SOME PROPERTIES OF TANGENT DIRAC STRUCTURES OF HIGHER ORDER

P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga

Abstract

Let M be a smooth manifold. The tangent lift of Dirac structure on M was originally studied by T. Courant in [3]. The tangent lift of higher order of Dirac structure L on M has been studied in [10], where tangent Dirac structure of higher order are described locally. In this paper we give an intrinsic construction of tangent Dirac structure of higher order denoted by L^{r} and we study some properties of this Dirac structure. In particular, we study the Lie algebroid and the presymplectic foliation induced by L^{r}.

Introduction

Let M be a differential manifold of dimension $m>0$, in this paper, we denote by $\langle\cdot, \cdot\rangle_{M}: T M \times_{M} T^{*} M \rightarrow \mathbb{R}$ the usual canonical pairing. In [2], is defined the natural symmetric and skew-symmetric pairings on $T M \oplus T^{*} M$ by:

$$
\begin{aligned}
& \langle X \oplus \omega, Y \oplus \mu\rangle_{+}=\frac{1}{2}(\omega(Y)+\mu(X)) \\
& \langle X \oplus \omega, Y \oplus \mu\rangle_{-}=\frac{1}{2}(\omega(Y)-\mu(X)) .
\end{aligned}
$$

An almost-Dirac structure, or a Dirac bundle, on a manifold M is a subbundle L of vector bundle $T M \oplus T^{*} M$ which is maximally isotropic under the symmetric pairing $\langle\cdot \mid \cdot\rangle_{+}$. We denote by ρ_{M} and ρ_{M}^{*} the natural projection of $T M \oplus T^{*} M$ onto $T M$ and $T^{*} M$ respectively. Clearly, $\rho_{M}(L)$ is a generalized distribution on M. We set

$$
\rho_{M}(L)^{*}=\bigcup_{x \in M}\left(\rho_{M}\left(L_{x}\right)\right)^{*}
$$

In [2], is defined a 2-form $\Omega_{L}: \rho_{M}(L) \rightarrow \rho_{M}(L)^{*}$ such that:

$$
\Omega_{L}\left(\rho_{M}(X, \omega)\right)\left(\rho_{M}(Y, \mu)\right)=\langle X \oplus \omega, Y \oplus \mu\rangle_{-}=\omega(Y)
$$

and the bilinear bracket operation on the sections of $\left(T M \oplus T^{*} M \rightarrow M\right)$ by:

$$
[X \oplus \omega, Y \oplus \mu]=[X, Y] \oplus\left(\mathcal{L}_{X} \mu-\mathcal{L}_{Y} \omega+d\left(\langle X \oplus \omega, Y \oplus \mu\rangle_{-}\right)\right)
$$

[^0]If $\Gamma(L)$ is closed under this bracket, the author of 2] has said that the almost-Dirac structure L is integrable or L is a Dirac structure on M. This condition is equivalent to $\mathbb{T}_{L}=0$, where \mathbb{T}_{L} is the restriction on L of 3 -tensor \mathbb{T} defined on $T M \oplus T^{*} M$ by:

$$
\mathbb{T}\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right)=\left\langle\left[\mathbf{s}_{1}, \mathbf{s}_{2}\right], \mathbf{s}_{3}\right\rangle_{+}
$$

Where $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3} \in \Gamma\left(T M \oplus T^{*} M\right)$.
Theorem 1. An almost-Dirac structure L is integrable if and only if $\left(L,[\cdot, \cdot],\left.\rho_{M}\right|_{L}\right)$ is a Lie algebroid.

By this theorem, T. Courant in [2] has shown that, if L is an integrable Dirac structure, then the generalized distribution $\rho_{M}(L)$ generates a generalized foliation on M and by the same way, we have:

Theorem 2. An integrable Dirac structure has a foliation by presymplectic leaves.
For the proof of these theorems, see [2].
In [10, we have defined the tangent lift of higher order $L^{r}(r \geq 1)$ of an almost-Dirac structure L on a manifold M, and we have shown that this lifting is an almost-Dirac structure on a manifold $T^{r} M$. We have shown that, L is integrable if and only if L^{r} is integrable. In this paper we study some properties of L^{r} namely the structures of Lie algebroid and generalized foliation induced by L^{r}. The main results of this paper are Theorems 3, 4, 5, 6, and Proposition 3

All manifolds and maps are assumed to be infinitely differentiable. r will be a natural integer $(r \geq 1)$.

1. Tangent lifts of higher order of some tensor fields Revisited

1.1. Prolongations of sections of vector bundle. For all $\alpha \in\{0, \ldots, r\}$, we denote by $\chi^{(\alpha)}: T^{r} \rightarrow T^{r}$ the natural transformation defined for all vector bundle (E, M, π) and $\Psi \in C^{\infty}(\mathbb{R}, E)$ by:

$$
\chi_{E}^{(\alpha)}\left(j_{0}^{r} \Psi\right)=j_{0}^{r}\left(t^{\alpha} \Psi\right) .
$$

Where $t^{\alpha} \Psi$ is the smooth map defined for all $t \in \mathbb{R}$ by: $\left(t^{\alpha} \Psi\right)(t)=t^{\alpha} \Psi(t)$.
Let $S: M \rightarrow E$ be a smooth section on E, we define the section $\bar{S}^{(\alpha)}$ of ($T^{r} E, T^{r} M, T^{r} \pi$) by:

$$
\bar{S}^{(\alpha)}=\chi_{E}^{(\alpha)} \circ T^{r} S, \quad 0 \leq \alpha \leq r
$$

For the sake convenience we define $\bar{S}^{(\alpha)}=0$ for all $\alpha>r$ or $\alpha<0$.
Definition 1. This section $\bar{S}^{(\alpha)}$ of $T^{r} E$ is called α-prolongation of order r of S.
Remark 1. Let (E, M, π) be a vector bundle and $\varphi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$ a local trivialization of E over an open $U \subset M$. For $j=1, \ldots, n$, we put: $\varepsilon_{j}(x)=\varphi^{-1}\left(x, e_{j}\right) \quad$ where $\quad x \in U \quad$ and $\quad\left(e_{j}\right)_{j=1, \ldots, n} \quad$ is the usual basis of \mathbb{R}^{n}.
$\left(\varepsilon_{j}\right)_{j=1, \ldots, n}$ is a basis of sections of E over U associated to φ. Using the identification $T^{r}\left(U \times \mathbb{R}^{n}\right)=T^{r} U \times \mathbb{R}^{n(r+1)}$, we define a family of sections

$$
\left(\varepsilon_{j}^{\alpha}\right), \quad 1 \leq j \leq n, \quad 0 \leq \alpha \leq r
$$

of $T^{r} E$ over $T^{r} U$ by:

$$
\varepsilon_{j}^{\alpha}(\widetilde{x})=T^{r} \varphi^{-1}\left(\widetilde{x}, e_{j}^{\alpha}\right)
$$

where $\widetilde{x} \in T^{r} U$ and $\left(e_{j}^{\alpha}\right)$ the usual basis of $T^{r} \mathbb{R}^{n}=\mathbb{R}^{n(r+1)}$.
We have:

$$
\begin{equation*}
\varepsilon_{j}^{\alpha}={\overline{\varepsilon_{j}}}^{(\alpha)}, \quad \text { for all } \quad j=1, \ldots, n \quad \text { and } \quad \alpha=0, \ldots, r \tag{1}
\end{equation*}
$$

Proposition 1. Let (E, M, π) be a vector bundle. If Ψ, Ψ^{\prime} are two tensor fields of type $(0, p)$ on the vector bundle $\left(T^{r} E, T^{r} M, T^{r} \pi\right)$ such that for all smooth sections S_{1}, \ldots, S_{p} on E and $\alpha_{1}, \ldots, \alpha_{p} \in\{0,1, \ldots, r\}$ the equality

$$
\Psi\left({\overline{S_{1}}}^{\left(\alpha_{1}\right)}, \ldots,{\overline{S_{p}}}^{\left(\alpha_{p}\right)}\right)=\Psi^{\prime}\left({\overline{S_{1}}}^{\left(\alpha_{1}\right)}, \ldots,{\overline{S_{p}}}^{\left(\alpha_{p}\right)}\right)
$$

holds, then $\Psi=\Psi^{\prime}$.
Proof. See [5].
For the prolongations of functions, vector fields and differential form of manifold M to manifold $T^{r} M$ and related properties, see [5] or [11]. From now, we adopt the notations of 11.
1.2. Prolongations of tensor fields of type ($\mathbf{0}, \boldsymbol{p}$). Let (E, M, π) be a vector bundle and φ a tensor field of type $(0, p)$ on E. We interpret a tensor φ on E as a p-linear mapping $\varphi: E \times_{M} \cdots \times_{M} E \rightarrow \mathbb{R}$ of the bundle product over M of p-copies of E. For all $\alpha \in\{0,1, \ldots, r\}$, we denote by τ_{α} the linear form on $J_{0}^{r}(\mathbb{R}, \mathbb{R})$ defined by:

$$
\tau_{\alpha}\left(j_{0}^{r} g\right)=\left.\frac{1}{\alpha!} \frac{d^{\alpha}}{d t^{\alpha}}(g(t))\right|_{t=0}
$$

We set:

$$
\begin{equation*}
\bar{\varphi}^{(\alpha)}=\tau_{\alpha} \circ T^{r} \varphi \tag{2}
\end{equation*}
$$

$\bar{\varphi}^{(\alpha)}$ is a tensor field of type $(0, p)$ on $\left(T^{r} E, T^{r} M, T^{r} \pi\right)$ called α-prolongation of φ from E to $T^{r} E$. When $\alpha=r$, it is denoted by $\bar{\varphi}^{(c)}$ called complete lift of φ from E to $T^{r} E$.

Proposition 2. $\bar{\varphi}^{(\alpha)}, 0 \leq \alpha \leq r$, is the only tensor field of type $(0, p)$ on $T^{r} E$ satisfying:

$$
\begin{equation*}
\bar{\varphi}^{(\alpha)}\left({\overline{S_{1}}}^{\left(\alpha_{1}\right)}, \ldots,{\overline{S_{p}}}^{\left(\alpha_{p}\right)}\right)=\left(\varphi\left(S_{1}, \ldots, S_{p}\right)\right)^{\left(\alpha-\sum_{i=1}^{p} \alpha_{i}\right)} \tag{3}
\end{equation*}
$$

for all $S_{1}, \ldots, S_{p} \in \Gamma(E)$ and $\alpha_{1}, \ldots, \alpha_{p} \in\{0,1, \ldots, r\}$,

Proof. Let $j_{0}^{r} \eta \in T^{r} M$, we have:

$$
\begin{aligned}
\bar{\varphi}^{(\alpha)}\left({\overline{S_{1}}}^{\left(\alpha_{1}\right)}, \ldots,{\overline{S_{p}}}^{\left(\alpha_{p}\right)}\right)\left(j_{0}^{r} \eta\right) & =\bar{\varphi}^{(\alpha)}\left(\chi_{E}^{\left(\alpha_{1}\right)} \circ T^{r} S_{1}\left(j_{0}^{r} \eta\right), \ldots, \chi_{E}^{\left(\alpha_{p}\right)} \circ T^{r} S_{p}\left(j_{0}^{r} \eta\right)\right) \\
& =\bar{\varphi}^{(\alpha)}\left(j_{0}^{r}\left(t^{\alpha_{1}} S_{1} \circ \eta\right), \ldots, j_{0}^{r}\left(t^{\alpha_{p}} S_{p} \circ \eta\right)\right) \\
& =\tau_{\alpha}\left(j_{0}^{r} \varphi\left(t^{\alpha_{1}} S_{1} \circ \eta, \ldots, t^{\alpha_{p}} S_{p} \circ \eta\right)\right) \\
& =\tau_{\alpha}\left(j_{0}^{r} t^{\alpha_{1}+\cdots+\alpha_{p}} \varphi\left(S_{1}, \ldots, S_{p}\right) \circ \eta\right) \\
& =\left(t^{\alpha_{1}+\cdots+\alpha_{p}} \varphi\left(S_{1}, \ldots, S_{p}\right)\right)^{(\alpha)}\left(j_{0}^{r} \eta\right) \\
& =\left(\varphi\left(S_{1}, \ldots, S_{p}\right)\right)^{\left(\alpha-\sum_{i=1}^{p} \alpha_{i}\right)}\left(j_{0}^{r} \eta\right)
\end{aligned}
$$

The unicity comes from the equation (1) and Proposition 1

2. Tangent Dirac structure of higher order

2.1. Almost-Dirac structure of higher order. We denote by $\alpha^{r}: T^{*} \circ T^{r} \rightarrow$ $T^{r} \circ T^{*}$ and $\kappa^{r}: T^{r} \circ T \rightarrow T \circ T^{r}$ the natural transformations defined in [1] and [5], such that, for all manifold M, we have:

$$
\left\langle\kappa_{M}^{r}(u), v^{*}\right\rangle_{T^{r} M}=\left\langle u, \alpha_{M}^{r}\left(v^{*}\right)\right\rangle_{T^{r} M}^{\prime}, \quad\left(u, v^{*}\right) \in T^{r} T M \oplus T^{*} T^{r} M
$$

where $\langle\cdot \mid \cdot\rangle_{T^{r} M}^{\prime}=\tau_{r} \circ T^{r}\langle\cdot \mid \cdot\rangle_{M}$. Let L be an almost-Dirac structure on m-dimensional manifold defined locally by the bundle morphisms $a: U \times \mathbb{R}^{m} \rightarrow T M$ and $b: U \times \mathbb{R}^{m} \rightarrow T^{*} M .\left(e_{j}\right)$ denote the canonical basis of \mathbb{R}^{m}. We set:

$$
S_{i}: U \rightarrow L, \quad x \mapsto a\left(x, e_{i}\right) \oplus b\left(x, e_{i}\right)
$$

$\left(S_{i}\right)_{1 \leq i \leq n}$ is a basis of sections of L over U. In [10], we have showed that: the almost Dirac structure of order $r L^{r}$ is determined by the maps a^{r} and b^{r} such that:

$$
a^{r}=\kappa_{M}^{r} \circ T^{r} a \quad \text { and } \quad b^{r}=\varepsilon_{M}^{r} \circ T^{r} b ;
$$

where ε_{M}^{r} is the inverse map of α_{M}^{r}. The matrix form of a^{r} and b^{r} is given by:

$$
a^{r}=\left(\begin{array}{ccc}
a_{j}^{i} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
\left(a_{j}^{i}\right)^{(r)} & \ldots & a_{j}^{i}
\end{array}\right) \quad \text { and } \quad b^{r}=\left(\begin{array}{ccc}
\left(b_{i j}\right)^{(r)} & \ldots & b_{i j} \\
\vdots & . & \vdots \\
b_{i j} & \ldots & 0
\end{array}\right)
$$

So that,

$$
L^{r}=\left(\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\right)\left(T^{r} L\right) \subset T T^{r} M \oplus T^{*} T^{r} M
$$

Theorem 3. Let $X \oplus \omega \in \Gamma(L)$, for all $\alpha \in\{0, \ldots, r\}$, we have $X^{(\alpha)} \oplus \omega^{(r-\alpha)} \in$ $\Gamma\left(L^{r}\right)$.

Proof. If $(X, \omega) \in \Gamma(L)$ then, they are the maps $\gamma_{1}, \ldots, \gamma_{m} \in C^{\infty}(U)$ such that:

$$
X \oplus \omega=\sum_{i=1}^{m} \gamma^{i} S_{i}
$$

In this case,

$$
\begin{gathered}
\left\{\begin{array}{l}
\left.X\right|_{U}=\gamma^{i} a_{i}^{j} \frac{\partial}{\partial x^{j}} \\
\left.\omega\right|_{U}=\gamma^{i} b_{i j} d x^{j}
\end{array}\right. \\
X^{(\alpha)}=\left(\gamma^{i}\right)^{(\nu)}\left(a_{i}^{j}\right)^{(\beta-\alpha-\nu)} \frac{\partial}{\partial x_{\beta}^{j}} .
\end{gathered}
$$

We deduce that:

$$
\begin{gathered}
X^{(\alpha)}=\left(\begin{array}{cccc}
a_{i}^{j} & 0 & \ldots & 0 \\
\dot{a}_{i}^{j} & a_{i}^{j} & \ldots & 0 \\
\vdots & \vdots & \vdots & 0 \\
\left(a_{i}^{j}\right)^{(r)} & \left(a_{i}^{j}\right)^{(r-1)} & \ldots & a_{i}^{j}
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
\gamma^{i} \\
\vdots \\
\left(\gamma^{i}\right)^{(r-\alpha)}
\end{array}\right) \\
\omega^{(r-\alpha)}=\left(\gamma^{i} b_{i j}\right)^{(r-\alpha-\beta)} d x_{\beta}^{j}=\left(\gamma^{i}\right)^{(r-\nu)}\left(b_{i j}\right)^{(\nu-\alpha-\beta)} d x_{\beta}^{j} .
\end{gathered}
$$

In the same way, we have:

$$
\omega^{(r-\alpha)}=\left(\begin{array}{cccc}
\left(b_{i j}\right)^{(r)} & \left(b_{i j}\right)^{(r-1)} & \ldots & b_{i j} \\
\left(b_{i j}\right)^{(r-1)} & \left(b_{i j}\right)^{(r-2)} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
b_{i j} & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
\gamma^{i} \\
\vdots \\
\left(\gamma^{i}\right)^{(r-\alpha)}
\end{array}\right) .
$$

Thus that $\left(X^{(\alpha)}, \omega^{(r-\alpha)}\right) \in \Gamma\left(L^{r}\right)$.
For all $X \oplus \omega \in \Gamma\left(T M \oplus T^{*} M\right)=\mathfrak{X}(M) \oplus \Omega^{1}(M)$, we set:

$$
(X \oplus \omega)^{(\alpha)}=X^{(\alpha)} \oplus \omega^{(r-\alpha)}
$$

Corollary 1. Let L be an almost-Dirac structure on M.
(1) For all $X \oplus \omega, Y \oplus \mu \in \mathfrak{X}(M) \oplus \Omega^{1}(M)$ and $\alpha, \beta=0, \ldots, r$, we have:

$$
\left[(X \oplus \omega)^{(\alpha)},(Y \oplus \mu)^{(\beta)}\right]=[X \oplus \omega, Y \oplus \mu]^{(\alpha+\beta)}
$$

(2) For all $f \in C^{\infty}(M)$ and $X \oplus \omega \in \mathfrak{X}(M) \oplus \Omega^{1}(M)$, we have:

$$
(f \cdot(X \oplus \omega))^{(\alpha)}=\sum_{\beta=0}^{r-\alpha} f^{(\beta)} \cdot(X \oplus \omega)^{(\alpha+\beta)} .
$$

(3) For all $X \oplus \omega, Y \oplus \mu, Z \oplus \nu \in \Gamma(L)$, we have:
$\mathbb{T}_{L^{r}}\left((X \oplus \omega)^{(\alpha)},(Y \oplus \mu)^{(\beta)},(Z \oplus \nu)^{(\gamma)}\right)=\left(\mathbb{T}_{L}(X \oplus \omega, Y \oplus \mu, Z \oplus \nu)\right)^{(r-\alpha-\beta-\gamma)}$, for all $\alpha, \beta, \gamma \in\{0,1, \ldots, r\}$.

Proof. The proof comes of some properties of tangent lift of higher order of functions, vector fields and differential forms.

For all $S \in \Gamma(L)$ and $\alpha \in\{0,1, \ldots, r\}$, we have:

$$
\left(\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\right)\left(\bar{S}^{(\alpha)}\right)=S^{(\alpha)} .
$$

Theorem 4. ${\overline{\mathbb{T}_{L}}}^{(c)}$ is a complete lift of \mathbb{T}_{L} from L to $T^{r} L$. We denote by η_{M}^{r} the inverse map of κ_{M}^{r}. We have:

$$
\begin{equation*}
\mathbb{T}_{L^{r}}={\overline{\mathbb{T}_{L}}}^{(c)} \circ\left(\bigoplus_{\bigoplus}^{3}\left(\eta_{M}^{r} \oplus \alpha_{M}^{r}\right)\right) \tag{4}
\end{equation*}
$$

Proof. $\mathbb{T}_{L^{r}} \circ\left(\bigoplus^{3}\left(\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\right)\right)$ is a tensor field of type $(0,3)$ on $T^{r} L$. Let $S_{1}, S_{2}, S_{3} \in$ $\Gamma(L)$ and $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{0,1, \ldots, r\}$, we have:

$$
\begin{aligned}
\mathbb{T}_{L^{r}} \circ \bigoplus_{\bigoplus}^{3}\left(\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\right)\left({\overline{S_{1}}}^{\left(\alpha_{1}\right)},{\overline{S_{2}}}^{\left(\alpha_{2}\right)},{\overline{S_{3}}}^{\left(\alpha_{3}\right)}\right) & =\mathbb{T}_{L^{r}}\left(S_{1}^{\left(\alpha_{1}\right)}, S_{2}^{\left(\alpha_{2}\right)}, S_{3}^{\left(\alpha_{3}\right)}\right) \\
& \left.=\left(\mathbb{T}_{L}\left(S_{1}, S_{2}, S_{3}\right)\right)\right)^{\left(r-\alpha_{1}-\alpha_{2}-\alpha_{3}\right)} \\
& ={\overline{\mathbb{T}_{L}}}^{(c)}\left({\overline{S_{1}}}^{\left(\alpha_{1}\right)},{\overline{S_{2}}}^{\left(\alpha_{2}\right)},{\overline{S_{3}}}^{\left(\alpha_{3}\right)}\right) .
\end{aligned}
$$

We have the result by the Proposition 2
Remark 2. The equation (4) shows that L is integrable if and only if L^{r} is integrable. Thus, we have given an intrinsic construction of tangent lift of higher order of an almost-Dirac structure, and we have shown independent of any local coordinates system that: this lifting is integrable if and only if the initial almost-Dirac structure is integrable.

Let $X \oplus \omega, Y \oplus \mu$ be sections of an almost-Dirac structure L. Define

$$
X \bullet(Y \oplus \mu)=[X, Y] \oplus \mathcal{L}_{X} \mu
$$

Definition 2. L is said invariance under $X \oplus \omega \in \Gamma(L)$ if and only if $X \bullet L \subset L$. When L is integrable this is equivalent to say $d \omega \mid \rho_{M}(L)=0$.

Corollary 2. If L is an integrable Dirac structure invariant under $X \in \rho_{M}(\Gamma(L))$, then L^{r} is invariant under $X^{(\alpha)}$ for all $\alpha=0, \ldots, r$
Proof. Let $X \oplus \omega \in \Gamma(L)$, we have $X^{(\alpha)} \oplus \omega^{(r-\alpha)} \in \Gamma\left(L^{r}\right)$ by the equality

$$
\left.d \omega^{(r-\alpha)}=(d \omega)^{(r-\alpha)} \quad(\text { see } 11]\right)
$$

we deduce that $d \omega^{(r-\alpha)} \mid \rho\left(L^{r}\right)=0$.
2.2. Admissible functions of L^{r}. Let L be an integrable Dirac structure over M. A function f is an admissible relatively to L, if there is vector field X_{f} such that $\left(X_{f}, d f\right) \in \Gamma(L)$. If f and g are two admissible functions, T. Courant defines in [2] their bracket by:

$$
\{f, g\}=X_{f}(g)
$$

Proposition 3. (1) If f is an admissible function relatively to L, then $f^{(\alpha)}$ is an admissible function relatively to L^{r} and we have:

$$
\begin{equation*}
X_{f^{(\alpha)}}=\left(X_{f}\right)^{(r-\alpha)} \tag{5}
\end{equation*}
$$

(2) For all f, g two admissible functions, $\alpha, \beta=0, \ldots, r$, we have:

$$
\begin{equation*}
\left\{f^{(\alpha)}, g^{(\beta)}\right\}=\{f, g\}^{(\alpha+\beta-r)} \tag{6}
\end{equation*}
$$

Proof. (1) If f is an admissible function, then $\left(X_{f}, d f\right) \in \Gamma(L)$. For all α,

$$
\left(\left(X_{f}\right)^{(r-\alpha)},(d f)^{(\alpha)}\right) \in \Gamma\left(L^{r}\right) .
$$

Since $(d f)^{(\alpha)}=d f^{(\alpha)}$, it follows that $\left(\left(X_{f}\right)^{(r-\alpha)}, d f^{(\alpha)}\right) \in \Gamma\left(L^{r}\right)$. Thus, $f^{(\alpha)}$ is an admissible function relatively to L^{r} and $X_{f^{(\alpha)}}=\left(X_{f}\right)^{(r-\alpha)}$.
(2) For $\alpha, \beta=0, \ldots, r$, we have:

$$
\begin{aligned}
\left\{f^{(\alpha)}, g^{(\beta)}\right\} & =X_{f^{(\alpha)}}\left(g^{(\beta)}\right) \\
& =\left(X_{f}\right)^{(r-\alpha)}\left(g^{(\beta)}\right) \\
& =\{f, g\}^{(\alpha+\beta-r)}
\end{aligned}
$$

2.3. The Lie algebroid $\left(L^{r},[\cdot, \cdot],\left.\rho_{T^{r} M}\right|_{L^{r}}\right)$. For all $\alpha \in\{0,1, \ldots, r\}$, consider the map

$$
\chi_{T M \oplus T^{*} M}^{(\alpha)}: T^{r}\left(T M \oplus T^{*} M\right) \rightarrow T^{r}\left(T M \oplus T^{*} M\right),
$$

we have:

$$
\chi_{T M \oplus T^{*} M}^{(\alpha)}=\chi_{T M}^{(\alpha)} \oplus \chi_{T^{*} M}^{(\alpha)} .
$$

In this case, $\chi_{L}^{(\alpha)}=\left.\chi_{T M}^{(\alpha)} \oplus \chi_{T^{*} M}^{(\alpha)}\right|_{T^{r} L}$.

Proposition 4. Let $(E,[\cdot, \cdot], \rho)$ be a Lie algebroid. There is one and only one Lie algebroid structure on $T^{r} E$ such that: For all $S_{1}, S_{2} \in \Gamma(E)$ and $\alpha, \beta \in\{0,1, \ldots, r\}$

$$
\left[{\overline{S_{1}}}^{(\alpha)},{\overline{S_{2}}}^{(\beta)}\right]={\overline{\left[S_{1}, S_{2}\right]}}^{(\alpha+\beta)}
$$

The anchor map $\rho^{(r)}$ is given by:

$$
\rho^{(r)}=\kappa_{M}^{r} \circ T^{r} \rho .
$$

This Lie algebroid structure is called tangent lift of order r of Lie algebroid $(E,[\cdot, \cdot], \rho)$.

Proof. See 9].
Theorem 5. Let L be an integrable Dirac structure on M. The tangent Lie algebroid of order $r T^{r} L$, is isomorphic to the Lie algebroid ($L^{r},[\cdot],\left.\rho_{T^{r} M}\right|_{L^{r}}$) over $T^{r} M$ induced by the integrable Dirac structure L^{r}.

Proof. Let $\left(S_{i}\right)$ be a basis of sections of L over U.

$$
S_{i}(x)=a\left(x, e_{i}\right) \oplus b\left(x, e_{i}\right), \quad \forall i=1, \ldots, m
$$

we have $\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\left({\overline{S_{i}}}^{(\alpha)}\right)=S_{i}^{(\alpha)}$.
The tangent Lie algebroid of order $r T^{r} L$ is given by:

$$
\begin{aligned}
{\left[{\overline{S_{i}}}^{(\alpha)},{\overline{S_{j}}}^{(\beta)}\right] } & ={\overline{\left[S_{i}, S_{j}\right]}}^{(\alpha+\beta)} \\
{\left[\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\left({\overline{S_{i}}}^{(\alpha)}\right), \kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\left({\overline{S_{j}}}^{(\beta)}\right)\right] } & =\left[S_{i}^{(\alpha)}, S_{j}^{(\beta)}\right]=\left[S_{i}, S_{j}\right]^{(\alpha+\beta)} \\
& =\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\left({\overline{\left[S_{i}, S_{j}\right]}}^{(\alpha+\beta)}\right) .
\end{aligned}
$$

It follows that,

$$
\left.\kappa_{M}^{r} \oplus \varepsilon_{M}^{r}\right|_{T^{r} L}: T^{r} L \rightarrow L^{r}
$$

is a Lie algebroids isomorphism.
2.4. Symplectic foliation induced by L^{r}. For the tangent lift of higher order of singular foliation of manifold M to $T^{r} M$ we can see [9]. However, let E be a smooth generalized distribution on M, we denote by \mathfrak{X}_{E} the set of all local vector fields such that: for all $x \in M, X(x) \in E_{x}$. Let us notice that for a completely integrable distribution E, the family \mathfrak{X}_{E} is a Lie subalgebra of the Lie algebra of vector fields on M.
Proposition 5. Let E be a completely integrable generalized distribution on M. Then the distribution E^{r} generated by the family $\left\{X^{(\alpha)}, X \in \mathfrak{X}_{E}, 0 \leq \alpha \leq r\right\}$ of vector fields on $T^{r} M$ is completely integrable.
Proof. See 9 .
Let \mathcal{F} be a generalized foliation defined by E, the tangent lift of order r of \mathcal{F} denoted by $T^{r} \mathcal{F}$ is defined by E^{r}.
Proposition 6. If a submanifold $F \subset M$ is a leaf of generalized foliation \mathcal{F}, then $T^{r} F$ is a leaf of generalized foliation $T^{r} \mathcal{F}$.
Proof. See 9].
By the Propositions 5 and 6, we deduce this result.

Theorem 6. Let L be an integrable Dirac structure, \mathcal{F} the generalized foliation induced by L and F a leaf of \mathcal{F}.
(1) The generalized foliation induced by L^{r} is the tangent lift of order r of generalized foliation \mathcal{F}.
(2) If Ω_{F} is a presymplectic form on F then $\Omega_{F}^{(c)}$ is a presymplectic form on the leaf $T^{r} F$. Where $\Omega_{F}^{(c)}$ is a complete lift of differential form Ω_{F}.
Proof. Let $X, Y \in \rho_{M}(\Gamma(L))$ tangent to F, we have:

$$
\begin{aligned}
\Omega_{T^{r} F}\left(X^{(\alpha)}, Y^{(\beta)}\right) & =\omega^{(r-\alpha)}\left(Y^{(\beta)}\right) \\
& =(\omega(Y))^{(r-\alpha-\beta)} \\
& =\left(\Omega_{F}(X, Y)\right)^{(r-\alpha-\beta)} \\
& =\Omega_{F}^{(c)}\left(X^{(\alpha)}, Y^{(\beta)}\right)
\end{aligned}
$$

Thus $\Omega_{T^{r} F}=\Omega_{F}^{(c)}$.
These results generalize the properties of tangent lifting of higher order of Poisson manifold.

References

[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D., The canonical isomorphism between $T^{k} T^{*}$ and $T^{*} T^{k}$, C. R. Acad. Sci. Paris Sér. II 309 (1989), 1509-1514.
[2] Courant, T., Dirac manifolds, Trans. Amer. Math. Soc. 319 (2) (1990), 631-661.
[3] Courant, T., Tangent Dirac Structures, J. Phys. A: Math. Gen. 23 (22) (1990), 5153-5168.
[4] Courant, T., Tangent Lie Algebroids, J. Phys. A: Math. Gen. 27 (13) (1994), 4527-4536.
[5] Gancarzewicz, J., Mikulski, W., Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1-41.
[6] Grabowski, J., Urbanski, P., Tangent lifts of poisson and related structure, J. Phys. A: Math. Gen. 28 (23) (1995), 6743-6777.
[7] Kolář, I., Functorial prolongations of Lie algebroids, Proceedings of the 9th International Conference on Differential Geometry and its Applications, DGA 2004, Prague, Czech Republic, 2005, pp. 301-309.
[8] Kolář, I., Michor, P., Slovák, J., Natural operations in differential geometry, Springer-Verlag, 1993.
[9] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J., Tangent lift of higher order of multivector fields and applications, to appear.
[10] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J., Tangent Dirac structures of higher order, Arch. Math. (Brno) 47 (2011), 17-22.
[11] Morimoto, A., Lifting of some type of tensors fields and connections to tangent bundles of p^{r}-velocities, Nagoya Math. J. 40 (1970), 13-31.
[12] Ntyam, A., Wouafo Kamga, J., New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles, Ann. Polon. Math. 82 (3) (2003), 233-240.
[13] Ntyam, A., Mba, A., On natural vector bundle morphisms $T^{A} \circ \bigotimes_{s}^{q} \rightarrow \bigotimes_{s}^{q} \circ T^{A}{\text { over } i d_{T^{A}} \text {, }}^{2}$ Ann. Polon. Math. 96 (3) (2009), 295-301.
[14] Wouafo Kamga, J., Global prolongation of geometric objets to some jet spaces, International Centre for Theoretical Physics, Trieste, Italy, November 1997.

Department of Mathematics, The University of Yaoundé 1 , P.O BOX, 812, Yaoundé, Cameroon

E-mail: wambapm@yahoo.fr wouafoka@yahoo.fr
Department of Mathematics, ENS Yaounde, P.O BOX 47, Yaoundé, Cameroon

E-mail: antyam@uy1-uninet.cm

[^0]: 2010 Mathematics Subject Classification: primary 53C15; secondary 53C75, 53D05.
 Key words and phrases: Dirac structure, prolongations of vector fields, prolongations of differential forms, Dirac structure of higher order, natural transformations.

 Received December 9, 2011, revised June 2012. Editor I. Kolář.
 DOI: 10.5817/AM2012-3-233

