l], [5]. In [4], we deduced
(20) T AΓTAS = T A(ΓS) .
By Propositions 9 and 10 we obtain easily

Proposition 11. The connections T A(ΓS) and T B(ΓS) are µ-related.
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