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APPROXIMATION OF SOLUTIONS OF A
DIFFERENCE-DIFFERENTIAL EQUATION

B. G. Pachpatte

Abstract. In the present paper we study the approximate solutions of a
certain difference-differential equation under the given initial conditions. The
well known Gronwall-Bellman integral inequality is used to establish the
results. Applications to a Volterra type difference-integral equation are also
given.

1. Introduction

Let Rn denote the real n-dimensional Euclidean space with the correspon-
ding norm | · |. Let R+ = [0,∞) be a subset of real numbers. Consider the
difference-differential equation

(1.1) x′(t) = f
(
t, x(t), x(t− 1)

)
,

for t ∈ R+ under the initial conditions

(1.2) x(t− 1) = φ(t) (0 ≤ t < 1) , x(0) = x0 ,

where f ∈ C(R+ × Rn × Rn, Rn) and φ(t) is a continuous function for which
lim
t→1−0

φ(t) exists. Recently, in [6, 7] (see also [1]–[4], [9]–[10]) the problems of
existence, uniqueness and continuous dependence of solutions of equation (1.1) are
dealt under the conditions (1.2). In dealing with the equation (1.1) with (1.2), one
of the basic question to be answered is: how can we find the solutions or closely
approximate them? The study of this question is interesting and need a fresh outlook
for handling the equation of the form (1.1), see [6, 7]. In the present paper, we
continue our investigation in [6, 7] and offer the conditions for the error evoluation
of approximate solutions of equation (1.1) with (1.2) by establishing some new
bounds on solutions of approximate problems. The basic integral inequality with
explicit estimate due to Gronwall-Bellman (see [5, p. 12]) is used to establish the
results. The applications to study a Volterra type difference-integral equation are
also given.
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2. Main Results

We need the following integral inequality, known in the literature as the
Gronwall-Bellman inequality (see [5, p. 12]).

Lemma. Let u(t), n(t), e(t) ∈ C(R+, R+) and n(t) be nondecreasing on R+. If

(2.1) u(t) ≤ n(t) +
∫ t

0
e(s)u(s) ds ,

for t ∈ R+, then

(2.2) u(t) ≤ n(t) exp
(∫ t

0
e(s) ds

)
,

for t ∈ R+.

Let xi(t) (i = 1, 2) be functions which are continuous on R+, differentiable in
0 < t <∞ and satisfy the inequalities

(2.3)
∣∣x′i(t)− f(t, xi(t), xi(t− 1)

)∣∣ ≤ εi ,
for given constants εi ≥ 0 (i = 1, 2), where it is supposed that the initial conditions

(2.4) xi(t− 1) = φi(t) (0 ≤ t < 1) , xi(0) = xi ,

for i = 1, 2 are fulfilled and φi(t) are continuous functions for which lim
t→1−0

φi(t)
exist. Then we call xi(t) (i = 1, 2) the εi-approximate solutions with respect to the
equation (1.1) with the initial conditions (2.4).

The following theorem deals with the estimate on the difference between the
two approximate solutions of equation (1.1) with (2.4).

Theorem 1. Suppose that the function f in equation (1.1) satisfies the condition

(2.5) |f(t, x, y)− f(t, x̄, ȳ)| ≤ h(t)[|x− x̄|+ |y − ȳ|] ,

where h ∈ C(R+, R+). Let xi(t) (i = 1, 2) be respectively εi-approximate solutions
of equation (1.1) on R+ with (2.4) such that

(2.6) |x1 − x2| ≤ δ ,

where δ ≥ 0 is a constant. Then

(2.7) |x1(t)− x2(t)| ≤ c(t) exp
(∫ t

0
h(s) ds

)
,

for 0 ≤ t < 1 and

(2.8) |x1(t)− x2(t)| ≤ c(t) exp
(∫ t

0
[h(s) + h(s+ 1)] ds

)
,

for 1 ≤ t <∞, where

(2.9) c(t) =
(
(ε1 + ε2)t+ δ

)
+
∫ 1

0
h(s)|φ1(s)− φ2(s)| ds .
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Proof. Since xi(t) (i = 1, 2) for t ∈ R+ are respectively εi-approximate solutions
of equation (1.1) with (2.4), we have (2.3). By taking t = s in (2.3) and integrating
both sides over s from 0 to t, we have

εit ≥
∫ t

0

∣∣x′i(s)− f(s, xi(s), xi(s− 1)
)∣∣ ds

≥
∣∣∣ ∫ t

0

{
x′i(s)− f

(
s, xi(s), xi(s− 1)

)}
ds
∣∣∣

=
∣∣∣{xi(t)− xi(0)−

∫ t
0
f
(
s, xi(s), xi(s− 1)

)
ds
}∣∣∣ ,(2.10)

for i = 1, 2. From (2.10) and using the elementary inequalities |v − z| ≤ |v|+ |z|,
|v| − |z| ≤ |v − z|, we observe that

(ε1 + ε2)t ≥
∣∣∣{x1(t)− x1(0)−

∫ t
0
f
(
s, x1(s), x1(s− 1)

)
ds
}∣∣∣

+
∣∣∣{x2(t)− x2(0)−

∫ t
0
f
(
s, x2(s), x2(s− 1)

)
ds
}∣∣∣

≥
∣∣∣{x1(t)− x1(0)−

∫ t
0
f
(
s, x1(s), x1(s− 1)

)
ds
}

−
{
x2(t)− x2(0)−

∫ t
0
f
(
s, x2(s), x2(s− 1)

)
ds
}∣∣∣

≥ |x1(t)− x2(t)| − |x1(0)− x2(0)|

−
∣∣∣ ∫ t

0
f
(
s, x1(s), x1(s− 1)

)
ds−

∫ t
0
f
(
s, x2(s), x2(s− 1)

)
ds
∣∣∣ .(2.11)

Let u(t) = |x1(t)− x2(t)|, t ∈ R+. From (2.11), we observe that
(2.12)

u(t) ≤ (ε1 + ε2)t+ u(0) +
∫ t

0

∣∣f(s, x1(s), x1(s− 1)
)
− f

(
s, x2(s), x2(s− 1)

)∣∣ ds .
We consider the following two cases (see [6, 7]).

Case I: 0 ≤ t < 1. From (2.12) and hypotheses, we observe that

u(t) ≤
(
(ε1 + ε2)t+ δ

)
+
∫ t

0

∣∣f(s, x1(s), φ1(s)
)
− f

(
s, x2(s), φ2(s)

)∣∣ ds
≤
(
(ε1 + ε2)t+ δ

)
+
∫ t

0
h(s)

[∣∣x1(s)− x2(s)
∣∣+
∣∣φ1(s)− φ2(s)

∣∣] ds
≤ c(t) +

∫ t
0
h(s)u(s) ds .(2.13)
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Clearly c(t) is nondecreasing in t ∈ R+. Now an application of Lemma to (2.13)
yields (2.7).

Case II: 1 ≤ t <∞. From (2.12) and hypotheses, we observe that

u(t) ≤
(
(ε1 + ε2)t+ δ

)
+
∫ 1

0

∣∣f(s, x1(s), φ1(s)
)
− f

(
s, x2(s), φ2(s)

)∣∣ ds
+
∫ t

1

∣∣f(s, x1(s), x1(s− 1)
)
− f

(
s, x2(s), x2(s− 1)

)∣∣ ds
≤
(
(ε1 + ε2)t+ δ

)
+
∫ 1

0
h(s)

[∣∣x1(s)− x2(s)
∣∣+
∣∣φ1(s)− φ2(s)

∣∣] ds
+
∫ t

1
h(s)

[∣∣x1(s)− x2(s)
∣∣+
∣∣x1(s− 1)− x2(s− 1)

∣∣] ds
= c(t) +

∫ t
0
h(s)u(s) ds+ I1 ,(2.14)

where

(2.15) I1 =
∫ t

1
h(s)

∣∣x1(s− 1)− x2(s− 1)
∣∣ ds .

By making the change of variable, from (2.15), we obtain

(2.16) I1 ≤
∫ t

0
h(s+ 1)u(s) ds .

Using (2.16) in (2.14), we get

(2.17) u(t) ≤ c(t) +
∫ t

0

[
h(s) + h(s+ 1)

]
u(s) ds .

Now an application of Lemma to (2.17) yields (2.8). �

Remark 1. In case if x1(t) is a solution of equation (1.1) with x1(t− 1) = φ1(t)
(0 ≤ t < 1), x1(0) = x1, then we have ε1 = 0 and from (2.7) and (2.8) we see that
x2(t)→ x1(t) as ε2 → 0, δ → 0 and φ2(t)→ φ1(t) for 0 ≤ t < 1. Furthermore, if
we put ε1 = ε2 = 0, δ = 0, φ2(t) = φ1(t) (0 ≤ t < 1) in (2.7) and (2.8), then the
uniqueness of solutions of equation (1.1) with (1.2) is established.

As noted above, the estimate obtained in Theorem 1 by the approximation
method is useful in studying the uniqueness of solutions of (1.1) with (1.2). In
[9], it is pointed that if f in (1.1) is continuous, it does not always guarantee the
uniqueness of solutions of (1.1)–(1.2). To illustrate this fact, we shall give the
following example in [9].
Example 1. Consider the difference-differential equation
(D) x′(t) = 2x(t− 1)

√
x(t) ,

for t ∈ R+ under the initial conditions
x(t− 1) = 1 (0 ≤ t < 1) , φ(1− 0) = 1 , x(0) = 0 .
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It is apparent that the function y
√
x is continuous for x ≥ 0, y ≥ 0. Then, we

define the following functions:

x1(t) =
{

1 for − 1 ≤ t < 1 ,

t2 for 0 ≤ t < 1 ,
x1(−0) = 1 ,

and

x2(t) =
{

1 for − 1 ≤ t < 1 ,

0 for 0 ≤ t <∞ ,
x2(−0) = 1 .

We can easily continue the function x1(t) so that it is continuous and satisfies (D)
on 0 ≤ t <∞. Hence, we obtain two solutions with the same initial conditions.

The continuity of derivatives of solutions can not always be guaranteed at t = 1.
It will easily be expected that discontinuity of derivatives at t = 1 is caused by
the discontinuity of the initial conditions, that is φ(−0) 6= x(0). The next example
shows that the solutions and their derivatives are continuous for 0 ≤ t <∞ (see
[9]).

Example 2. Consider the difference-differential equation
x′(t) = 2

[
x(t− 1) + 1

]√
x(t) ,

for t ∈ R+, under the initial conditions
x(t− 1) = 0 (−1 ≤ t < 0) , x(−0) = 0 , x(0) = 0 .

Next, we consider the equation (1.1) with (1.2) together with the following
difference- differential equation
(2.18) y′(t) = f̄

(
t, y(t), y(t− 1)

)
,

for t ∈ R+ under the initial conditions
(2.19) y(t− 1) = ψ(t) (0 ≤ t < 1) , y(0) = y0 ,

where f̄ ∈ C(R+ ×Rn ×Rn, Rn) and ψ(t) is a continuous function for which
lim
t→1−0

ψ(t) exists.
The next theorem deals with the closeness of the solutions of equations (1.1)–(1.2)

and (2.18)–(2.19).

Theorem 2. Suppose that the function f in equation (1.1) satisfies the condition
(2.5) and there exist constants ε̄ ≥ 0, δ̄ ≥ 0 such that∣∣f(t, x, y)− f̄(t, x, y)

∣∣ ≤ ε̄ ,(2.20)

|x0 − y0| ≤ δ̄ ,(2.21)

where f , x0 and f̄ , y0 are as in equations (1.1)–(1.2) and (2.18)–(2.19). Let x(t)
and y(t) be respectively, solutions of equations (1.1)–(1.2) and (2.18)–(2.19) on
R+. Then

(2.22)
∣∣x(t)− y(t)

∣∣ ≤ d(t) exp
(∫ t

0
h(s) ds

)
,
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for 0 ≤ t < 1 and

(2.23)
∣∣x(t)− y(t)

∣∣ ≤ d(t) exp
(∫ t

0

[
h(s) + h(s+ 1)

]
ds
)
,

for 1 ≤ t <∞, where

(2.24) d(t) = ε̄t+ δ̄ +
∫ 1

0
h(s)

∣∣φ(s)− ψ(s)
∣∣ ds .

Proof. Let v(t) = |x(t)− y(t)|, t ∈ R+. Using the facts that x(t) and y(t) are the
solutions of equations (1.1)–(1.2) and (2.18)–(2.19), we observe the following two
cases.

Case I: 0 ≤ t < 1. From the hypotheses, we have

v(t) ≤ |x0 − y0|+
∫ t

0

∣∣f(s, x(s), φ(s)
)
− f

(
s, y(s), ψ(s)

)∣∣ ds
+
∫ t

0

∣∣f(s, y(s), ψ(s)
)
− f̄

(
s, y(s), ψ(s)

)∣∣ ds
≤ δ̄ + ε̄t+

∫ t
0
h(s)

[∣∣x(s)− y(s)
∣∣+
∣∣φ(s)− ψ(s)

∣∣] ds
≤ d(t) +

∫ t
0
h(s)v(s) ds .(2.25)

Clearly d(t) is nondecreasing in t ∈ R+. Now an application of Lemma to (2.25)
yields (2.22).

Case II: 1 ≤ t <∞. From the hypotheses, we have

v(t) ≤ |x0 − y0|+
∫ 1

0

∣∣f(s, x(s), φ(s)
)
− f

(
s, y(s), ψ(s)

)∣∣ ds
+
∫ 1

0

∣∣f(s, y(s), ψ(s)
)
− f̄

(
s, y(s), ψ(s)

)∣∣ ds
+
∫ t

1

∣∣f(s, x(s), x(s− 1)
)
− f

(
s, y(s), y(s− 1)

)∣∣ ds
+
∫ t

1

∣∣f(s, y(s), y(s− 1)
)
− f̄

(
s, y(s), y(s− 1)

)∣∣ ds
≤ δ̄ + ε̄t+

∫ 1

0
h(s)

∣∣φ(s)− ψ(s)
∣∣ ds+

∫ t
0
h(s)

∣∣x(s)− y(s)
∣∣ ds+ I2 ,(2.26)

where

(2.27) I2 =
∫ t

1
h(s)

∣∣x(s− 1)− y(s− 1)
∣∣ ds .
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From (2.26) and (2.27), it is easy to observe that (see [6, 7])

(2.28) v(t) ≤ d(t) +
∫ t

0

[
h(s) + h(s+ 1)

]
v(s) ds .

Now an application of Lemma to (2.28) yields (2.23). �

A slight variant of Theorem 2 is embodied in the following theorem.

Theorem 3. Suppose that the functions f and f̄ in equations (1.1) and (2.18)
satisfies the condition
(2.29)

∣∣f(t, x, y)− f̄(t, x̄, ȳ)
∣∣ ≤ p(t)[|x− x̄|+ |y − ȳ|] ,

where p ∈ C(R+, R+) and the condition (2.21) holds. Let x(t) and y(t) be respecti-
vely, solutions of equations (1.1)–(1.2) and (2.18)–(2.19) on R+. Then

(2.30)
∣∣x(t)− y(t)

∣∣ ≤ d0 exp
(∫ t

0
p(s) ds

)
,

for 0 ≤ t < 1 and

(2.31)
∣∣x(t)− y(t)

∣∣ ≤ d0 exp
(∫ t

0

[
p(s) + p(s+ 1)

]
ds
)
,

for 1 ≤ t <∞, where

(2.32) d0 = δ̄ +
∫ 1

0
p(s)

∣∣φ(s)− ψ(s)
∣∣ ds .

Proof. Let w(t) = |x(t)− y(t)|, t ∈ R+. Using the facts that x(t) and y(t) are
respectively, solutions of equations (1.1)–(1.2) and (2.18)–(2.19), we have

(2.33) w(t) ≤ |x0 − y0|+
∫ t

0

∣∣f(s, x(s), x(s− 1)
)
− f̄

(
s, y(s), y(s− 1)

)∣∣ ds .
The rest of the proof can be complited by closely looking at the proofs of Theorems 1
and 2 given above with suitable modifications. We omit the details. �

Remark 2. We note that the result given in Theorem 2 relates the solutions
of equations (1.1)–(1.2) and (2.18)–(2.19) in the sense that if f is close to f̄ ,
x0 is close to y0 and φ(t) is close to ψ(t) for 0 ≤ t < 1, then the solutions of
equations (1.1)–(1.2) and (2.18)–(2.19) are also close together. The result obtained
in Theorem 3 provide conditions that yields the estimate on the difference between
the solutions of equations (1.1)-(1.2) and (2.18)–(2.19).

3. Applications

In this section we use the idea of approximation of solutions to study the Volterra
type difference-integral equation of the form

(3.1) y(t) = g(t) +
∫ t

0
F
(
t, s, y(s), y(s− 1)

)
ds ,

for t ∈ R+ with the given condition
(3.2) y(t− 1) = φ(t) (0 ≤ t < 1) ,
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where g ∈ C(R+, R
n), for s ≤ t, F ∈ C(R2

+ ×Rn ×Rn, Rn) and φ(t) is as in
(1.2). The special version of equation (3.1) with (3.2) occur in a natural way while
studying the perturbed difference-differential equations (see [1, 7, 8]). Here, we
note that the problem of existence and uniqueness for the solutions of equation
(3.1) with (3.2) can be dealt with, by modifying the ideas employed in [6, 7]. Below,
we formulate in brief the results similar to those of given in Theorems 1–3 related
to the equation (3.1) with (3.2).

We call a function y ∈ C(R+, R
n) an ε-approximate solution of equation (3.1)

with (3.2), if there exists a constant ε ≥ 0 such that

(3.3)
∣∣∣y(t)− g(t)−

∫ t
0
F
(
t, s, y(s), y(s− 1)

)
ds
∣∣∣ ≤ ε ,

for t ∈ R+.
The following result deals with the estimate on the difference between the two

approximate solutions of equation (3.1) with given initial conditions.

Theorem 4. Suppose that the function F in equation (3.1) satisfies the condition

(3.4)
∣∣F (t, s, u, v)− F (t, s, ū, v̄)

∣∣ ≤ Lq(s)[|u− ū|+ |v − v̄|] ,
where L ≥ 0 is a constant and q ∈ C(R+, R+). For i = 1, 2 let yi(t) be respectively,
εi-approximate solutions of equation (3.1) with

(3.5) yi(t− 1) = φi(t) (0 ≤ t < 1) ,

on R+, where φi(t) be as in (2.4). Then

(3.6)
∣∣y1(t)− y2(t)

∣∣ ≤ α exp
(∫ t

0
Lq(s) ds

)
,

for 0 ≤ t < 1 and

(3.7)
∣∣y1(t)− y2(t)

∣∣ ≤ α exp
(∫ t

0
L
[
q(s) + q(s+ 1)

]
ds
)
,

for 1 ≤ t <∞, where

(3.8) α = ε1 + ε2 +
∫ 1

0
Lq(s)

∣∣φ1(s)− φ2(s)
∣∣ ds .

Proof. Since yi(t) (i = 1, 2) are respectively εi-approximate solutions of equation
(3.1) with (3.5), we have

(3.9)
∣∣∣yi(t)− g(t)−

∫ t
0
F
(
t, s, yi(s), yi(s− 1)

)
ds
∣∣∣ ≤ εi .
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From (3.9) and using the elementary inequalities |v − z| ≤ |v|+|z|, |v|−|z| ≤ |v − z|,
we observe that

ε1 + ε2 ≥
∣∣∣y1(t)− g(t)−

∫ t
0
F
(
t, s, y1(s), y1(s− 1)

)
ds
∣∣∣

+
∣∣∣y2(t)− g(t)−

∫ t
0
F
(
t, s, y2(s), y2(s− 1)

)
ds
∣∣∣

≥
∣∣∣{y1(t)− g(t)−

∫ t
0
F
(
t, s, y1(s), y1(s− 1)

)
ds
}

−
{
y2(t)− g(t)−

∫ t
0
F
(
t, s, y2(s), y2(s− 1)

)
ds
}∣∣∣

≥
∣∣y1(t)− y2(t)

∣∣− ∣∣∣ ∫ t
0
F
(
t, s, y1(s), y1(s− 1)

)
ds

−
∫ t

0
F
(
t, s, y2(s), y2(s− 1)

)
ds
∣∣∣ .(3.10)

The rest of the proof can be completed by following the proof of Theorem 1 with
suitable modifications. We omit the details. �

Consider the equation (3.1) with (3.2) together with the corresponding Volterra
type difference-integral equation

(3.11) z(t) = ḡ(t) +
∫ t

0
F̄
(
t, s, z(s), z(s− 1)

)
ds ,

for t ∈ R+, with the given condition

(3.12) z(t− 1) = ψ(t) (0 ≤ t < 1) ,

where ḡ ∈ C(R+, R
n), for s ≤ t, F̄ ∈ C(R2

+ ×Rn ×Rn, Rn) and ψ(t) is as in
(2.19).

The following theorems that relates the solutions of equations (3.1)–(3.2) and
(3.11)–(3.12) holds.

Theorem 5. Suppose that the function F in equation (3.1) satisfies the condition
(3.4) and there exist constants ε ≥ 0, δ ≥ 0 such that∣∣F (t, s, u, v)− F̄ (t, s, u, v)

∣∣ ≤ ε ,(3.13) ∣∣g(t)− ḡ(t)
∣∣ ≤ δ ,(3.14)

where g, F and ḡ, F̄ are as in equations (3.1) and (3.11). Let x(t) and y(t) be
respectively, solutions of equations (3.1)–(3.2) and (3.11)–(3.12) on R+. Then

(3.15)
∣∣x(t)− y(t)

∣∣ ≤ m(t) exp
(∫ t

0
Lq(s) ds

)
,
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for 0 ≤ t < 1 and

(3.16)
∣∣x(t)− y(t)

∣∣ ≤ m(t) exp
(∫ t

0
L
[
q(s) + q(s+ 1)

]
ds
)
,

for 1 ≤ t <∞, where

(3.17) m(t) = εt+ δ +
∫ 1

0
Lq(s)

∣∣φ(s)− ψ(s)
∣∣ ds .

Theorem 6. Suppose that F and F̄ in equations (3.1) and (3.11) satisfies the
condition
(3.18)

∣∣F (t, s, u, v)− F̄ (t, s, ū, v̄)
∣∣ ≤Mr(s)

[
|u− ū|+ |v − v̄|

]
,

where M ≥ 0 is a constant and r ∈ C(R+, R+) and the condition (3.14) holds. Let
x(t) and y(t) be respectively, solutions of equations (3.1)–(3.2) and (3.11)–(3.12)
on R+. Then

(3.19)
∣∣x(t)− y(t)

∣∣ ≤ β exp
(∫ t

0
Mr(s) ds

)
,

for 0 ≤ t < 1 and

(3.20)
∣∣x(t)− y(t)

∣∣ ≤ β exp
(∫ t

0
M
[
r(s) + r(s+ 1)

]
ds
)
,

for 1 ≤ t <∞ , where

(3.21) β = δ +
∫ 1

0
Mr(s)

∣∣φ(s)− ψ(s)
∣∣ ds .

The proofs of Theorems 5, 6 are straightforward in view of the results given
above. Here, we omit the details.
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Kōdai Math. Sem. Rep. 12 (1960), 456–460.

[10] Sugiyama, S., Existence theorems on difference-differential equations, Proc. Japan Acad. 38
(1962), 145–149.

57 Shri Niketan Colony, Near Abhinay Talkies
Aurangabad 431 001 (Maharashtra), India
E-mail: bgpachpatte@gmail.com

mailto:bgpachpatte@gmail.com

	1. Introduction
	2. Main Results
	3. Applications
	References

