$\delta\text{-IDEALS}$ IN PSEUDO-COMPLEMENTED DISTRIBUTIVE LATTICES

M. Sambasiva Rao

ABSTRACT. The concept of δ -ideals is introduced in a pseudo-complemented distributive lattice and some properties of these ideals are studied. Stone lattices are characterized in terms of δ -ideals. A set of equivalent conditions is obtained to characterize a Boolean algebra in terms of δ -ideals. Finally, some properties of δ -ideals are studied with respect to homomorphisms and filter congruences.

INTRODUCTION

The theory of pseudo-complements was introduced and extensively studied in semi-lattices and particularly in distributive lattices by Orrin Frink [4] and G. Birkhoff [2]. Later the problem of characterizing Stone lattices has been studied by several authors like R. Balbes [1], O. Frink [4], G. Grätzer [5] etc.

In this paper, the concept of δ -ideals is introduced in a distributive lattice in terms of pseudo-complementation and filters. Some properties of these δ -ideals are studied and then proved that the set of all δ -ideals can be made into a complete distributive lattice. We derive a set of equivalent conditions for the class of all δ -ideals to become a sublattice to the lattice of all ideals, which leads to a characterization of Stone lattices. A set of equivalent conditions are established for every prime ideal to become a δ -ideal which leads to a characterization of a Boolean algebra. Finally, the set of δ -ideals of a pseudo-complemented distributive lattice is characterized in terms of filter congruences.

1. Preliminaries

In this section, we recall certain definitions and important results taken from [6] for the ready reference to the reader.

Definition 1.1 ([6]). For any element *a* of a distributive lattice *L*, the pseudo-complement a^* of *a* is an element satisfying the following property for all $x \in L$:

$$a \wedge x = 0 \Leftrightarrow a^* \wedge x = x \Leftrightarrow x \le a^*.$$

²⁰¹⁰ Mathematics Subject Classification: primary 06D99; secondary 06D15.

Key words and phrases: pseudo-complemented distributive lattice, dense element, closed element, δ -ideal, Stone lattice, congruence.

Received July 10, 2011. Editor J. Rosický.

DOI: 10.5817/AM2012-2-97

A distributive lattice L in which every element has a pseudo-complement is called a pseudo-complemented distributive lattice. Throughout this paper L stands for a pseudo-complemented distributive lattice $(L, \vee, \wedge, *, 0, 1)$.

Theorem 1.2 ([6]). For any two elements a, b of a pseudo-complemented distributive lattice, we have the following:

- (1) $0^{**} = 0$,
- (2) $a \wedge a^* = 0$,
- (3) $a \leq b$ implies $b^* \leq a^*$,
- (4) $a \leq a^{**}$,
- (5) $a^{***} = a^*$,
- (6) $(a \lor b)^* = a^* \land b^*$,
- (7) $(a \wedge b)^{**} = a^{**} \wedge b^{**}.$

An element x of a pseudo-complemented lattice L is called dense [6] if $x^* = 0$ and the set D(L) of all dense element of L forms a filter of L.

Definition 1.3 ([1]). A pseudo-complemented distributive lattice L is called a Stone lattice if, for all $x \in L$, it satisfies the property: $x^* \vee x^{**} = 1$.

Theorem 1.4 ([6]). Let I be an ideal and F a filter of a distributive lattice L such that $I \cap F = \emptyset$. Then there exists a prime ideal P such that $I \subseteq P$ and $P \cap F = \emptyset$.

A prime ideal P of a distributive lattice L is called a minimal prime ideal [8] if there exists no prime ideal Q such that $Q \subset P$. A prime ideal P is minimal if and only if to each $x \in P$ there exists $y \notin P$ such that $x \wedge y = 0$.

2. δ -ideals

In this section, the concept of δ -ideals is introduced in a pseudo-complemented distributive lattice. Stone lattice and Boolean algebras are characterized in terms of δ -ideals. Finally, δ -ideals are characterized in terms of congruences.

Definition 2.1. Let *L* be a pseudo-complemented distributive lattice. Then for any filter *F* of *L*, define the set $\delta(F)$ as follows:

$$\delta(F) = \{ x \in L \mid x^* \in F \} \,.$$

In the following, some basic properties of $\delta(F)$ can be observed.

Lemma 2.2. Let L be a pseudo-complemented distributive lattice. Then for any filter F of L, $\delta(F)$ is an ideal of L.

Proof. Since $0^* \in F$, we get that $0 \in \delta(F)$. Let $x, y \in \delta(F)$. Then $x^*, y^* \in F$. Hence $(x \lor y)^* = x^* \land y^* \in F$. Again, let $x \in \delta(F)$ and $r \in L$. Then $x^* \in F$. Hence $(x \land r)^* = (x \land r)^{***} = (x^{**} \land r^{**})^* = (x^* \lor r^*)^{**} \in F$ (because $x^* \lor r^* \in F$). Hence we get that $x \land r \in \delta(F)$. Therefore $\delta(F)$ is an ideal in L. \Box

Lemma 2.3. Let L be a pseudo-complemented distributive lattice. For any two filters F, G of L, we have the following:

- (1) $F \cap \delta(F) = \emptyset$,
- (2) $x \in \delta(F) \Rightarrow x^{**} \in \delta(F).$
- (3) F = L if and only if $\delta(F) = L$,
- (4) $F \subseteq G \Rightarrow \delta(F) \subseteq \delta(G)$,
- (5) $\delta(F \cap G) = \delta(F) \cap \delta(G).$

Proof. (1) Suppose $x \in F \cap \delta(F)$. Then $x \in F$ and $x^* \in F$. Since F is a filter, we get $0 = x^* \land x \in F$, which is a contradiction. Therefore $F \cap \delta(F) = \emptyset$. (2) Since $x^{***} = x^*$, it is clear.

(3) Assume that F = L. Then we have $0^{**} = 0 \in F$. Hence $0^* \in \delta(F)$. Therefore $\delta(F) = L$. Converse is an easy reverse of the above.

(4) Suppose $F \subseteq G$. Let $x \in \delta(F)$. Then $x^* \in F \subseteq G$. Therefore $x \in \delta(G)$.

(5) Clearly $\delta(F \cap G) \subseteq \delta(F) \cap \delta(G)$. Conversely, let $x \in \delta(F) \cap \delta(G)$. Then $x^* \in F \cap G$. Hence $x \in \delta(F \cap G)$. Therefore $\delta(F) \cap \delta(G) \subseteq \delta(F \cap G)$. \square

The concept of δ -ideals is now introduced in the following.

Definition 2.4. Let L be a pseudo-complemented distributive lattice. An ideal I of L is called a δ -ideal if $I = \delta(F)$ for some filter F of L.

Example 2.5. Consider the distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given in the following figure:

Consider $I = \{0, a\}$ and $F = \{b, c, 1\}$. Clearly I is an ideal and F a filter of L. Now $\delta(F) = \{x \mid x^* \in F\} = \{0, a\}.$ ad Therefore I is a δ -ideal of L. But $J = \{0, a, b, c\}$ is not a δ -ideal of L. Suppose $J = \delta(F)$ for some filter F Then $0 = c^* \in F$. Hence F = L, which yields that $J = \delta(F) = L$.

The following lemmas produce some more examples for δ -ideals.

Lemma 2.6. For each $x \in L$, $(x^*]$ is a δ -ideal of L.

Proof. It is enough to show that $(x^*] = \delta([x))$. Let $a \in (x^*]$. Then $a \wedge x = 0$ and hence $a^* \wedge x = x \in [x]$. Thus $a^* \in [x]$. Therefore $a \in \delta([x])$. Conversely, suppose that $a \in \delta([x))$. Then $a^* \wedge x = x$ and hence $a \wedge x = a \wedge a^* \wedge x = 0$. Thus $a \wedge x^* = a$. which yields that $a \in (x^*]$. Therefore $(x^*]$ is a δ -ideal of L.

Lemma 2.7. Every prime ideal without dense element is a δ -ideal.

Proof. Let P be a prime ideal with out dense element. Let $x \in P$. Then clearly $x \wedge x^* = 0$ and $x \vee x^*$ is dense. Hence $x \vee x^* \notin P$. Thus we get $x^* \notin P$, which yields that $x^* \in L - P$. Thus $x \in \delta(L - P)$. Therefore $P \subseteq \delta(L - P)$. Conversely, let $x \in \delta(L-P)$. Then $x^* \in L-P$, which implies that $x^* \notin P$. Hence $x \in P$. Thus $P = \delta(L - P)$. Therefore P is a δ -ideal of L.

Corollary 2.8. Every minimal prime ideal is a δ -ideal.

Proof. Let *P* be a minimal prime ideal of *L*. Suppose $x \in P \cap D(L)$. Then there exists $y \notin P$ such that $x \wedge y = 0$. Hence $y \leq x^* = 0 \in P$, which is a contradiction. Thus $P \cap D(L) = \emptyset$. Therefore, by above lemma, *P* is a δ -ideal. \Box

In the following, a simple property of δ -ideals is observed.

Lemma 2.9. A proper δ -ideal contains no dense element.

Proof. Let $\delta(F)$ be a proper δ -ideal of L. Suppose $x \in \delta(F) \cap D(L)$. Then we get $0 = x^* \in F$, which is a contradiction. Therefore $\delta(F) \cap D(L) = \emptyset$.

Let us denote the set of all δ -ideals of L by $\mathcal{I}^{\delta}(L)$. Then by Example 2.5, it can be observed that $\mathcal{I}^{\delta}(L)$ is not a sublattice of $\mathcal{I}(L)$ of all ideals of L. Consider $F = \{b, c, 1\}$ and $G = \{a, c, 1\}$. Clearly F and G are filters of L. Now $\delta(F) = \{0, a\}$ and $\delta(G) = \{0, b\}$. But $\delta(F) \lor \delta(G) = \{0, a, b, c\}$ is not a δ -ideal of L, because $c \in \delta(F) \lor \delta(G)$ is a dense element. However, in the following theorem, we prove that $\mathcal{I}^{\delta}(L)$ forms a complete distributive lattice.

Theorem 2.10. Let L be a pseudo-complemented distributive lattice. Then the set $\mathcal{I}^{\delta}(L)$ forms a complete distributive lattice on its own.

Proof. For any two filters F, G of L, define two binary operations \cap and \sqcup as follows:

$$\delta(F) \cap \delta(G) = \delta(F \cap G)$$
 and $\delta(F) \sqcup \delta(G) = \delta(F \lor G)$.

It is clear that $\delta(F \cap G)$ is the infimum of $\delta(F)$ and $\delta(G)$ in $\mathcal{I}^{\delta}(L)$. Also $\delta(F) \sqcup \delta(G)$ is a δ -ideal of L. Clearly $\delta(F), \delta(G) \subseteq \delta(F \lor G) = \delta(F) \sqcup \delta(G)$. Let $\delta(H)$ be a δ -ideal of L such that $\delta(F) \subseteq \delta(H)$ and $\delta(G) \subseteq \delta(H)$, where H is a filter of L. Now we claim that $\delta(F \lor G) \subseteq \delta(H)$. Let $x \in \delta(F \lor G)$. Then $x^* \in F \lor G$. Hence $x^* = f \land g$ for some $f \in F$ and $g \in G$. Since $f \in F$ and $g \in G$, we can get $f^* \in \delta(F) \subseteq \delta(H)$ and $g^* \in \delta(G) \subseteq \delta(H)$. Now

$$\begin{aligned} f^* \in \delta(H), \ g^* \in \delta(H) &\Rightarrow f^* \lor g^* \in \delta(H) \\ &\Rightarrow (f^* \lor g^*)^{**} \in \delta(H) \\ &\Rightarrow (f^{**} \land g^{**})^* \in \delta(H) \\ &\Rightarrow x^{**} \in \delta(H) \\ &\Rightarrow x \in \delta(H) \end{aligned}$$

Hence $\delta(F) \sqcup \delta(G) = \delta(F \lor G)$ is the supremum of both $\delta(F)$ and $\delta(G)$ in $\mathcal{I}^{\delta}(L)$. Therefore $\langle \mathcal{I}^{\delta}(L), \cap, \sqcup \rangle$ is a lattice. Distributivity of δ -ideals can be easily followed by using the above operations of $\mathcal{I}^{\delta}(L)$.

It is clear that $\mathcal{I}^{\delta}(L)$ is a partially ordered set with respect to set-inclusion. Then by the extension of the property of Lemma 2.3(5), we can obtain that $\mathcal{I}^{\delta}(L)$ is a complete lattice. Therefore $\mathcal{I}^{\delta}(L)$ is a complete distributive lattice. \Box

From Lemma 2.6, we have already observed that each $(x^*]$ (for $x \in L$) is a δ -ideal of L. Now let us denote that $\mathcal{A}^*(L) = \{(x^*] \mid x \in L\}$. Then, in the following theorem, it is proved that $\mathcal{A}^*(L)$ is a Boolean algebra.

Theorem 2.11. For any pseudo-complemented distributive lattice L, $\mathcal{A}^*(L)$ is a sublattice of the lattice $\mathcal{I}^{\delta}(L)$ of all δ -ideals of L and hence is a Boolean algebra. Moreover, the mapping $x \longmapsto (x^*]$ is a dual homomorphism from L onto $\mathcal{A}^*(L)$.

Proof. Let $(x^*], (y^*] \in \mathcal{A}^*(L)$ for some $x, y \in L$. Then clearly $(x^*] \cap (y^*] \in \mathcal{A}^*(L)$. Again, $(x^*] \sqcup (y^*] = \delta([x)) \sqcup \delta([y)) = \delta([x) \lor [y)) = \delta([x \land y)) = ((x \land y)^*] \in \mathcal{A}^*(L)$. Hence $\mathcal{A}^*(L)$ is a sublattice of $\mathcal{I}^{\delta}(L)$ and hence a distributive lattice. Clearly $(0^{**}]$ and $(0^*]$ are the least and greatest elements of $\mathcal{A}^*(L)$. Now for any $x \in L$, $(x^*] \cap (x^{**}] = (0]$ and $(x^*] \sqcup (x^{**}] = \delta([x)) \sqcup \delta([x^*)) = \delta([x) \lor [x^*)) = \delta([x \land x^*)) = \delta([0)) = \delta(L) = L$. Hence $(x^{**}]$ is the complement of $(x^*]$ in $\mathcal{A}^*(L)$. Therefore $\langle \mathcal{A}^*(L), \sqcup, \cap \rangle$ is a bounded distributive lattice in which every element is complemented. The remaining part can be easily observed. \Box

It was already observed that $\mathcal{I}^{\delta}(L)$ is not a sublattice of the ideal lattice $\mathcal{I}(L)$. However, we establish some equivalent conditions for $\mathcal{I}^{\delta}(L)$ to become a sublattice of $\mathcal{I}(L)$, which leads to a characterization of Stone lattices. For this, we need the following lemma.

Lemma 2.12. Every proper δ -ideal is contained in a minimal prime ideal.

Proof. Let *I* be a proper δ -ideal of *L*. Then $I = \delta(F)$ for some filter *F* of *L*. Clearly $\delta(F) \cap D(L) = \emptyset$. Then there exists a prime ideal *P* of *L* such that $\delta(F) \subseteq P$ and $P \cap D(L) = \emptyset$. Let $x \in P$. We have always $x \wedge x^* = 0$. Suppose $x^* \in P$. Then $x \lor x^* \in P \cap D(L)$, which is a contradiction. Thus *P* is a minimal prime ideal of *L*.

Since the minimal prime ideals are precisely the complements of maximal filter of L, the following corollary is a direct consequence.

Corollary 2.13. The minimal prime ideals of a pseudo-complemented distributive lattice L are maximal elements of the complete lattice $\mathcal{I}^{\delta}(L)$.

We now characterize Stone lattices in terms of δ -ideals.

Theorem 2.14. Let L be a pseudo-complemented distributive lattice. Then the following are equivalent:

- (1) L is a Stone lattice,
- (2) For any $x, y \in L$, $(x \wedge y)^* = x^* \vee y^*$,
- (3) For any two filters F, G of $L, \delta(F) \vee \delta(G) = \delta(F \vee G),$
- (4) $\mathcal{I}^{\delta}(L)$ is a sublattice of $\mathcal{I}(L)$.

Proof. (1) \Rightarrow (2): It is obtained in Lemma 3 of [6] pp.113. (2) \Rightarrow (3): Assume the condition (2). Let F, G be two filters of L. We have always $\delta(F) \lor \delta(G) \subseteq \delta(F \lor G)$. Conversely, let $x \in \delta(F \lor G)$. Then

$$\begin{aligned} x^* \in F \lor G \Rightarrow x^* &= f \land g \quad \text{for some} \quad f \in F, g \in G \\ \Rightarrow x^{**} &= (f \land g)^* \\ \Rightarrow x^{**} &= f^* \lor g^* \\ \Rightarrow x^{**} &= f^* \lor g^* \in \delta(F) \lor \delta(G) \quad \text{since} \quad f^{**} \in F, g^{**} \in G \\ \Rightarrow x \in \delta(F) \lor \delta(G) \,. \end{aligned}$$

Hence $\delta(F \lor G) \subseteq \delta(F) \lor \delta(G)$. Therefore $\delta(F) \lor \delta(G) = \delta(F \lor G)$. (3) \Rightarrow (4): It is obvious. (4) \Rightarrow (1): Assume that $\mathcal{I}^{\delta}(L)$ is a sublattice of $\mathcal{I}(L)$. Let $x \in L$. By Lemma 2.6, $(x^*]$ and $(x^{**}]$ are both δ -ideals of L. Suppose $x^* \lor x^{**} \neq 1$. Then by condition (4), $(x^*] \lor (x^{**}]$ is a proper δ -ideal of L. Hence there exists a minimal prime ideal P such that $(x^*] \lor (x^{**}] \subseteq P$. Since P is minimal, we get that $x^{**} \notin P$, which is a

In the following theorem, a set of equivalent conditions are obtained for every prime ideal of L to become a δ -ideal which in turn leads to establish some equivalent conditions for a pseudo-complemented distributive lattice to become a Boolean algebra. Let us recall that an element x is called closed [6] if $x^{**} = x$.

Theorem 2.15. Let L be a pseudo-complemented distributive lattice. Then the following conditions are equivalent:

- (1) L is a Boolean algebra,
- (2) Every element of L is closed,
- (3) Every principal ideal is a δ -ideal,

contradiction. Therefore L is a Stone lattice.

- (4) For any ideal $I, x \in I$ implies $x^{**} \in I$,
- (5) For any proper ideal $I, I \cap D(L) = \emptyset$,
- (6) For any prime ideal $P, P \cap D(L) = \emptyset$,
- (7) Every prime ideal is a minimal prime ideal,
- (8) Every prime ideal is a δ -ideal,
- (9) For any $x, y \in L$, $x^* = y^*$ implies x = y,
- (10) D(L) is a singleton set.

Proof. (1) \Rightarrow (2): Assume that L is a Boolean algebra. Then clearly L has a unique dense element, precisely the greatest element. Let $x \in L$. Then $x^* \wedge x = 0 = x^* \wedge x^{**}$. Also $x^* \vee x, x^* \vee x^{**} \in D(L)$. Hence $x^* \vee x = x^* \vee x^{**}$. By the cancelation property of L, we get $x = x^{**}$. Therefore every element of L is closed.

 $(2) \Rightarrow (3)$: Let *I* be a principal ideal of *L*. Then I = (x] for some $x \in L$. Then by condition (2), $x = x^{**}$. Now, $(x] = (x^{**}] = \delta([x^*))$. Therefore (x] is a δ -ideal.

(3) \Rightarrow (4): Let *I* be a proper ideal of *L*. Let $x \in I$. Then $(x] = \delta(F)$ for some filter *F* of *L*. Hence we get $x^{***} = x^* \in F$. Therefore $x^{**} \in \delta(F) = (x] \subseteq I$.

 $(4) \Rightarrow (5)$: Let *I* be a proper ideal of *L*. Suppose $x \in I \cap D(L)$. Then $x^{**} \in I$ and $x^* = 0$. Therefore $1 = 0^* = x^{**} \in I$, which is a contradiction.

 $(5) \Rightarrow (6)$: It is clear.

(6) \Rightarrow (7): Let *P* be a prime ideal of *L* such that $P \cap D(L) = \emptyset$. Let $x \in P$. Then clearly $x \wedge x^* = 0$ and $x \vee x^* \in D(L)$. Hence $x \vee x^* \notin P$. Thus $x^* \notin P$. Therefore *P* is a minimal prime ideal of *L*.

 $(7) \Rightarrow (8)$: Let P be a minimal prime ideal of L. Then clearly L - P is a filter of L. Let $x \in P$. Since P is minimal, there exists $y \notin P$ such that $x \wedge y = 0$. Hence $x^* \wedge y = y$, which implies that $x^* \notin P$. Thus $x^* \in L - P$, which yields $x \in \delta(L - P)$. Conversely, let $x \in \delta(L - P)$. Then we get $x^* \notin P$. Hence we have $x \in P$. Thus

 $P = \delta(L - P)$ and therefore P is a δ -ideal of L.

(8) \Rightarrow (9): Assume that every prime ideal of L is a δ -ideal. Let $x, y \in L$ be such that $x^* = y^*$. Suppose $x \neq y$. Then there exists a prime ideal P of L such that $x \in P$ and $y \notin P$. By hypothesis, P is a δ -ideal of L. Hence $P = \delta(F)$ for some filter F of L. Since $x \in P = \delta(F)$, we get $y^* = x^* \in F$. Hence $y \in \delta(F) = P$, which is a contradiction. Therefore x = y.

 $(9) \Rightarrow (10)$: Suppose a, b be two elements of D(L). Then $a^* = 0 = b^*$. Hence a = b. Therefore D(L) is a singleton set.

 $(10) \Rightarrow (1)$: Assume that $D(L) = \{d\}$ is a singleton set. Let $x \in L$. We have always $x \lor x^* \in D(L)$. Therefore $x \land x^* = 0$ and $x \lor x^* = d$. This true for all $x \in L$. Also $0 \le x \le x \lor x^* = d$. Therefore L is a bounded distributive lattice in which every element is complemented.

We now prove that the homomorphic image of a δ -ideal is again a δ -ideal. By a homomorphism [6] on a bounded lattice, we mean a homomorphism which preserves 0 and 1. We now start our observation with the following fact.

Unlike in rings, if an onto homomorphism of a distributive lattice L into another lattice L' such that ker $f = \{x \in L \mid f(x) = 0\} = \{0\}$, then f need not be an isomorphism. For this, we consider two chains $L = \{0, a, 1\}$ and $L' = \{0', 1'\}$. Now, define a mapping $f: L \longrightarrow L'$ by f(0) = 0' and f(a) = f(1) = 1'. Then clearly f is a homomorphism from L into L' and also f is onto. Also Ker $f = \{0\}$. But f is not one-one. Hence f is not an isomorphism.

Lemma 2.16. Let L and L' be two pseudo-complemented distributive lattices with pseudo-complementation * and $f: L \longrightarrow L'$ an onto homomorphism. If Ker $f = \{0\}$, then $f(x^*) = \{f(x)\}^*$ for all $x \in L$.

Proof. We have always $f(x) \wedge f(x^*) = f(x \wedge x^*) = f(0) = 0$. Suppose $f(x) \wedge f(t) = 0$ for some $t \in L$. Then $f(x \wedge t) = 0$ and hence $x \wedge t \in \ker f = \{0\}$. Thus $x \wedge t = 0$. Hence $x^* \wedge t = t$, which yields $f(x^*) \wedge f(t) = f(x^* \wedge t) = f(t)$. Therefore $f(x^*)$ is the pseudo-complement of f(x) in L'.

In the following, we prove that the image of a δ -ideal of L under the above homomorphism is again a δ -ideal.

Theorem 2.17. Let L, L' be two pseudo-complemented distributive lattices with pseudo-complementation * and $f: L \longrightarrow L'$ an onto homomorphism such that Ker $f = \{0\}$. If I is a δ -ideal of L, then f(I) is a δ -ideal of L'.

Proof. Let *I* be a δ -ideal of *L*. Then $I = \delta(G)$ for some filter *G* of *L*. Since the homomorphism *f* preserves 1, we can get that f(G) is a filter in *L'*. Now, it is enough to show that $f\{\delta(G)\} = \delta\{f(G)\}$. Let $a \in f\{\delta(G)\}$. Then a = f(x) for some $x \in \delta(G)$. Hence $x^* \in G$. Now $f(x) \wedge f(x^*) = f(x \wedge x^*) = f(0) = 0$. Hence $\{f(x)\}^* \wedge f(x^*) = f(x^*) \in f(G)$. Thus $\{f(x)\}^* \in f(G)$. Therefore $a = f(x) \in \delta\{f(G)\}$. Therefore $f\{\delta(G)\} \subseteq \delta\{f(G)\}$. Conversely, let $y \in \delta\{f(G)\}$. Since *f* is on-to, there exists $x \in L$ such that y = f(x). Then $\{f(x)\}^* \in f(G)$. Hence

 ${f(x)}^* = f(a)$ for some $a \in G$. Now

$$f(x) \wedge \{f(x)\}^* = 0 \Rightarrow f(x) \wedge f(a) = 0$$

$$\Rightarrow f(x \wedge a) = 0$$

$$\Rightarrow x \wedge a \in \operatorname{Ker} f = \{0\}$$

$$\Rightarrow x^* \wedge a = a \in G$$

$$\Rightarrow x^* \in G$$

$$\Rightarrow x \in \delta(G)$$

$$\Rightarrow y = f(x) \in f\{\delta(G)\}.$$

Thus $\delta\{f(G)\} \subseteq f\{\delta(G)\}$. Therefore $\delta\{f(G)\} = f\{\delta(G)\}$.

We now characterize δ -ideals in terms of congruences. For this, we consider a well known filter congruence introduced by T. P. Speed [7].

Theorem 2.18 ([7]). For any filter F of L, define a relation $\theta(F)$ as follows:

$$(a,b) \in \theta(F) \iff a \wedge f = b \wedge f \text{ for some } f \in F.$$

Then $\theta(F)$ is a congruence relation on L.

Lemma 2.19. Let L be a pseudo-complemented distributive lattice. Then for any ideal I of L, $F_I = \{x \in L \mid x^* \land a^* = 0 \text{ for some } a \in I\}$ is a filter of L.

Proof. Clearly $0^* \in F_I$. Let $x, y \in F_I$. Then $x^* \wedge a^* = 0$ and $y^* \wedge b^* = 0$ for some $a, b \in I$. Hence $x^{**} \wedge a^* = a^*$ and $y^{**} \wedge b^* = b^*$. Now $(x \wedge y)^{**} \wedge (a \vee b)^* = x^{**} \wedge y^{**} \wedge a^* \wedge b^* = a^* \wedge b^*$. Thus $(x \wedge y)^* \wedge (a \vee b)^* = 0$. Therefore $x \wedge y \in F_I$. Again, let $x \in F_I$ and $s \in L$. Then $x^* \wedge a^* = 0$ for some $a \in I$. Now $(x \vee s)^* \wedge a^* \leq x^* \wedge a^* = 0$. Thus $x \vee s \in F_I$. Therefore F_I is a filter of L.

Theorem 2.20. For any ideal I of a pseudo-complemented distributive lattice L, the following conditions are equivalent:

- (1) I is a δ -ideal,
- (2) $I = \operatorname{Ker} \theta(F_I),$
- (3) $I = \operatorname{Ker} \theta(F)$ for some filter F of L.

Proof. (1) \Rightarrow (2): Assume that I is a δ -ideal of L. Then $I = \delta(F)$ for some filter F of L. Let $x \in I$. Since $x^{**} \wedge x^* = 0$, we can get $x^* \in F_I$. Since $x \wedge x^* = 0$ and $x^* \in F_I$, we thus get $x \in \operatorname{Ker} \theta(F_I)$. Therefore $I \subseteq \operatorname{Ker} \theta(F_I)$. Conversely, let $x \in \operatorname{Ker} \theta(F_I)$. Then $(x, 0) \in \theta(F_I)$. Thus $x \wedge f = 0$ for some $f \in F_I$. Since $f \in F_I$, we get that $f^* \wedge a^* = 0$ for some $a \in I$. Hence $x \leq f^* \leq a^{**} \in \delta(F) = I$. Therefore $I = \operatorname{Ker} \theta(F_I)$.

 $(2) \Rightarrow (3)$: It is clear.

 $(3) \Rightarrow (1)$: Assume that $I = \operatorname{Ker} \theta(F)$ for some filter F of L. Let $x \in I = \operatorname{Ker} \theta(F)$. Then $x \wedge f = 0$ for some $f \in F$. Hence $x^* \wedge f = f \in F$. Thus $x^* \in F$, which yields that $x \in \delta(F)$. Therefore $I \subseteq \delta(F)$. Conversely, let $x \in \delta(F)$. Then $x^* \in F$. Since $x \wedge x^* = 0$ and $x^* \in F$, we get $(x, 0) \in \theta(F)$. Thus $x \in \operatorname{Ker} \theta(F) = I$. Therefore I is a δ -ideal of L.

Acknowledgement. The author is grateful to the referee for his valuable comments and suggestions for the improvement of the paper.

References

- [1] Balbes, R., Horn, A., Stone lattices, Duke Math. J. 37 (1970), 537–545.
- [2] Birkhoff, G., Lattice Theory, Colloquium Publications, vol. 25, Amer. Math. Soc., New York, 1948.
- [3] Cornish, W. H., Congruences on distributive pseudocomplemented lattices, Bull. Austral. Math. Soc. 8 (1973), 161–179.
- [4] Frink, O., Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514.
- [5] Grätzer, G., A generalization on Stone's representation theorem for Boolean algebras, Duke Math. J. 30 (1963), 469–474.
- [6] Grätzer, G., General lattice theory, Academic Press, New York, San Francisco, 1978.
- [7] Speed, T. P., Two congruences on distributive lattices, Bull. Soc. Roy. Sci. Liège 38 (3–4) (1969), 86–95.
- [8] Speed, T. P., Spaces of ideals of distributive lattices II. Minimal prime ideals, J. Austral. Math. Soc. 18 (1974), 54–72.

DEPARTMENT OF MATHEMATICS, MVGR COLLEGE OF ENGINEERING, CHINTALAVALASA, VIZIANAGARAM, ANDHRA PRADESH, INDIA-535005 *E-mail*: mssraomaths35@rediffmail.com