ON THE KOLÁŘ CONNECTION

WŁodzimierz M. Mikulski

To the memory of my father Jan Mikulski on his 100th birthday

Abstract

Let $Y \rightarrow M$ be a fibred manifold with m-dimensional base and n-dimensional fibres and $E \rightarrow M$ be a vector bundle with the same base M and with n-dimensional fibres (the same n). If $m \geq 2$ and $n \geq 3$, we classify all canonical constructions of a classical linear connection $A(\Gamma, \Lambda, \Phi, \Delta)$ on Y from a system $(\Gamma, \Lambda, \Phi, \Delta)$ consisting of a general connection Γ on $Y \rightarrow M$, a torsion free classical linear connection Λ on M, a vertical parallelism $\Phi: Y \times_{M} E \rightarrow V Y$ on Y and a linear connection Δ on $E \rightarrow M$. An example of such $A(\Gamma, \Lambda, \Phi, \Delta)$ is the connection $(\Gamma, \Lambda, \Phi, \Delta)$ by I. Kolář.

0 . Introduction

A general connection on a fibred manifold $Y \rightarrow M$ is a section $\Gamma: Y \rightarrow J^{1} Y$ of the first jet prolongation $J^{1} Y$ of $Y \rightarrow M$. Equivalently, $\Gamma: Y \times_{M} T M \rightarrow T Y$ is a lifting map or a projection tensor field $\Gamma: T Y \rightarrow T Y$ or it is a decomposition $T Y=V Y \oplus H^{\Gamma} Y$, e.t.c. If Y is a vector bundle and $\Gamma: Y \rightarrow J^{1} Y$ is a vector bundle map (over $i d_{M}$), then Γ is called a linear connection on $Y \rightarrow M$. A linear connection on $Y=T M \rightarrow M$ (the tangent bundle of M) is called a classical linear connection on M. There are several equivalent definitions of classical linear connection on M (a differentiation $\mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M)$, a right invariant connection $P M \rightarrow J^{1} P M$ on the linear frame bundle $P M$ of M, a system of Christoffel symbols, e.t.c.). A classical linear connection ∇ is torsion free if its torsion tensor $T\left(X_{1}, X_{2}\right)=\nabla_{X_{1}} X_{2}-\nabla_{X_{2}} X_{1}-\left[X_{1}, X_{2}\right]$ is equal to 0 .

If N is a manifold and V is a vector bundle, $\operatorname{dim}(N)=\operatorname{dim}(V)$, a parallelism on N, is a fibred diffeomorphism $P: N \times V \rightarrow T N$ over $i d_{N}$ such that for any $z \in N$ the map $P_{z}: V \rightarrow T_{z} N, P_{z}(v)=P(z, v)$, is linear.

If $Y \rightarrow M$ is a fibred manifold and $E \rightarrow M$ is a vector bundle such that $\operatorname{dim} Y_{x}=\operatorname{dim} E_{x}, x \in M$, a vertical parallelism on $Y \rightarrow M$ is a vector bundle isomorphism $\Phi: Y \times_{M} E \rightarrow V Y$, i.e. it is a system of parallelism $\Phi_{x}: Y_{x} \times E_{x} \rightarrow T Y_{x}$ on Y_{x} for any $x \in M$.

[^0]DOI: 10.5817/AM2013-4-223

In [4], I. Kolář constructed a classical linear connection $\Psi=(\Gamma, \Lambda, \Phi, \Delta): T Y \rightarrow$ $J^{1}(T Y \rightarrow Y)$ from a system consisting of a general connection $\Gamma: Y \rightarrow J^{1} Y$ on $Y \rightarrow M$, a classical linear connection $\Lambda: T M \rightarrow J^{1}(T M \rightarrow M)$ on M, a vertical parallelism $\Phi: Y \times_{M} E \rightarrow V Y$ on Y and a linear connection $\Delta: E \rightarrow J^{1}(E \rightarrow M)$ on $E \rightarrow M$ as follows. "We decompose $Z \in T_{y} Y$ into the horizontal part $h(Z)=$ $\Gamma\left(y, Z_{o}\right), Z_{o} \in T_{x} M, x=p(y)$ and the vertical part $v Z=\Phi\left(y, Z_{1}\right), Z_{1} \in E_{x}$. We take a vector field X on M such that $j_{x}^{1} X=\Lambda\left(Z_{o}\right)$ and construct its Γ-lift $\Gamma X: Y \rightarrow T Y$. Further, we consider a section s of E such that $j_{x}^{1} s=\Delta\left(Z_{1}\right)$. For every $Z \in T_{y} Y$ we define

$$
\psi(Z)=j_{y}^{1}(\Gamma X+\varphi(s)) .^{\prime \prime}
$$

Here $\varphi(s): Y \rightarrow V Y$ is defined by $\varphi(s)(y)=\Phi(y, s(p(y)))$.
The above construction is a generalization of the construction H of a classical linear connection $H(D, \Lambda)$ on E from a linear connection D in a vector bundle $E \rightarrow$ M by means of a classical linear connection Λ on M presented by J. Gancarzewicz [2]. It is also a generalization of a construction N of a classical linear connection $N(\Gamma, \Lambda)$ on P from a principal (right invariant) connection on a principal bundle $P \rightarrow M$ by means of a classical linear connection Λ considered in [5, p. 415].

In the present paper we study the problem how to construct a classical linear connection $A(\Gamma, \Lambda, \Delta, \Phi)$ on Y from a system $(\Gamma, \Lambda, \Phi, \Delta)$ consisting of a general connection Γ on $Y \rightarrow M$, a torsion free classical linear connection Λ on M, a vertical parallelism $\Phi: Y \times_{M} E \rightarrow V Y$ and a linear connection Δ on $E \rightarrow M$.

In Section 2, modifying the torsion tensor field \mathcal{T} or $(\Gamma, \Lambda, \Phi, \Delta)$ of the Kolář connection $(\Gamma, \Lambda, \Phi, \Delta)$, the torsion field $\tau \Phi: Y \rightarrow \bigwedge^{2} V^{*} Y \otimes V Y$ of Φ and the covariant differential $D_{(\Gamma, \Delta)} \Phi: Y \times_{M} E \rightarrow V Y \otimes T^{*} M$, we construct tensor fields $\tau_{i}(\Gamma, \Lambda, \Phi, \Delta)$ of type $T^{*} \otimes T^{*} \otimes T$ on Y canonically depending on $(\Gamma, \Lambda, \Phi, \Delta)$, $i=1, \ldots, 12$.

The main result of the present paper can be written in the form of the following theorem.

Theorem A. If $m \geq 2$ and $n \geq 3$, any canonical construction A in question is of the form

$$
A(\Gamma, \Lambda, \Phi, \Delta)=(\Gamma, \Lambda, \Phi, \Delta)+\sum_{i=1}^{12} \lambda_{i} \tau_{i}(\Gamma, \Lambda, \Phi, \Delta)
$$

for some (uniquely determined by A) real numbers $\lambda_{1}, \ldots, \lambda_{12}$.
Classifications of constructions on connections has been studied in many papers, e.g. [3], 1], e.t.c.

All manifolds considered in the paper are assumed to be Hausdorff, second countable, without boundary, finite dimensional and smooth (of class C^{∞}). Maps between manifolds are assumed to be smooth (infinitely differentiable).

1. Natural operators

Let $\mathcal{F} \mathcal{M}_{m, n}$ be the category of fibred manifolds with m-dimensional bases and n-dimensional fibres and their fibred (local) diffeomorphisms. Let $\mathcal{V} \mathcal{B}_{m, n}$ be the category of vector bundles with m-dimensional bases and n-dimensional fibres and their (local) vector bundle isomorphisms.

Definition 1. A (gauge) $\mathcal{F} \mathcal{M}_{m, n} \times \mathcal{V} \mathcal{B}_{m, n}$-natural operator A sending systems $(\Gamma, \Lambda, \Phi, \Delta)$ consisting of general connections on fibred manifolds $Y \rightarrow M$, torsion free classical linear connections Λ on M, vertical parallelisms $\Phi: Y \times_{M} E \rightarrow V Y$ on Y and linear connections Δ on vector bundles $E \rightarrow M$ into classical linear connections $A_{Y, E}(\Gamma, \Lambda, \Phi, \Delta)$ on Y is an $\mathcal{F} \mathcal{M}_{m, n} \times \mathcal{V} \mathcal{B}_{m, n}$-invariant system of regular operators

$$
A_{Y, E}: \operatorname{Con}(Y) \times \operatorname{Con}_{\text {clas }}^{o}(M) \times \operatorname{Par}\left(Y \times_{M} E\right) \times \operatorname{Con}_{\text {lin }}(E) \rightarrow \operatorname{Con}_{\text {clas }}(Y)
$$

for any pair (Y, E) consisting of a $\mathcal{F} \mathcal{M}_{m, n}$-object $Y=\left(p_{Y}: Y \rightarrow M\right)$ and a $\mathcal{V} \mathcal{B}_{m, n}$-object $E=\left(p_{E}: E \rightarrow M\right)$ (the same base M), where $\operatorname{Con}(Y)$ is the set of general connections Γ on $p_{Y}: Y \rightarrow M, \operatorname{Con}_{\text {clas }}^{o}(M)$ is the set of torsion free classical linear connections Λ on $M, \operatorname{Par}\left(Y \times_{M} E\right)$ is the set of vertical parallelisms $\Phi: Y \times_{M} E \rightarrow V Y$ on $Y, \operatorname{Con}_{\text {lin }}(E)$ is the set of linear connections Δ on $p_{E}: E \rightarrow M$ and $\operatorname{Con}_{\text {clas }}(Y)$ is the set of classical linear connections on Y.

Remark 1. The invariance of A means that if $(\Gamma, \Lambda, \Phi, \Delta) \in \operatorname{Con}(Y) \times \operatorname{Con}_{\text {clas }}^{o}(M) \times$ $\operatorname{Par}\left(Y \times_{M} E\right) \times \operatorname{Con}_{\text {lin }}(E)$ is (f, g)-related to $\left(\Gamma_{1}, \Lambda_{1}, \Phi_{1}, \Delta_{1}\right) \in \operatorname{Con}\left(Y_{1}\right)$ $\times \operatorname{Con}_{\text {clas }}^{o}\left(M_{1}\right) \times \operatorname{Par}\left(Y_{1} \times_{M_{1}} E_{1}\right) \times \operatorname{Con}_{\text {lin }}\left(E_{1}\right)$, where $f: Y \rightarrow Y_{1}$ is a $\mathcal{F} \mathcal{M}_{m, n}$-map covering $\underline{f}: M \rightarrow M_{1}$ and $g: E \rightarrow E_{1}$ is a $\mathcal{V} \mathcal{B}_{m, n}$-map covering also $\underline{f}: M \rightarrow M_{1}$, then $A_{Y, E}(\Gamma, \Lambda, \Phi, \Delta)$ and $A_{Y_{1}, E_{1}}\left(\Gamma_{1}, \Lambda_{1}, \Phi_{1}, \Delta_{1}\right)$ are f-related. A tuple $(\Gamma, \Lambda, \Phi, \Delta)$ is (f, g)-related to $\left(\Gamma_{1}, \Lambda_{1}, \Phi_{1}, \Delta_{1}\right)$ if Γ is f-related to Γ_{1}, Λ is f-related to Λ_{1}, Φ is (f, g)-related to Φ_{1} and Δ is g-related to Δ_{1}. In particular, $\bar{\Phi}$ is (f, g)-related to Φ_{1} if $V f \circ \Phi=\Phi_{1} \circ\left(f \times_{\underline{f}} g\right)$.

Remark 2. The regularity of A means that $A_{Y, E}$ transforms smoothly parametrized families into smoothly parametrized families.

For simplicity, we will omit the indexes Y and E on $A_{Y, E}$.
Remark 3. One can show standardly, that if $\operatorname{germ}_{y}\left(\Gamma_{1}\right)=\operatorname{germ}_{y}(\Gamma)$, $\operatorname{germ}_{x}\left(\Lambda_{1}\right)=\operatorname{germ}_{x}(\Lambda), \operatorname{germ}_{y}\left(\Phi_{1}\right)=\operatorname{germ}_{y}(\Phi), \operatorname{germ}_{x}\left(\Delta_{1}\right)=\operatorname{germ}_{x}(\Delta), y \in Y_{x}$, $x \in M$, then $A\left(\Gamma_{1}, \Lambda_{1}, \Phi_{1}, \Delta_{1}\right)(y)=A(\Gamma, \Lambda, \Phi, \Delta)(y)$. That is why, A is in fact defined for locally defined $(\Gamma, \Lambda, \Phi, \Delta)$, too.

One can verify that the Kolář connection $(\Gamma, \Lambda, \Phi, \Delta)$ (mentioned in Introduction) defines a natural operator A in the sense of Definition 1, where $A(\Gamma, \Lambda, \Phi, \Delta)$ $:=(\Gamma, \Lambda, \Phi, \Delta)$.

So, to classify all natural operators in the sense of Definition 1 it suffices to classify all natural operators in the sense of the following definition.

Definition 2. A (gauge) $\mathcal{F} \mathcal{M}_{m, n} \times \mathcal{V}_{m, n}$-natural operator A sending systems $(\Gamma, \Lambda, \Phi, \Delta)$ consisting of general connections Γ on fibred manifolds $Y \rightarrow M$, torsion free classical linear connections Λ on M, vertical parallelisms $\Phi: Y \times E \rightarrow V Y$ on Y and linear connections Δ on vector bundles $E \rightarrow M$ into tensor fields $A(\Gamma, \Lambda, \Phi, \Delta)$ of type $T^{*} \otimes T^{*} \otimes T$ on Y is an $\mathcal{F} \mathcal{M}_{m, n} \times \mathcal{V}_{m, n}$-invariant system of regular operators

$$
A: \operatorname{Con}(Y) \times \operatorname{Con}_{\text {clas }}^{o}(M) \times \operatorname{Par}\left(Y \times_{M} E\right) \times \operatorname{Con}_{\text {lin }}(E) \rightarrow \mathcal{T} e n^{(1,2)}(Y
$$

for any $\mathcal{F} \mathcal{M}_{m, n}$-object $Y \rightarrow M$ and any $\mathcal{V} \mathcal{B}_{m, n}$-object $E \rightarrow M$ (the same M), where $\mathcal{T} e n^{(1,2)}(Y)$ is the space of tensor fields of type $\otimes^{2} T^{*} \otimes T$ on Y.

A simple example of a natural operator A in the sense of Definition 2 is given by the torsion of the Kolář connection ($\Gamma, \Lambda, \Phi, \Delta$) (mentioned above).

Any natural operator A in the sense of Definition 1 is of the form

$$
A(\Gamma, \Lambda, \Phi, \Delta)=(\Gamma, \Lambda, \Phi, \Delta)+A^{1}(\Gamma, \Lambda, \Phi, \Delta)
$$

where A^{1} is a (uniquely determined) natural operator in the sense of Definition 2 That is why, from now on we study natural operators in the sense of Definition 2 only. Several examples of natural operators in the sense of Definition 2 are presented in the next section.

From now on, we can understand any natural operator A in the extended version as in Remark 3

2. The main examples of natural operators

Let $p_{Y}: Y \rightarrow M$ be a fibred manifold and $p_{E}: E \rightarrow M$ be a vector bundle. Let $(\Gamma, \Lambda, \Phi, \Delta)$ be a 4 -tuple consisting of a general connection Γ on $p_{Y}: Y \rightarrow M$, a classical linear connection Λ on M, a vertical parallelism $\Phi: Y \times_{M} E \rightarrow V Y$ and of a linear general connection Δ on $p_{E}: E \rightarrow M$.

According to the usual Γ-decomposition $T Y=V Y \oplus_{Y} H^{\Gamma} Y$ we have the decomposition

$$
\begin{aligned}
T^{*} Y \otimes T Y= & \left(V^{*} Y \otimes V Y\right) \oplus_{Y}\left(V^{*} Y \otimes H^{\Gamma} Y\right) \\
& \oplus_{Y}\left(\left(H^{\Gamma}\right)^{*} \otimes V Y\right) \oplus_{Y}\left(\left(H^{\Gamma}\right)^{*} \otimes H^{\Gamma}\right) .
\end{aligned}
$$

Let id H_{Y} be the tensor field of type $T^{*} \otimes T$ on Y being the $\left(H^{\Gamma} Y\right)^{*} \otimes H^{\Gamma} Y$-component of the identity tensor field $\mathrm{id}_{T Y}$ on Y (the other 3 component of $\mathrm{id}_{H Y}$ are zero). Let $\mathrm{id}_{V Y}$ be the tensor field of type $T^{*} \otimes T$ on Y being the $V^{*} Y \otimes V Y$-component of $\mathrm{id}_{T Y}$ (the other 3 components of $\mathrm{id}_{V Y}$ are zero).

Quite similarly, we have the decomposition

$$
\begin{aligned}
T^{*} Y & \otimes T^{*} Y \otimes T Y=\left(V^{*} Y \otimes V^{*} Y \otimes V Y\right) \oplus_{Y}\left(V^{*} Y \otimes V^{*} Y \otimes H^{\Gamma} Y\right) \\
& \oplus_{Y}\left(V^{*} Y \otimes\left(H^{\Gamma} Y\right)^{*} \otimes V Y\right) \oplus_{Y}\left(V^{*} Y \otimes\left(H^{\Gamma} Y\right)^{*} \otimes H^{\Gamma} Y\right) \\
& \oplus_{Y}\left(\left(H^{\Gamma} Y\right)^{*} \otimes V^{*} Y \otimes V Y\right) \oplus_{Y}\left(\left(H^{\Gamma} Y\right)^{*} \otimes V^{*} Y \otimes H^{\Gamma} Y\right) \\
& \left.\oplus_{Y}\left(\left(H^{\Gamma} Y\right)^{*} \otimes H^{\Gamma} Y\right)^{*} \otimes V Y\right) \oplus_{Y}\left(\left(H^{\Gamma} Y\right)^{*} \otimes\left(H^{\Gamma} Y\right)^{*} \otimes H^{\Gamma} Y\right) .
\end{aligned}
$$

Let \mathcal{T} or $H^{H^{*} \otimes V^{*} \otimes V}(\Gamma, \Lambda, \Phi, \Delta)$ be the $\left(H^{\Gamma} Y\right)^{*} \otimes V^{*} Y \otimes V Y$-component of the torsion tensor field $\mathcal{T} \operatorname{or}(\Gamma, \Lambda, \Phi, \Delta)$ of the Kolár connection $(\Gamma, \Lambda, \Phi, \Delta)$ (mentioned in Introduction). This components can be treated as the tensor field of type $T^{*} \otimes T^{*} \otimes T$ on Y (the other 7 components of it are zero). Taking contraction C_{2}^{1} we produce tensor field $C_{2}^{1} \mathcal{T}$ or $H^{*} \otimes V^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$ of type T^{*} on Y. Let \mathcal{T} or ${ }^{\left.H^{*} \otimes H^{*} \otimes V\right)}(\Gamma, \Lambda, \Phi, \Delta)$ be the $\left(H^{\Gamma} Y\right)^{*} \otimes\left(H^{\Gamma} Y\right)^{*} \otimes V Y$-component of $\mathcal{T} \operatorname{or}(\Gamma, \Lambda, \Phi, \Delta)$. Thus we have the following tensor fields of type $T^{*} \otimes T^{*} \otimes T$ on Y canonically depending on $(\Gamma, \Lambda, \Phi, \Delta)$ (i.e. we have the corresponding natural operators in the sense of Definition 22.
Example 1. $\tau_{1}(\Gamma, \Lambda, \Phi, \Delta):=\mathcal{T}$ or $H^{*} \otimes H^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$.
Example 2. $\tau_{2}(\Gamma, \Lambda, \Phi, \Delta):=\mathcal{T}$ or $H^{*} \otimes V^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$.
Example 3. $\tau_{3}(\Gamma, \Lambda, \Phi, \Delta):=\operatorname{id}_{H Y} \otimes C_{2}^{1} \mathcal{T}$ or $H^{H^{*} \otimes V^{*} \otimes V}(\Gamma, \Lambda, \Phi, \Delta)$.
Example 4. $\tau_{4}(\Gamma, \Lambda, \Phi, \Delta):=C_{2}^{1} \mathcal{T}$ or $H^{*} \otimes V^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta) \otimes \mathrm{id}_{H Y}$.
Example 5. $\tau_{5}(\Gamma, \Lambda, \Phi, \Delta):=C_{2}^{1} \mathcal{T}$ or $H^{H^{*} \otimes V^{*} \otimes V}(\Gamma, \Lambda, \Phi, \Delta) \otimes \mathrm{id}_{V Y}$.
Example 6. $\tau_{6}(\Gamma, \Lambda, \Phi, \Delta):=\operatorname{id}_{V Y} \otimes C_{2}^{1} \mathcal{T}$ or $H^{*} \otimes V^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$.
In the above examples (and from now on) we identify tensor fields τ of type $T^{*} \otimes T \otimes T^{*}$ with tensor fields $\tilde{\tau}$ of type $T^{*} \otimes T^{*} \otimes T$ and with tensor fields $\bar{\tau}$ of type $T \otimes T^{*} \otimes T^{*}$ by $\bar{\tau}\left(\omega, X_{1}, X_{2}\right)=\tilde{\tau}\left(X_{1}, X_{2}, \omega\right)=\tau\left(X_{1}, \omega, X_{2}\right)$. Moreover, tensor fields of types $T \otimes T^{*} \otimes T^{*}$ or $T^{*} \otimes T \otimes T^{*}$, we will always understand as the equivalent ones of type $T^{*} \otimes T^{*} \otimes T$. That is why, the contraction C_{2}^{1} is clear.

In general, if $P: N \times V \rightarrow T N$ is a parallelism on a manifold N and $v \in N$, the vector field $\tilde{v}: N \rightarrow T N, \tilde{v}(z)=P(z, v)$ is called the constant vector field corresponding to v. One can show easily that there is a unique classical linear connection $\nabla=\nabla^{P}$ on N such that $\nabla_{\tilde{v}} \tilde{w}=0$ for any constant vector fields on N. The torsion tensor of ∇ will be denoted by $\tau(P)$ and called the torsion tensor field of P (thus $\left.\tau(P)\left(X_{1}, X_{2}\right)=\nabla_{X_{1}} X_{2}-\nabla_{X_{2}} X_{1}-\left[X_{1}, X_{2}\right]\right)$. If $\Phi: Y \times_{M} E \rightarrow V Y$ is a vertical parallelism, we have the torsion tensor field $\tau \Phi$ of Φ given by

$$
\tau \Phi=\bigcup_{x \in M} \tau\left(\Phi_{x}\right): Y \rightarrow \bigwedge^{2} V^{*} Y \otimes V Y
$$

(The concept of a vertical parallelism and its torsion was introduced by I. Kolár in $[\mathrm{K}]$.) We can treat $\tau \Phi$ as the tensor field of type $T^{*} \otimes T^{*} \otimes T$ on Y (the other components of it in the decomposition we define to be 0). Thus we have the following tensor fields of type $T^{*} \otimes T^{*} \otimes T$ on Y canonically depending on $(\Gamma, \Lambda, \Phi, \Delta)$.
Example 7. $\tau_{7}(\Gamma, \Lambda, \Phi, \Delta)=\tau \Phi$.
Example 8. $\tau_{8}(\Gamma, \Lambda, \Phi, \Delta):=\operatorname{id}_{H Y} \otimes C_{2}^{1} \tau \Phi$.
Example 9. $\tau_{9}(\Gamma, \Lambda, \Phi, \Delta):=C_{2}^{1} \tau \Phi \otimes \mathrm{id}_{H Y}$.
Example 10. $\tau_{10}(\Gamma, \Lambda, \Phi, \Delta):=\operatorname{id}_{V Y} \otimes C_{2}^{1} \tau \Phi$.

Example 11. $\tau_{11}(\Gamma, \Lambda, \Phi, \Delta):=C_{2}^{1} \tau \Phi \otimes \mathrm{id}_{V Y}$.

By Section 3 (Corollary 1), if Λ is torsion free, then (eventually modulo si-
 $\mathcal{T} \operatorname{or}(\Gamma, \Lambda, \Phi, \Delta)$ in the Γ-decomposition.

In general, a Lie derivative of an arbitrary map $g: N \rightarrow N_{1}$ with respect to vector fields $\xi: N \rightarrow T N$ and $\eta: N_{1} \rightarrow T N_{1}$ is the map

$$
\mathcal{L}_{(\xi, \eta)} g=T g \circ \xi-\eta \circ g: N \rightarrow T N_{1} .
$$

If we have another fibred manifold $Z \rightarrow M$ with general connection Ω and a base preserving morphism $f: Y \rightarrow Z$, then the covariant derivative $D_{\Gamma, \Omega} f: Y \rightarrow$ $V Z \otimes T^{*} M$ is defined by

$$
\left(D_{\Gamma, \Omega} f\right)(\xi):=\mathcal{L}_{(\Gamma \xi, \Omega \xi)} f .
$$

Consider $\Phi: Y \times_{M} E \rightarrow V Y$. According to [5] p.55], Γ induces a general connection $\mathcal{V} \Gamma$ on $V Y \rightarrow M$. Further we construct the product connection $\Gamma \times \Delta$ on $Y \times_{M}$ E. Then $D_{\Gamma \times \Delta, \mathcal{\nu} \Gamma} \Phi: Y \times_{M} E \rightarrow V V Y \otimes T^{*} M$. The values lie in a sub-bundle characterized by $V \pi=0$, where $\pi: V Y \rightarrow Y$ is the bundle projection. This sub-bundle coincides with $V Y \times_{Y} V Y$. The covariant differential $D_{(\Gamma, \Delta)} \Phi: Y \times_{M}$ $E \rightarrow V Y \otimes T^{*} M$ is the second component of $D_{\Gamma \times \Delta, \nu \Gamma} \Phi$. (This construction of the covariant differential was proposed by I. Kolář in [4].)

We can consider the covariant differential as the corresponding map $D_{(\Gamma, \Delta)} \Phi$: $\left(Y \times_{M} E\right) \times_{M} T M \rightarrow V Y$. Then we define the modified covariant differential $\tilde{D}_{(\Gamma, \Delta)} \Phi: Y \rightarrow V^{*} Y \otimes T^{*} Y \otimes V Y$ by

$$
\left(\tilde{D}_{(\Gamma, \Delta)} \Phi\right)(y)\left(X_{1}, X_{2}\right):=D_{(\Gamma, \Delta)} \Phi\left(\Phi^{-1}\left(X_{1}\right), T p_{Y}\left(X_{2}\right)\right) \in V_{y} Y,
$$

$X_{1} \in V_{y} Y, X_{2} \in T_{y} Y$. We can treat it as the tensor field of type $T^{*} \otimes T^{*} \otimes T$ on Y (the other parts of it in the decomposition we define to be 0). Thus we have the following tensor field of type $T^{*} \otimes T^{*} \otimes T$ on Y canonically induced by $(\Gamma, \Lambda, \Phi, \Delta)$.

Example 12. $\tau_{12}(\Gamma, \Lambda, \Phi, \Delta):=\tilde{D}_{(\Gamma, \Delta)} \Phi$.
By Section 3 (Corollary 2), if Λ is torsion free, then (eventually modulo signum) $\tau_{12}(\Gamma, \Lambda, \Phi, \Delta)=\mathcal{T}$ or $\nabla^{*} \otimes H^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$, the $V^{*} Y \otimes\left(H^{\Gamma} Y\right)^{*} \otimes V Y$-part of $\mathcal{T} \operatorname{or}(\Gamma, \Lambda, \Phi, \Delta)$ in the Γ-decomposition.

3. Estimation of dimension of the vector space of natural operators

Let x^{1}, \ldots, x^{m} be the usual coordinates on \mathbb{R}^{m}. Let $\mathbb{R}^{m, n}$ be the trivial bundle over \mathbb{R}^{m} with the standard fiber \mathbb{R}^{n} and $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ be the usual fiber coordinates on $\mathbb{R}^{m, n}$. Let $\mathbb{R}^{m, n}$ be also the trivial vector bundle over \mathbb{R}^{m} and $x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}$ be the usual vector bundle coordinates on $\mathbb{R}^{m, n}$.

Let

$$
\begin{equation*}
\Gamma^{o}=\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}}, \Lambda^{o}=(0), \Phi^{o}=\sum_{p=1}^{n} v^{p} \frac{\partial}{\partial y^{p}}, \Delta^{o}=\sum_{i=1}^{m} d x^{i} \otimes \frac{\partial}{\partial x^{i}} \tag{1}
\end{equation*}
$$

be the trivial general connection on $\mathbb{R}^{m, n}$, the torsion free flat classical linear connection on \mathbb{R}^{m}, the canonical parallelism on $\mathbb{R}^{m, n}$ and the trivial linear connection on $\mathbb{R}^{m, n}$, respectively.

In this section we study a natural operator A in the sense of Definition 2
From Corollary 19.8 in [5], we get immediately the following proposition.
Proposition 1. Let $p_{Y}: Y \rightarrow M$ be an $\mathcal{F} \mathcal{M}_{m, n}$-object and $p_{E}: E \rightarrow M$ be a $\mathcal{V B}_{m, n}$-object, $y \in Y_{x}, x \in M . \operatorname{Let}(\Gamma, \Lambda, \Phi, \Delta) \in \operatorname{Con}(Y) \times \operatorname{Con}_{\text {clas }}^{o}(M) \times$ $\operatorname{Par}\left(Y \times_{M} E\right) \times \operatorname{Con}_{\text {lin }}(E)$. There exists a finite number $r=r(\Gamma, \Lambda, \Phi, \Delta, y)$ such that for any $\left(\Gamma_{1}, \Lambda_{1}, \Phi_{1}, \Delta_{1}\right) \in \operatorname{Con}(Y) \times \operatorname{Con}_{\text {clas }}^{o}(M) \times \operatorname{Par}\left(Y \times_{M} E\right) \times \operatorname{Con}_{\text {lin }}(E)$ we have the following implication

$$
\begin{aligned}
\left(j_{y}^{r} \Gamma_{1}=\right. & \left.j_{y}^{r} \Gamma, j_{x}^{r} \Lambda_{1}=j_{x}^{r} \Lambda, j_{y}^{r} \Phi_{1}=j_{y}^{r} \Phi, j_{x}^{r} \Delta_{1}=j_{x}^{r} \Delta\right) \\
& \Rightarrow A\left(\Gamma_{1}, \Lambda_{1}, \Phi_{1}, \Delta_{1}\right)(y)=A(\Gamma, \Lambda, \Phi, \Delta)(y)
\end{aligned}
$$

It is clear that A is determined by the values

$$
A(\Gamma, \Lambda, \Phi, \Delta)(y) \in T_{y}^{*} Y \otimes T_{y}^{*} Y \otimes T_{y} Y
$$

for fibred manifolds $p_{Y}: Y \rightarrow M$ with m-dimensional bases and n-dimensional fibres, vector bundles $p_{E}: E \rightarrow M$ with n-dimensional fibres, general connections Γ on $p_{Y}: Y \rightarrow M$, torsion free classical linear connections Λ on M, vertical parallelisms $\Phi: Y \times_{M} E \rightarrow V Y$, linear connections Δ on $p_{E}: E \rightarrow M$ and $y \in Y_{x}$, $x \in M$.

Using the invariance of A with respect to (respective) fibred manifold charts and vector bundle charts and Proposition 1, we can assume $E=Y=\mathbb{R}^{m, n}, y=(0,0)$,

$$
\begin{equation*}
\Gamma=\Gamma^{o}+\sum F_{j ; \alpha \beta}^{p} x^{\alpha} y^{\beta} d x^{j} \otimes \frac{\partial}{\partial y^{p}} \tag{2}
\end{equation*}
$$

where the sum is over all m-tuples α and all n-tuples β of non-negative integers and $j=1, \ldots, m$ and $p=1, \ldots, n$ with $1 \leq|\alpha|+|\beta| \leq K$ (i.e. we can assume $\left.F_{j ;(0)(0)}^{p}=0\right)$,

$$
\begin{equation*}
\Lambda=\left(\sum \Lambda_{j k ; \gamma}^{i} x^{\gamma}\right)_{i, j, k=1, \ldots, m}, \Lambda_{j k ; \gamma}^{i}=\Lambda_{k j ; \gamma}^{i} \tag{3}
\end{equation*}
$$

where the sums are over all m-tuples γ of non-negative integers with $1 \leq|\gamma| \leq K$ (i.e. we can assume $\Lambda_{j k ;(0)}^{i}=0$),

$$
\begin{equation*}
\Phi=\Phi^{o}+\sum a_{q ; \delta \sigma}^{s} x^{\delta} y^{\sigma} v^{q} \frac{\partial}{\partial y^{s}} \tag{4}
\end{equation*}
$$

where the sum is over all m-tuples δ and all n-tuples σ of non-negative integers and $s, q=1, \ldots, n$ with $1 \leq|\delta|+|\sigma| \leq K$ (i.e. we can assume $a_{q ;(0)(0)}^{s}=0$) (we remark that such Φ can not be defined globally (it may not be a diffeomorphism $\mathbb{R}^{m, n} \times_{\mathbb{R}^{m}} \mathbb{R}^{m, n} \tilde{=} V \mathbb{R}^{m, n}$ but it is defined locally on some neighborhood of $(0,0)$ (it is a diffeomorphism $\left.U \times_{\underline{U}} \mathbb{R}_{\mid \underline{U}}^{m, n} \cong V U\right)$),

$$
\begin{equation*}
\Delta=\Delta^{o}+\sum \Delta_{j q ; \rho}^{p} x^{\rho} v^{q} d x^{j} \otimes \frac{\partial}{\partial v^{p}} \tag{5}
\end{equation*}
$$

where the sum is over all m-tuples ρ of non-negative integers and $j=1, \ldots, m$ and $p, q=1, \ldots, n$ with $0 \leq|\rho| \leq K$, where K is an arbitrary positive integer.

Given a positive integer K we define a smooth (as A is regular) map $A_{K}: \mathbb{R}^{n(K)} \rightarrow$ $\mathbb{R}^{q}=T_{(0,0)}^{*} \mathbb{R}^{m, n} \otimes T_{(0,0)}^{*} \mathbb{R}^{m, n} \otimes T_{(0,0)} \mathbb{R}^{m, n}$ by

$$
\begin{equation*}
A_{K}\left(\left(F_{j ; \alpha \beta}^{p}\right),\left(\Lambda_{j k ; \gamma}^{i}\right),\left(a_{q ; \delta \sigma}^{s}\right),\left(\Delta_{j q ; \rho}^{i}\right)\right):=A(\Gamma, \Lambda, \Phi, \Delta)(0,0), \tag{6}
\end{equation*}
$$

where $\Gamma, \Lambda, \Phi, \Delta$ are as in (22)-(5).
Clearly, A is determined by the collection of all $A_{K}, K=1,2, \ldots$.
Using the invariance of A with respect to $\left(\varphi_{t} \times \phi_{t}, \varphi_{t} \times \phi_{t}\right), \varphi_{t}=t \mathrm{id}_{\mathbb{R}^{m}}$, $\phi_{t}=t \operatorname{id}_{\mathbb{R}^{n}}, t>0$, we get the homogeneous condition

$$
\begin{aligned}
t A_{K}\left(\left(F_{j ; \alpha \beta}^{p}\right),\right. & \left.\left(\Lambda_{j k ; \gamma}^{i}\right),\left(a_{q ; \delta \sigma}^{s}\right),\left(\Delta_{j q ; \rho}^{p}\right)\right) \\
& =A_{K}\left(\left(t^{|\alpha|+|\beta|} F_{j ; \alpha \beta}^{p}\right),\left(t^{|\gamma|+1} \Lambda_{j k ; \gamma}^{i}\right),\left(t^{|\delta|+|\sigma|} a_{q ; \delta \sigma}^{s}\right),\left(t^{|\rho|+1} \Delta_{j q ; \rho}^{p}\right)\right)
\end{aligned}
$$

By the homogeneous function theorem, from this homogeneity condition we obtain.
Lemma 1. A_{K} is independent of $F_{j ; \alpha \beta}^{p}$ with $|\alpha|+|\beta| \geq 2$, A is independent of $\Lambda_{j k ; \gamma}^{i}$ with $|\gamma| \geq 1, A_{K}$ is independent of $a_{q ; \delta \sigma}^{s}$ with $|\delta|+|\sigma| \geq 2$ and A_{K} is independent of $\Delta_{j q ; \rho}^{p}$ with $|\rho| \geq 1$. Even, A_{K} is a linear combination with real coefficients of $\Delta_{j k ;(0)(0)}^{i}$ and $F_{j ; \alpha \beta}^{p}, a_{q ; \delta \sigma}^{s}$ with $|\alpha|+|\beta|=1,|\delta|+|\sigma|=1, i, j, k=1, \ldots, m$, $p, q, s=1, \ldots, n$.

In particular, $A_{K}\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$.

Even, we have proved the following fact.
Proposition 2. Any natural operator A in the sense of Definition 2 is of order not more than 1 .

Using these facts, we prove the following lemma.
Lemma 2. Let $m \geq 2$ and $n \geq 2$. A natural operator A in the sense of Definition 2 is fully determined by the collection of values

$$
\begin{align*}
& A^{1}:=A\left(\Gamma^{o}+x^{2} d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0) \tag{7}\\
& A^{2}:=A\left(\Gamma^{o}+y^{1} d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0) \tag{8}\\
& A^{3}:=A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{1} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0) \tag{9}
\end{align*}
$$

where $\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}$ are defined in (1).
Proof. (a) We are going to observe that the value
$A\left(\Gamma^{o}+x^{j_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial y^{p_{o}}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)$ is determined by A^{1}.
If $i_{o}=j_{o}$, by the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{p_{o}}+\frac{1}{2}\left(x^{i_{o}}\right)^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$ we get $A\left(\Gamma^{o}+x^{i_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial y^{p_{o}}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$.
If $i_{o} \neq j_{o}$, there exists a respective permutation of coordinates sending $\Gamma^{o}+$ $x^{2} d x^{1} \otimes \frac{\partial}{\partial y^{1}}$ into $\Gamma^{o}+x^{j_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial y^{p_{o}}}$ and preserving $\Lambda^{o}, \Phi^{o}, \Delta^{o}$. Then using the invariance of A with respect to this permutation, we end the observation.
(b) We are going to observe that A^{2} determines the value $A\left(\Gamma^{o}+y^{q_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial y^{p_{o}}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)$.

By the invariance of A with respect to

$$
(f, g)=\left(\left(x^{1}, \ldots, x^{m}, y^{1}+y^{2}, y^{2}, \ldots, y^{m}\right),\left(x^{1}, \ldots, x^{m}, v^{1}+v^{2}, v^{2}, \ldots, v^{n}\right)\right)
$$

we see $A\left(\Gamma^{o}+\left(y^{1}-y^{2}\right) d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)$ is the image of A^{2} by (f, g), and then it is determined by A^{2}. Therefore $A\left(\Gamma^{o}+y^{2} d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=$ $A^{2}-A\left(\Gamma^{o}+\left(y^{1}-y^{2}\right) d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)$ is determined by A^{2}.

Now, using the invariance of A with a respective permutation of coordinates, we end the observation in this case.
(c) We are going to observe that A^{3} determines the value $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{q_{o}} y^{s_{o}} \frac{\partial}{\partial y^{p_{o}}}, \Delta^{o}\right)(0,0)$.

If $p \neq 1$, then

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+y^{p}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}+v^{p}, v^{2}, \ldots, v^{n}\right)\right)
$$

preserves $\Gamma^{o}, \Lambda^{o}, \Delta^{o}$ and sends $\Phi^{o}+v^{2} y^{1} \frac{\partial}{\partial y^{1}}$ into $\Phi^{o}+v^{2}\left(y^{1}-y^{p}\right) \frac{\partial}{\partial y^{1}}$. Then (similarly as in the case (b) of the proof) $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{p} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)$ is determined by A^{3}. In particular $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{2} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)$ and $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{3} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)$ are determined by A^{3}.

By the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+y^{1} y^{2}, y^{3}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$ we get $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{1} \frac{\partial}{\partial y^{1}}+v^{1} y^{2} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)$ $=0$ (because Φ^{o} is mapped into $\Phi^{o}+v^{2} y^{1} \frac{\partial}{\partial y^{1}}+v^{1} y^{2} \frac{\partial}{\partial y^{1}}+\ldots$, where the dots have the 1 -jet equal to 0 , and $\Gamma^{o}, \Lambda^{o}, \Delta^{o}$ and A are preserved, and A is of order not more than 1), i.e. $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{1} y^{2} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)$ is determined by A^{3} (it is $\left.-A^{3}\right)$. By the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+\frac{1}{2}\left(y^{1}\right)^{2}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)=0$ we get $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{1} y^{1} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)=0$.
Now, using the invariance of A with respect to a respective permutation of coordinates, we end the observation.
(d) Let us denote

$$
\begin{equation*}
A^{4}:=A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}+v^{1} d x^{1} \otimes \frac{\partial}{\partial v^{1}}\right)(0,0) \tag{10}
\end{equation*}
$$

We are going to observe that $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}+v^{q_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial v^{p_{o}}}\right)(0,0)$ is determined by A^{4}.

Using the invariance of A with respect to

$$
(f, g)=\left(\left(x^{1}, \ldots, x^{m}, y^{1}+y^{2}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}+v^{2}, v^{2}, \ldots, v^{n}\right)\right)
$$

we deduce that $A^{\prime}=A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}+\left(v^{1}-v^{2}\right) d x^{1} \otimes \frac{\partial}{\partial v^{1}}\right)(0,0)$ is determined by A^{4} (it is image of A^{4} by (f, g)). So, $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}+v^{2} d x^{1} \frac{\partial}{\partial v^{1}}\right)(0,0)$ is determined by A^{4} (it is $A^{4}-A^{\prime}$).

Now, using the invariance of A with respect to a respective permutation of coordinates, we end the observation.
(e) We are going to observe that A^{4} determines the value $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+x^{i o} v^{q_{o}} \frac{\partial}{\partial v^{p_{o}}}, \Delta^{o}\right)(0,0)$.

Using the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{p_{o}}+x^{i_{o}} v^{q_{o}}, \ldots, v^{n}\right)\right)
$$

since $\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{p_{o}}+x^{i_{o}} v^{q_{o}}, \ldots, v^{n}\right)^{-1}=\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{p_{o}}-x^{i_{o}} v^{q_{o}}+\right.$ $\tilde{\varphi}\left(x^{i_{o}}\right) v^{q_{o}}, \ldots, v^{n}$) with $j_{0}^{1} \tilde{\varphi}=0\left(\right.$ if $\left.p_{o} \neq q_{o}, \tilde{\varphi}=0\right)$, from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$ we get

$$
A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}-x^{i_{o}} v^{q_{o}} \frac{\partial}{\partial y^{p_{o}}}, \Delta^{o}+v^{q_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial v^{p_{o}}}\right)(0,0)=0
$$

i.e. $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+x^{i_{o}} v^{q_{o}} \frac{\partial}{\partial y^{p_{o}}}, \Delta^{o}\right)(0,0)=A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}+v^{q_{o}} d x^{i_{o}} \otimes \frac{\partial}{\partial v^{q_{o}}}\right)(0,0)$ is determined by A^{4} because of the part (d) of the proof. In particular (for $i_{o}=1, p_{o}=1, q_{o}=1$, we proved

$$
\begin{equation*}
A^{4}=A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+x^{1} v^{1} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0) . \tag{11}
\end{equation*}
$$

(g) We are going to prove that A^{4} is determined by A^{2}.

Using the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+x^{1} y^{1}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, x^{2}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)=0$ we get

$$
A\left(\Gamma^{o}+y^{1} d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}+x^{1} v^{1} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)=0 .
$$

Hence $A^{4}=-A^{2}$ because of 11 .
The proof of Lemma 2 is complete.
Now, we prove the following lemma.
Lemma 3. Let $m \geq 2$ and $n \geq 3$. Let A^{1}, A^{2}, A^{3} be the values (7)-(9) from Lemma 2. There are real numbers a_{1}, \ldots, a_{12} such that

$$
\begin{equation*}
A^{1}=a_{1}\left(d_{(0,0)} x^{2} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}-d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{2} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}}\right), \tag{12}
\end{equation*}
$$

$$
\begin{align*}
A^{2}= & a_{2} \sum_{p=1}^{n} d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +a_{3} \sum_{p=1}^{n} d_{(0,0)} y^{p} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +a_{4} d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +a_{5} d_{(0,0)} y^{1} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +a_{6} \sum_{i=1}^{m} d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i} \mid(0,0)} \\
& +a_{7} \sum_{i=1}^{m} d_{(0,0)} x^{i} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial x^{i}{ }_{\mid(0,0)}} \tag{13}\\
A^{3}= & a_{8} \sum_{p=1}^{n} d_{(0,0)} y^{p} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +a_{9} \sum_{p=1}^{n} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +a_{10} \sum_{i=1}^{m} d_{(0,0)} x^{i} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)} \\
& +a_{11} \sum_{i=1}^{m} d_{(0,0)} y^{2} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)} \\
& +a_{12}\left(d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}\right. \\
& \left.-d_{(0,0)} y^{1} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}\right) \tag{14}
\end{align*}
$$

Proof. a. By the invariance of A with respect to

$$
\begin{equation*}
\left(\left(t^{1} x^{1}, \ldots, t^{m} x^{m}, \tau^{1} y^{1}, \ldots, \tau^{n} y^{n}\right),\left(t^{1} x^{1}, \ldots, t^{m} x^{m}, \tau^{1} v^{1}, \ldots, \tau^{n} v^{n}\right)\right) \tag{15}
\end{equation*}
$$

for $t^{1}>0, \ldots, t^{m}>0, \tau^{1}>0, \ldots, \tau^{n}>0$ we get immediately

$$
A^{1}=b_{1} d_{(0,0)} x^{2} \otimes d_{(0,0)} x^{1} \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}+b_{2} d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{2}{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}}
$$

for some real numbers b_{1}, b_{2}. But by the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+x^{1} x^{2}, y^{3}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$ we get

$$
A\left(\Gamma^{o}+x^{2} d x^{1} \otimes \frac{\partial}{\partial y^{1}}+x^{1} d x^{2} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0 .
$$

Therefore $b_{1}=-b_{2}$. We define $a_{1}:=b_{1}=-b_{2}$. That is why, formula (12) holds.
b. By the invariance of A with respect to 15 we get immediately

$$
\begin{aligned}
A^{2}= & \sum_{p=1}^{n} b_{p} d_{(0,0)} y^{p} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +\sum_{p=1}^{n} c_{p} d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +\sum_{i=1}^{m} d_{i} d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)} \\
& +\sum_{i=1}^{m} e_{i} d_{(0,0)} x^{i} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)} .
\end{aligned}
$$

Next, by the invariance of A with respect to respective permutation of coordinates, we deduce $b_{2}=\cdots=b_{n}, c_{2}=\cdots=c_{n}, d_{2}=\cdots=d_{m}, e_{2}=\cdots=e_{m}$. Then

$$
\begin{aligned}
A^{2}= & a_{2} \sum_{p=1}^{n} d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +a_{3} \sum_{p=1}^{n} d_{(0,0)} y^{p} \otimes d_{(0,0)} x^{1} \otimes{\frac{\partial}{\partial y^{p}}}_{\mid(0,0)} \\
& +a_{4} d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +a_{5} d_{(0,0)} y^{1} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +a_{6} \sum_{i=1}^{m} d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i} \mid(0,0)} \\
& +a_{7} \sum_{i=1}^{m} d_{(0,0)} x^{i} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial x^{i} \mid(0,0)} \\
& +b d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial x^{1} \mid(0,0)}
\end{aligned}
$$

Then by the invariance of A with respect to

$$
\left(\left(x^{1}, x^{2}+x^{1}, x^{3}, \ldots, x^{m}, y^{1}, \ldots, y^{n}\right),\left(x^{1}, x^{2}+x^{1}, x^{3}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from the last equality we get $b=0$. That is why, formula 13 is true.
c. By the invariance of A with respect to we get immediately

$$
\begin{aligned}
A^{3}= & \sum_{p=1}^{n} b_{p} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +\sum_{p=1}^{n} c_{p} d_{(0,0)} y^{p} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +\sum_{i=1}^{m} d_{i} d_{(0,0)} y^{2} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i} \mid(0,0)} \\
& +\sum_{i=1}^{m} e_{i} d_{(0,0)} x^{i} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial x^{i} \mid(0,0)}
\end{aligned}
$$

Then by the invariance of A with respect to respective permutation of coordinates, we deduce $b_{3}=\cdots=b_{n}, c_{3}=\cdots=c_{n}, d_{1}=\cdots=d_{m}$ and $e_{1}=\cdots=e_{m}$. Then

$$
\begin{align*}
A^{3}= & \lambda_{1} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +\lambda_{2} d_{(0,0)} y^{1} \otimes d_{(0,0)} y^{2} \otimes{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}}+\lambda_{3} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{2}}{ }_{\mid(0,0)} \\
& +\lambda_{4} \sum_{p=3}^{n} d_{(0,0)} y^{p} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +\lambda_{5} \sum_{p=3}^{n} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& +\lambda_{6} \sum_{i=1}^{m} d_{(0,0)} x^{i} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial x^{i} \mid(0,0)} \\
& +\lambda_{7} \sum_{i=1}^{m} d_{(0,0)} y^{2} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i}{ }_{\mid(0,0)}}
\end{align*}
$$

Then by the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}-y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}-v^{2}, \ldots, v^{n}\right)\right)
$$

from (16), we deduce

$$
\begin{aligned}
A^{3} & +A\left(\Gamma^{o} \Lambda^{o}, \Phi^{o}+v^{2} y^{2} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0) \\
= & A^{3}+\lambda_{1} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{2} \otimes{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}} \begin{aligned}
& \lambda_{2} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{2} \otimes{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}} \\
& -\lambda_{3} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{2} \otimes{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}}
\end{aligned} .
\end{aligned}
$$

On the other hand, by the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+\frac{1}{2}\left(y^{2}\right)^{2}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$, we obtain

$$
A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{2} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)=0
$$

So, $\lambda_{1}+\lambda_{2}-\lambda_{3}=0$.
From the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}-y^{3}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}-v^{3}, v^{2}, \ldots, v^{n}\right)\right)
$$

(we assume $n \geq 3$) from (16) we get (after cancelling A^{3})

$$
\begin{aligned}
A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{3} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)= & \left(\lambda_{1}-\lambda_{5}\right) d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{3} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +\left(\lambda_{2}-\lambda_{4}\right) d_{(0,0)} y^{3} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} .
\end{aligned}
$$

Then by the invariance of A with respect to the switching (y^{2} and y^{3}) and (v^{2} and v^{3}) we get

$$
\begin{aligned}
A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{3} y^{2} \frac{\partial}{\partial y^{1}}\right)(0,0)= & \left(\lambda_{1}-\lambda_{5}\right) d_{(0,0)} y^{3} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& +\left(\lambda_{2}-\lambda_{4}\right) d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{3} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}
\end{aligned}
$$

On the other hand by the invariance of A with respect to

$$
\left(\left(x^{1}, \ldots, x^{m}, y^{1}+y^{2} y^{3}, y^{2}, \ldots, y^{n}\right),\left(x^{1}, \ldots, x^{m}, v^{1}, \ldots, v^{n}\right)\right)
$$

from $A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)(0,0)=0$ we get

$$
A\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+y^{3} v^{2} \frac{\partial}{\partial y^{1}}+y^{2} v^{3} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)(0,0)=0
$$

So, $\lambda_{1}-\lambda_{5}=-\left(\lambda_{2}-\lambda_{4}\right)$.
That is why, formula (14) holds.
The proof of the lemma is complete.
From Lemma 3 it follows immediately the following proposition.
Proposition 3. If $m \geq 2$ and $n \geq 3$, the dimension of the vector space of all natural operators in the sense of Definition 目 is of the dimension not more than 12.

4. Linear independence of natural operators from Examples 112

We prove the following proposition.
Proposition 4. Let $m \geq 2$ and $n \geq 2$. The natural operators $\tau_{i}(i=1, \ldots, 12)$ in the sense of Definition 2 from Examples 12 are linearly independent.

Proof. By Lemma 2 it is sufficient to study the values (7)-(9) for $A=\tau_{i}$, $i=1, \ldots, 12$. To compute these values, we use Proposition 1 in 4.
a. The case $\Psi=\left(\Gamma^{o}+x^{2} d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{o}, \Delta^{o}\right)$.

In this case, we have (in the notation of Proposition 1 in (4)) $F_{1}^{1}(x, y)=x^{2}$ and other $F_{i}^{p}(x, y)=0, \Lambda_{i j}^{k}=0, \frac{\partial a_{s}^{p}}{\partial x^{j}}=0, \frac{\partial a_{s}^{p}}{\partial y^{q}}=0, \Delta_{s j}^{r}=0$. Then (by Proposition 1 in (4)) $d \eta^{1}=\xi^{1} d x^{2}$ and other $d \eta^{p}=0$, and $d \xi^{i}=0$. Then (modulo signum)

$$
\mathcal{T} \operatorname{or}(\Psi)(0,0)=d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{2} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}}-d_{(0,0)} x^{2} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}} .
$$

Hence (modulo signum)

$$
\tau_{1}(\Psi)(0,0)=d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{2} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0}}-d_{(0,0)} x^{2} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}}
$$

and $\tau_{i}(\Psi)(0,0)=0$ for $i=2, \ldots, 6$.
By the coordinate expression of the torsion tensor of vertical parallelism in Section 3 of [$4, \tau \Phi^{o}(0,0)=0$. Then $\tau_{i}(\Psi)(0,0)=0$ for $i=7, \ldots, 11$.

By the coordinate expression of the covariant differential in Section 4 in [4], we have $\tau_{12}(0,0)(\Psi)=0$.
b. The case $\Psi=\left(\Gamma^{o}+y^{1} d x^{1} \otimes \frac{\partial}{\partial y^{1}}, \Lambda^{o}, \Phi^{0}, \Delta^{o}\right)$.

Now, by Proposition 1 in [4, $d \eta^{1}=\xi^{1} d y^{1}$ and other $d \eta^{p}=0$, and $d \xi^{i}=0$. Then (modulo signum)

$$
\mathcal{T} \operatorname{or}(\Psi)(0,0)=d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}}-d_{(0,0)} y^{1} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} .
$$

Then $\tau_{1}(\Psi)(0,0)=0$ and (modulo signum)

$$
\begin{aligned}
& \tau_{2}(\Psi)(0,0)=d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{1} \otimes{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}}^{\tau_{3}(\Psi)(0,0)=\sum_{i=1}^{m} d_{(0,0)} x^{i} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)}} \\
& \tau_{4}(\Psi)(0,0)=\sum_{i=1}^{m} d_{(0,0)} x^{1} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)} \\
& \tau_{5}(\Psi)(0,0)=\sum_{p=1}^{n} d_{(0,0)} x^{1} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)} \\
& \tau_{6}(\Psi)(0,0)=\sum_{p=1}^{n} d_{(0,0)} y^{p} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)}
\end{aligned}
$$

Since $\tau \Phi^{o}(0,0)=0$ (see the case a of the proof), $\tau_{i}(\Psi)(0,0)=0$ for $i=7, \ldots, 11$.
By the coordinate expression of the covariant differential,

$$
\tau_{12}(\Psi)(0,0)=-d_{(0,0)} y^{1} \otimes d_{(0,0)} x^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}
$$

c. The case $\Psi=\left(\Gamma^{o}, \Lambda^{o}, \Phi^{o}+v^{2} y^{1} \frac{\partial}{\partial y^{1}}, \Delta^{o}\right)$.

By Proposition 1 in [4, $d \eta^{1}=\eta^{2} d y^{1}$ and $d \eta^{p}=0$ for other p, and $d \xi^{i}=0$. Then (modulo signum)

$$
\mathcal{T} \text { or }(\Psi)(0,0)=d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}-d_{(0,0)} y^{1} \otimes d_{(0,0)} y^{2} \otimes{\frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}}
$$

Then $\tau_{i}(\Psi)(0,0)=0$ for $i=1, \ldots, 6$.
By Section 3 of 4], one can compute

$$
\begin{aligned}
\tau\left(\Phi^{o}+v^{2} y^{1} \frac{\partial}{\partial y^{1}}\right)(0,0)= & d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)} \\
& -d_{(0,0)} y^{1} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{1}}{ }_{\mid(0,0)}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \tau_{7}(\Psi)(0,0)=d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{1} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}-d_{(0,0)} y^{1} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{1}{ }_{\mid(0,0)}}} \begin{array}{l}
\tau_{8}(\Psi)(0,0)=\sum_{i=1}^{m} d_{(0,0)} x^{i} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial x^{i}{ }_{\mid(0,0)}}
\end{array},=\text {, }
\end{aligned}
$$

$\tau_{9}(\Psi)(0,0)=\sum_{i=1}^{m} d_{(0,0)} y^{2} \otimes d_{(0,0)} x^{i} \otimes \frac{\partial}{\partial x^{i}}{ }_{\mid(0,0)}$,
$\tau_{10}(\Psi)(0,0)=\sum_{p=1}^{n} d_{(0,0)} y^{p} \otimes d_{(0,0)} y^{2} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)}$,
$\tau_{11}(\Psi)(0,0)=\sum_{p=1}^{n} d_{(0,0)} y^{2} \otimes d_{(0,0)} y^{p} \otimes \frac{\partial}{\partial y^{p}}{ }_{\mid(0,0)}$.
By the coordinate expression of the covariant differential, $\tau_{12}(\Psi)(0,0)=0$.
Now, it is easily seen that the natural operators $\tau_{1}, \ldots, \tau_{12}$ are linearly independent. The proof of Proposition 4 is complete.

Else, using Lemma 2 from the proof of Proposition 3 we have the following facts.
Corollary 1. If Λ is torsion free, then (eventually modulo signum)

$$
\tau \Phi=\mathcal{T} o r r^{V^{*} \otimes V^{*} \otimes V}(\Gamma, \Lambda, \Phi, \Delta)
$$

where \mathcal{T} or $V^{*} \otimes V^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$ is the $V^{*} Y \otimes V^{*} Y \otimes V Y$-part of \mathcal{T} or $(\Gamma, \Lambda, \Phi, \Delta)$ in the Γ-decomposition of Section 2 .

Corollary 2. If Λ is torsion free, then (eventually modulo signum)

$$
\tau_{12}(\Gamma, \Lambda, \Phi, \Delta)=\mathcal{T} \text { or }^{V^{*} \otimes H^{*} \otimes V}(\Gamma, \Lambda, \Phi, \Delta)
$$

where \mathcal{T} or $V^{*} \otimes H^{*} \otimes V(\Gamma, \Lambda, \Phi, \Delta)$ is the $V^{*} Y \otimes\left(H^{\Gamma} Y\right)^{*} \otimes V Y$-part of \mathcal{T} or $(\Gamma, \Lambda, \Phi, \Delta)$ in the Γ-decomposition of Section 2 .

5. The main result

From Propositions 3 and 4 it follows the main theorem of the paper.
Theorem 1. Let $m \geq 2$ and $n \geq 3$. Any natural operator A in the sense of Definition 1 is of the form

$$
A_{Y, E}(\Gamma, \Lambda, \Phi, \Delta)=(\Gamma, \Lambda, \Phi, \Delta)+\sum_{i=1}^{12} \lambda_{i} \tau_{i}(\Gamma, \Lambda, \Phi, \Delta)
$$

for some (uniquely determined by A) real numbers λ_{i}, where τ_{i} are the operators described in Examples $1-12$ and $(\Gamma, \Lambda, \Phi, \Delta)$ is the connection constructed by I. Kolár in [4].

References

[1] Doupovec, M., Mikulski, W. M., Reduction theorems for principal and classical connections, Acta Math. Sinica 26 (1) (2010), 169-184.
[2] Gancarzewicz, J., Horizontal lifts of linear connections to the natural vector bundles, Differential geometry (Santiago de Compostela, 1984), vol. 131, Pitman, Boston, MA, 1985, pp. 318-341.
[3] Janyška, J., Vondra, J., Natural principal connections on the principal gauge prolongation of a principal bundle, Rep. Math. Phys. 64 (3) (2009), 395-415.
[4] Kolář, I., Induced connections on total spaces of fibred bundles, Int. J. Geom. Methods Mod. Phys. (2010), 705-711.
[5] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.

Institute of Mathematics, Jagiellonian University,
S. Łojasiewicza 6, Cracow, Poland

E-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

[^0]: 2010 Mathematics Subject Classification: primary 53C05; secondary 58A32.
 Key words and phrases: general connection, linear connection, classical linear connection, vertical parallelism, natural operators.

 Received October 29, 2013. Editor I. Kolář.

