ESTIMATIONS OF NONCONTINUABLE SOLUTIONS OF SECOND ORDER DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN

Eva Pekárková

Abstract

We study asymptotic properties of solutions for a system of second differential equations with p-Laplacian. The main purpose is to investigate lower estimates of singular solutions of second order differential equations with p-Laplacian $\left(A(t) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+B(t) g\left(y^{\prime}\right)+R(t) f(y)=e(t)$. Furthermore, we obtain results for a scalar equation.

1. Introduction

Consider the differential equation

$$
\begin{equation*}
\left(A(t) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+B(t) g\left(y^{\prime}\right)+R(t) f(y)=e(t), \tag{1}
\end{equation*}
$$

where $p>0, A(t), B(t), R(t)$ are continuous, matrix-valued function on $\mathbb{R}_{+}:=[0, \infty), A(t)$ is regular for all $t \in \mathbb{R}_{+}, e: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$ and $f, g: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} are continuous mappings and $\Phi_{p}(u)=\left(\left|u_{1}\right|^{p-1} u_{1}, \ldots,\left|u_{n}\right|^{p-1} u_{n}\right)$ for $u=$ $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$. We shall use the norm $\|u\|=\max _{1 \leq i \leq n}\left|u_{i}\right|$ where $u=\left(u_{1}, \ldots, u_{n}\right) \in$ \mathbb{R}^{n}.

Definition 1. A solution y of (1]) defined on $t \in[0, T)$ is called noncontinuable or nonextendable if $T<\infty$ and $\lim \sup \left\|y^{\prime}(t)\right\|=\infty$. The solution y is called $t \rightarrow T^{-}$ continuable if $T=\infty$.

Note, that noncontinuable solutions are also called singular of the second kind, see e.g. [3], 8], [13].

Definition 2. A noncontinuable solution $y:[0, T] \rightarrow \mathbb{R}^{n}$ is called oscillatory if there exists an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ of zeros of y such that $\lim _{k \rightarrow \infty} t_{k}=T$; otherwise y is called nonoscillatory.

In the last two decades the existence and properties of noncontinuable solutions of special types of (1) are investigated. For the scalar case, see e.g. [3] [4], [5],

[^0][6], [9, [11, 12, [13, [15] and references therein. In particular, noncontinuable solutions do not exist if f and g satisfy the following conditions
\[

$$
\begin{equation*}
|g(x)| \leq|x|^{p} \quad \text { and } \quad|f(x)| \leq|x|^{p} \quad \text { for }|x| \text { large } \tag{2}
\end{equation*}
$$

\]

and R is positive. Hence, noncontinuable solutions may exist mainly in the case $|f(x)| \geq|x|^{m}$ with $m>p$.

As concern the system (11), see papers [7], [14], where sufficient conditions are given for (1) to have continuable solutions.

The scalar equation (11) can be applied in problems of radially symmetric solutions of the p-Laplace differential equation, see e.g. [14]; noncontinuable solutions appear e.g. in water flow problems (flood waves, a flow in sewerage systems), see e.g. [10].

The present paper deals with the estimations from bellow of norms of a noncontinuable solution of (1) and its derivative. Estimations of solutions are important e.g. in proofs of the existence of such solutions, see e.g. [4], [8] for

$$
\begin{equation*}
y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right) \tag{3}
\end{equation*}
$$

with $n \geq 2$ and $f \in C^{0}\left(\mathbb{R}_{+}, \mathbb{R}^{n}\right)$. For generalized Emden-Fowler equation of the form (3), some estimation are proved in (1).

In the paper [14] the differential equation (11) is studied with the initial conditions

$$
\begin{equation*}
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} \tag{4}
\end{equation*}
$$

where $y_{0}, y_{1} \in \mathbb{R}^{n}$.
We will use results from [7] Theorem 1.2].
Theorem A. Let $m>p$ and there exist positive constants K_{1}, K_{2} such that

$$
\begin{equation*}
\|g(u)\| \leq K_{1}\|u\|^{m}, \quad\|f(v)\| \leq K_{2}\|v\|^{m}, \quad u, v \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

and $\int_{0}^{\infty}\|R(s)\| s^{m} \mathrm{~d} s<\infty$. Denote

$$
\begin{aligned}
& A_{\infty}:=\sup _{0 \leq t<\infty}\left\|A(t)^{-1}\right\|<\infty, \quad E_{\infty}:=\sup _{0 \leq t<\infty} \int_{0}^{t}\|e(s)\| \mathrm{d} s<\infty \\
& R_{\infty}:=\int_{0}^{\infty}\|R(s)\| \mathrm{d} s, \quad B_{\infty}:=\int_{0}^{\infty}\|B(t)\| \mathrm{d} t
\end{aligned}
$$

Let the following conditions be satisfied:
(i) Let $m>1$ and

$$
\frac{m-p}{p} A_{\infty} D_{1}^{\frac{m-p}{p}} \int_{0}^{\infty}\left(K_{1}\|B(s)\|+2^{m-1} K_{2} s^{m}\|R(s)\|\right) \mathrm{d} s<1
$$

for all $t \in \mathbb{R}_{+}$, where

$$
D_{1}=A_{\infty}\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+2^{m-1} K_{2}\left\|y_{0}\right\|^{m} R_{\infty}+E_{\infty}\right\} .
$$

(ii) Let $m \leq 1$ and

$$
2^{m+1} \frac{m-p}{p} A_{\infty} D_{2}^{\frac{m-p}{p}} \int_{0}^{\infty}\left(K_{1}\|B(s)\|+K_{2} s^{m}\|R(s)\|\right) \mathrm{d} s<1
$$

for all $t \in \mathbb{R}_{+}$, where

$$
D_{2}=A_{\infty}\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+2^{m} K_{1}\left\|y_{1}\right\|^{m} B_{\infty}+2^{2 m+1} K_{2} R_{\infty}\left\|y_{0}\right\|^{m}+E_{\infty}\right\}
$$

Then any solution $y(t)$ of the initial value problem (1), (4) is continuable.
Proof. First let us prove the assertion (i). We will use [7, Theorem 1.2]. From (5) and its proof, it follows that equation (2.3) in [7] may have form

$$
\begin{align*}
\left\|\Phi_{p}(u(t))\right\| \leq & \left\|A(t)^{-1}\right\|\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+K_{1} \int_{0}^{t}\|B(s)\|\|u(s)\|^{m} \mathrm{~d} s\right. \\
& \left.+K_{2} \int_{0}^{t}\|R(s)\|\left\|y_{0}+\int_{0}^{s} u(\tau) \mathrm{d} \tau\right\|^{m} \mathrm{~d} s\right\} \tag{6}
\end{align*}
$$

where

$$
c=A_{\infty}\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+2^{m-1} K_{2}\left\|y_{0}\right\|^{m} R_{\infty}\right\}
$$

and

$$
F(t)=2^{m-1} K_{2} A_{\infty} \int_{t}^{\infty}\|R(s)\| s^{m-1} \mathrm{~d} s+K_{1} A_{\infty}\|B(t)\|
$$

Now, the results follows from [7, Theorem 1.2].
The assertion (ii) follows from [7, Theorem 1.2].

2. Main Results

In this chapter we will derive estimates for a noncontinuable solution y on the fixed definition interval $[T, \tau) \subset \mathbb{R}_{+}, \tau<\infty$.

Theorem 1. Let y be a noncontinuable solution of the system (1) on the interval $[T, \tau) \subset \mathbb{R}_{+}, \tau-T \leq 1$,

$$
\begin{aligned}
& A_{0}:=\max _{T \leq t \leq \tau}\left\|A(t)^{-1}\right\|, \quad B_{0}:=\max _{T \leq t \leq \tau}\|B(t)\|, \quad E_{0}:=\max _{T \leq t \leq \tau}\|e(t)\|, \\
& R_{0}:=\max _{T \leq t \leq \tau}\|R(t)\|, \quad \int_{0}^{\infty}\|R(s)\| s^{m} \mathrm{~d} s<\infty
\end{aligned}
$$

and let there exist positive constants K_{1}, K_{2} and $m>p$ such that

$$
\begin{equation*}
\|g(u)\| \leq K_{1}\|u\|^{m}, \quad\|f(v)\| \leq K_{2}\|v\|^{m}, \quad u, v \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

Then the following assertions hold:
(i) If $p>1$ and $M=\frac{2^{2 m+1}(2 m+3)}{(m+1)(m+2)}$, then

$$
\begin{equation*}
\left\|A(t) \Phi_{p}\left(y^{\prime}(t)\right)\right\|+2^{m-1} K_{2}\|y(t)\|^{m} R_{0}+2 E_{0}(\tau-t) \geq C_{1}(\tau-t)^{-\frac{p}{m-p}} \tag{8}
\end{equation*}
$$

for $t \in[T, \tau)$, where

$$
C_{1}=A_{0}^{-\frac{m}{m-p}}\left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}}\left[\frac{3}{2} K_{1} B_{0}+M K_{2} R_{0}\right]^{-\frac{p}{m-p}} .
$$

(ii) If $p \leq 1$, then

$$
\begin{align*}
\left\|A(t) \Phi_{p}\left(y^{\prime}(t)\right)\right\| & +2^{m} K_{1} B_{0}\left\|y^{\prime}(t)\right\|^{m}+2^{2 m+1} K_{2} R_{0}\|y(t)\|^{m} \\
& +2 E_{0}(\tau-t) \geq C_{2}(\tau-t)^{-\frac{p}{p-m}} \tag{9}
\end{align*}
$$

for $t \in[T, \tau)$ where

$$
C_{2}=2^{-\frac{p(m+1)}{m-p}} A_{0}^{-\frac{m}{m-p}}\left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}}\left[\frac{3}{2} K_{1} B_{0}+M K_{2} R_{0}\right]^{-\frac{p}{m-p}} .
$$

Proof. First let us prove the assertion (i). Let y be a singular solution of system (1]) on the interval $[T, \tau)$. We take t to be fixed in the interval $[T, \tau)$ and for the simplicity denote

$$
\begin{equation*}
D=A_{0}^{-\frac{p}{m-p}}\left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}} . \tag{10}
\end{equation*}
$$

Assume, by contradiction, that

$$
\begin{equation*}
\left\|A(t) \Phi_{p}\left(y^{\prime}(t)\right)\right\|+2^{m-1} K_{2}\|y(t)\|^{m} R_{0}+2 E_{0}(\tau-t) \tag{11}
\end{equation*}
$$

Together with the Cauchy problem

$$
\begin{equation*}
\left(A(x) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+B(x) g\left(y^{\prime}\right)+R(x) f(y)=e(x), \quad x \in[t, \tau) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)=y_{0}, \quad y^{\prime}(t)=y_{1} \tag{13}
\end{equation*}
$$

we construct an auxiliary system

$$
\begin{equation*}
\left(\bar{A}(s) \Phi_{p}\left(z^{\prime}\right)\right)^{\prime}+\bar{B}(s) g\left(z^{\prime}\right)+\bar{R}(s) f(z)=\bar{e}(s), \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
z(0)=z_{0}, \quad z^{\prime}(0)=z_{1} \tag{15}
\end{equation*}
$$

where $s \in \mathbb{R}_{+}, z_{0}, z_{1} \in \mathbb{R}^{n}, \bar{A}(s), \bar{B}(s), \bar{R}(s)$ are continuous, matrix-valued function on \mathbb{R}_{+}given by

$$
\begin{gather*}
\bar{A}(s)= \begin{cases}A(s+t) & \text { if } 0 \leq s<\tau-t, \\
A(\tau) & \text { if } \tau-t \leq s<\infty,\end{cases} \tag{16}\\
\bar{B}(s)= \begin{cases}B(s+t) & \text { if } 0 \leq s<\tau-t, \\
-\frac{B(\tau-t)}{\tau-t} s+2 B(\tau-t) & \text { if } \tau-t \leq s<2(\tau-t), \\
0 & \text { if } 2(\tau-t) \leq s<\infty,\end{cases} \tag{17}\\
\bar{R}(s)= \begin{cases}R(s+t) & \text { if } 0 \leq s<\tau-t, \\
-\frac{R(\tau-t)}{\tau-t} s+2 R(\tau-t) & \text { if } \tau-t \leq s<2(\tau-t), \\
0 & \text { if } 2(\tau-t) \leq s<\infty,\end{cases} \tag{18}\\
\bar{e}(s)= \begin{cases}e(s) & \text { if } 0 \leq s<\tau-t, \\
-\frac{e(\tau-t)}{\tau-t} s+2 e(\tau-t) & \text { if } \tau-t \leq s<2(\tau-t), \\
0 & \text { if } 2(\tau-t) \leq s<\infty .\end{cases} \tag{19}
\end{gather*}
$$

We can see that $\bar{A}(s)$ is regular for all $s \in \mathbb{R}_{+}$.

Hence, the systems (12] on $[t, \tau)$ and (14] on $[0, \tau-t)$ are equivalent with the change of independent variable $x-t \rightarrow s$. Let $z_{0}=y(t)$ and $z_{1}=y^{\prime}(t)$. Then the definitions of the functions $\bar{A}, \bar{B}, \bar{R}, \bar{e}$ give that

$$
\begin{equation*}
z(s)=y(s+t), \quad s \in[0, \tau-t) \quad \text { is a noncontinuable solution } \tag{20}
\end{equation*}
$$

of the system (14), (15) on $[0, \tau-t)$. By the application of Theorem A (i) to the system (14), 15) we will see that every solution z of the system (14, (15) satisfying

$$
\begin{align*}
\left\|\bar{A}(0) \Phi_{p}\left(z_{1}\right)\right\|+ & 2^{m-1} K_{2}\left\|z_{0}\right\|^{m} R_{0}+\int_{0}^{\infty}\|\bar{e}(s)\| \mathrm{d} s \\
& <D\left[\int_{0}^{\infty}\left(K_{1}\|\bar{B}(w)\|+2^{m-1} K_{2}\|\bar{R}(w)\| w^{m}\right) \mathrm{d} w\right]^{-\frac{p}{m-p}} \tag{21}
\end{align*}
$$

is continuable. Note, that according to (16)-21) all assumptions of Theorem A are valid. Furthermore, we will show that (11) yields (21).

We estimate the right-hand side of inequality (21):

$$
\begin{aligned}
G:= & D\left[\int_{0}^{\infty}\left(K_{1}\|\bar{B}(w)\|+2^{m-1} K_{2}\|\bar{R}(w)\| w^{m}\right) \mathrm{d} w\right]^{-\frac{p}{m-p}} \\
\geq & D\left[\int_{0}^{2(\tau-t)}\left(K_{1}\|\bar{B}(w)\|+2^{m-1} K_{2}\|\bar{R}(w)\| w^{m}\right) \mathrm{d} w\right]^{-\frac{p}{m-p}} \\
\geq & D\left[K_{1} \max _{0 \leq s \leq \tau-t}\|B(s+t)\|(\tau-t)\right. \\
& +K_{1} \int_{\tau-t}^{2(\tau-t)}\left\|-\frac{B(\tau-t)}{\tau-t} w+2 B(\tau-t)\right\| \mathrm{d} w \\
& +2^{m-1} K_{2} \max _{0 \leq s \leq(\tau-t)}\|R(s+t)\| \frac{(\tau-t)^{m+1}}{m+1} \mathrm{~d} w \\
& \left.+2^{m-1} K_{2} \int_{\tau-t}^{2(\tau-t)}\left\|-\frac{R(\tau-t)}{\tau-t} w+2 R(\tau-t)\right\| w^{m} \mathrm{~d} w\right]^{-\frac{p}{m-p}} \\
G \geq & D\left[K_{1} \max _{T \leq t \leq \tau}\|B(t)\|(\tau-t)+\frac{1}{2} K_{1}\|B(\tau-t)\|(\tau-t)\right. \\
& \left.+M_{1} K_{2} \max _{T \leq t \leq \tau}\|R(t)\|(\tau-t)^{m+1}+M_{2} K_{2}\|R(\tau-t)\|(\tau-t)^{m+1}\right]^{-\frac{p}{m-p}}
\end{aligned}
$$

where

$$
M_{1}=\frac{2^{m-1}}{m+1} \quad \text { and } \quad M_{2}=2^{m-1} \frac{2^{m+2}(2 m+3)-3 m-5}{(m+1)(m+2)}
$$

Hence,

$$
\begin{equation*}
G>D\left[\frac{3}{2} K_{1} B_{0}(\tau-t)+M K_{2} R_{0}(\tau-t)^{m+1}\right]^{-\frac{p}{m-p}} \tag{22}
\end{equation*}
$$

as $M>M_{1}+M_{2}$.

As we assume that $\tau-t \leq 1$, inequalities (11) and 22 imply

$$
\begin{align*}
G & >D\left[\frac{3}{2} K_{1} B_{0}+M K_{2} R_{0}\right]^{-\frac{p}{m-p}}(\tau-t)^{-\frac{p}{m-p}}=C_{1}(\tau-t)^{-\frac{p}{m-p}} \\
& \geq\left\|A(t) \Phi_{p}\left(y^{\prime}(t)\right)\right\|+2^{m-1} K_{2}\|y(t)\|^{m} R_{0}+2 E_{0}(\tau-t) \\
& \geq\left\|\bar{A}(0) \Phi_{p}\left(z_{1}\right)\right\|+2^{m-1} K_{2}\left\|z_{0}\right\|^{m} R_{0}+\int_{0}^{\infty}\|\bar{e}(s)\| \mathrm{d} s \tag{23}
\end{align*}
$$

where $C_{1}=D\left[\frac{3}{2} K_{1} B_{0}+M K_{2} R_{0}\right]^{-\frac{p}{m-p}}$. Hence (21) holds and the solution z of (14) satisfying the initial condition $z(0)=y_{0}$ and $z^{\prime}(0)=y_{1}$ is continuable. This contradiction with 20 proves the statement.

Now we shall prove the assertion (ii). If $p \leq 1$ then the proof is similar, we have to use only Theorem A (ii) instead of Theorem A (i).

Now consider the following special case of equation (1):

$$
\begin{equation*}
\left(A(t) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+R(t) f(y)=0 \tag{24}
\end{equation*}
$$

for all $t \in \mathbb{R}_{+}$. In this case a better estimation than before can be proved.
Theorem 2. Let $m>p$ and y be a noncontinuable solution of system (24) on interval $[T, \tau) \subset \mathbb{R}_{+}$. Let there exists a constant $K_{2}>0$ such that

$$
\begin{equation*}
\|f(v)\| \leq K_{2}\|v\|^{m}, \quad v \in \mathbb{R}^{n} \tag{25}
\end{equation*}
$$

Let R_{0} and M to be given by Theorem 1. Then

$$
\begin{equation*}
\left\|A(t) \Phi_{p}\left(y^{\prime}(t)\right)\right\|+2^{m+2} K_{2}\|y(t)\|^{m} R_{0} \geq C_{1}(\tau-t)^{-\frac{p(m+1)}{m-p}} \tag{26}
\end{equation*}
$$

where

$$
C_{1}=A_{0}^{-\frac{m}{m-p}}\left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}}\left[M K_{2} R_{0}\right]^{-\frac{p}{m-p}} \quad \text { in case } \quad p>1
$$

and

$$
\left\|A(t) \Phi_{p}\left(y^{\prime}\right)\right\|+2^{2 m+1} K_{2}\|y(t)\|^{m} R_{0} \geq C_{2}(\tau-t)^{-\frac{p(m+1)}{m-p}}
$$

with

$$
C_{2}=2^{-\frac{p(m+1)}{m-p}} A_{0}^{-\frac{m}{m-p}}\left(\frac{m-p}{p}\right)^{-\frac{p}{m-p}}\left[M K_{2} R_{0}\right]^{-\frac{p}{m-p}} \quad \text { in case } \quad p \leq 1
$$

Proof. Proof is similar the one of the Theorem 1 for $B(t) \equiv 0$ and $e(t) \equiv 0$. Let $p>1$. We do not use assumption $\tau-t \leq 1$ and we are able to improve an exponent of the estimation (8). The inequality (23) has changed to

$$
\begin{align*}
G & \geq C_{1}(\tau-t)^{-\frac{p(m+1)}{m-p}} \\
& \geq\left\|A(t) \Phi_{p}\left(y^{\prime}(t)\right)\right\|+2^{m-1} K_{2}\|y(t)\|^{m} R_{0} \\
& \geq\left\|\bar{A}(0) \Phi_{p}\left(z^{\prime}(0)\right)\right\|+2^{m-1} K_{2}\|z(0)\|^{m} R_{0} \tag{27}
\end{align*}
$$

where $C_{1}=D\left[M K_{2} R_{0}\right]^{-\frac{p}{(m-p)}}$. If $p \leq 1$, the proof is similar.

3. Applications

In this case we study the scalar differential equation

$$
\begin{equation*}
\left(a(t) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+r(t) f(y)=0 \tag{28}
\end{equation*}
$$

where $p>0, a(t), r(t)$ are continuous functions on $\mathbb{R}_{+}, a(t)>0$ for $t \in \mathbb{R}_{+}$, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous mapping and $\Phi_{p}(u)=|u|^{p-1} u$.

Corollary 3. Let y be a noncontinuable oscillatory solution of equation 28) defined on $[T, \tau)$. Let there exist constants $K_{2}>0$ and $m>0$ such that

$$
\begin{equation*}
|f(v)| \leq K_{2}|v|^{m}, \quad v \in \mathbb{R} \tag{29}
\end{equation*}
$$

and let $\left\{t_{k}\right\}_{1}^{\infty}$ and $\left\{\tau_{k}\right\}_{1}^{\infty}$ be increasing sequences of all local extrema of the solution y and of $y^{[1]}=a(t) \Phi_{p}\left(y^{\prime}\right)$ on $[T, \tau)$, respectively. Then there exist constants C_{1} and C_{2} such that

$$
\begin{equation*}
\left|y\left(t_{k}\right)\right| \geq C_{1}\left(\tau-t_{k}\right)^{-\frac{p(m+1)}{m(m-p)}} \tag{30}
\end{equation*}
$$

and, in the case $r \neq 0$ on \mathbb{R}_{+},

$$
\begin{equation*}
\left|y^{[1]}\left(\tau_{k}\right)\right| \geq C_{2}\left(\tau-\tau_{k}\right)^{-\frac{p(m+1)}{m-p}} \tag{31}
\end{equation*}
$$

for $k \geq 1,2, \ldots$.
Proof. Let $m>p$ and y be an oscillatory noncontinuable solution of equation (28) defined on $[T, \tau)$. An application of Theorem 2 to (28) gives

$$
\begin{equation*}
\left|y^{[1]}(t)\right|+2^{2 m+1} K_{2}|y(t)|^{m} r_{0} \geq C(\tau-t)^{-\frac{p(m+1)}{m-p}} \tag{32}
\end{equation*}
$$

where C is a suitable constant and $r_{0}=\max _{T \leq t \leq \tau}|r(t)|$. Note that according to (30), $x\left(x^{[1]}\right)$ has a local extremum at $t_{0} \in(T, \tau)$ if and only if $x^{[1]}\left(t_{0}\right)=0$ $\left(x\left(t_{0}\right)=0\right)$. From this it follows that an accumulation point of zeros of $x\left(x^{[1]}\right)$ does not exist in $[T, \tau)$. Otherwise, it holds $y(\tau)=0$ and $y^{\prime}(\tau)=0$. That is in contradiction with (32). If $\left\{t_{k}\right\}_{1}^{\infty}$ is the sequence of all extrema of a solution y, then $y^{\prime}\left(t_{k}\right)=0$, i.e. $y^{[1]}\left(t_{k}\right)=0$. We obtain the following estimate for $y\left(t_{k}\right)$ from 32)

$$
\begin{equation*}
\left|y\left(t_{k}\right)\right| \geq C_{1}\left(\tau-t_{k}\right)^{-\frac{p(m+1)}{m(m-p)}} \tag{33}
\end{equation*}
$$

where $C_{1}=C^{\frac{1}{m}}\left(2^{2 m+1} K_{2} r_{0}\right)^{-\frac{1}{m}}$ and (30) is valid. If $\left\{\tau_{k}\right\}_{1}^{\infty}$ is the sequence of all extrema of $y^{[1]}\left(\tau_{k}\right)$, then $y\left(\tau_{k}\right)=0$. We obtain the following estimate for $y^{[1]}\left(\tau_{k}\right)$ from (32)

$$
\begin{equation*}
\left|y^{[1]}\left(\tau_{k}\right)\right| \geq C_{2}\left(\tau-\tau_{k}\right)^{-\frac{p(m+1)}{m-p}} \tag{34}
\end{equation*}
$$

where $C_{2}=C$.
Example 1. Consider (28) and 29 with $m=2, p=1$. Then from Corollary 3 we obtain the following estimates

$$
\left|y\left(t_{k}\right)\right| \geq C_{1}\left(\tau-t_{k}\right)^{-\frac{3}{2}}, \quad\left|y^{[1]}\left(\tau_{k}\right)\right| \geq C_{2}\left(\tau-\tau_{k}\right)^{-3}
$$

where $M=\frac{56}{3}, C_{1}=\frac{\sqrt{42}}{448 K_{2} a_{0} r_{0}}$ and $C_{2}=\frac{3}{448 K_{2} a_{0}^{2} r_{0}}$.

Example 2. Consider (28) and 29 with $m=3, p=2$. Then from Corollary 3 we obtain the following estimates

$$
\left|y\left(t_{k}\right)\right| \geq C_{1}\left(\tau-t_{k}\right)^{-\frac{8}{3}}, \quad\left|y^{[1]}\left(\tau_{k}\right)\right| \geq C_{2}\left(\tau-\tau_{k}\right)^{-8}
$$

where $M=\frac{288}{5}, C_{1}=\frac{1}{32 K_{2} r_{0}}\left(\frac{10 a_{0}}{9}\right)^{\frac{2}{3}}$ and $C_{2}=\left(\frac{5 a_{0}}{144 K_{2} r_{0}}\right)^{2}$.
The following lemma is a special case of [13, Lemma 11.2].
Lemma 1. Let $y \in C^{2}[a, b), \delta \in\left(0, \frac{1}{2}\right)$ and $y^{\prime}(t) y(t)>0, y^{\prime \prime}(t) y(t) \geq 0$ on $[a, b)$. Then

$$
\begin{equation*}
\left(y^{\prime}(t) y(t)\right)^{-\frac{1}{1-2 \delta}} \geq \omega \int_{t}^{b}\left|y^{\prime \prime}(s)\right|^{\delta}|y(s)|^{3 \delta-2} \mathrm{~d} s, \quad t \in[a, b) \tag{35}
\end{equation*}
$$

where $\omega=\left[(1-2 \delta) \delta^{\delta}(1-\delta)^{1-\delta}\right]^{-1}$.
Now, let us turn our attention to nonoscillatory solutions of 28).
Theorem 4. Let $m>p$ and $M \geq 0$ be such that

$$
\begin{equation*}
|f(x)| \leq|x|^{m} \quad \text { for } \quad|x| \geq M . \tag{36}
\end{equation*}
$$

If y is a nonoscillatory noncontinuable solution of (28) defined on $[T, \tau)$, then constants C, C_{0} and a left neighborhood J of τ exist such that

$$
\begin{equation*}
\left|y^{\prime}(t)\right| \geq C(\tau-t)^{-\frac{p(m+1)}{m(m-p)}}, \quad t \in J . \tag{37}
\end{equation*}
$$

Let, moreover, $m<p+\sqrt{p^{2}+p}$. Then

$$
\begin{equation*}
|y(t)| \geq C_{0}(\tau-t)^{m_{1}} \quad \text { with } \quad m_{1}=\frac{m^{2}-2 m p-p}{m(m-p)}<0 \tag{38}
\end{equation*}
$$

Proof. Let y be a nonoscillatory noncontinuable solutions of 28$]$ defined on $[T, \tau)$. Then there exists $t_{0} \in[T, \tau)$ such that $y(t) y^{[1]}(t)>0$ for $t \in\left[t_{0}, \tau\right)$. Let

$$
y(t)>0 \quad \text { and } \quad y^{\prime}(t)>0 \quad \text { for } \quad t \in J:=\left[t_{0}, \tau\right) ;
$$

the opposite case $y(t)<0$ and $y^{\prime}(t)<0$ can be studied similarly. As y is noncontinuable, $\lim _{t \rightarrow \tau^{-}} y^{\prime}(t)=\infty$. Moreover, $\lim _{t \rightarrow \infty} y(t)=\infty$ as, otherwise, $y^{[1]}$ and y are bounded on the finite interval J. Hence, there exists $t_{1} \in J$ such that $y^{\prime}(t) \geq 1$ for $\left[t_{1}, \tau\right), y(t) \geq M$ for $t \geq t_{1}$ and

$$
\begin{equation*}
y(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} y^{\prime}(s) \mathrm{d} s \leq y\left(t_{0}\right)+\tau y^{\prime}(t) \leq 2 \tau y^{\prime}(t), \quad t \in\left[t_{1}, \tau\right) . \tag{39}
\end{equation*}
$$

Note, that due to $y \geq M$ it is sufficient to suppose (36) instead of (25) for an application of Theorem 2. Hence, Theorem 2 applied to (28), (39) and $y^{\prime} \geq 1$ imply

$$
\begin{aligned}
C_{1}(\tau-t)^{-\frac{p(m+1)}{m-p}} & \leq a(t)\left(y^{\prime}(t)\right)^{p}+C_{2} y^{m}(t) \\
& \leq a(t)\left(y^{\prime}(t)\right)^{p}+C_{2}(2 \tau)^{m}\left(y^{\prime}(t)\right)^{m} \\
& \leq C_{3}\left(y^{\prime}(t)\right)^{m}
\end{aligned}
$$

or

$$
y^{\prime}(t) \geq C_{4}(\tau-t)^{-\frac{p(m+1)}{m(m-p)}} \quad \text { on } \quad\left[t_{1}, \tau\right)
$$

where C_{1}, C_{2}, C_{3} and C_{4} are positive constants which do not depend on y. Moreover, the integration of (37) yields

$$
\begin{aligned}
y(t) & =y\left(t_{0}\right)+\int_{t_{0}}^{t} y^{\prime}(s) \mathrm{d} s \geq C \int_{t_{0}}^{t}(\tau-s)^{-\frac{p(m+1)}{m(m-p)}} \mathrm{d} s \\
& \geq \frac{C}{\left|m_{1}\right|}\left[(\tau-t)^{m_{1}}-\left(\tau-t_{0}\right)^{m_{1}}\right] \geq \frac{C}{2\left|m_{1}\right|}(\tau-t)^{m_{1}}
\end{aligned}
$$

for t lying in a left neighbourhood I_{1} of τ. Hence, (37) and (38) are valid.
Our last application is devoted to the equation

$$
\begin{equation*}
y^{\prime \prime}=r(t)|y|^{m} \operatorname{sgn} y \tag{40}
\end{equation*}
$$

where $r \in C^{0}\left(\mathbb{R}_{+}\right), m>1$.
Theorem 5. Let $\tau \in(0, \infty), T \in[0, \tau)$ and $r(t)>0$ on $[t, \tau]$.
(i) Then 40, has a nonoscillatory noncontinuable solution which is defined in a left neighbourhood of τ.
(ii) Let y be a nonoscillatory noncontinuable solution of (40) defined on $[T, \tau)$. Then constants C, C_{1}, C_{2} and a left neighbourhood I of τ exist such that

$$
|y(t)| \leq C(\tau-t)^{-\frac{2(m+3)}{m-1}} \quad \text { and } \quad\left|y^{\prime}(t)\right| \geq C_{1}(\tau-t)^{-\frac{m+1}{m(m-1)}}, \quad t \in I
$$

If, moreover, $m<1+\sqrt{2}$, then

$$
|y(t)| \leq C_{2}(\tau-t)^{m_{1}} \quad \text { with } \quad m_{1}=\frac{m^{2}-2 m-1}{m(m-1)}<0
$$

Proof. The assertion (i) follows from [2, Theorem 2].
Let us prove the assertion (ii). Let y be a noncontinuable solution of (40) defined on $[T, \tau)$. According to Theorem 4 and its proof we have $\lim _{t \rightarrow \tau^{-}}|y(t)|=\infty$ and 37) holds. Hence, suppose that $t_{0} \in[T, \tau)$ is such that

$$
y(t) \geq 1 \quad \text { and } \quad y^{\prime}(t)>0 \quad \text { on } \quad\left[t_{0}, \tau\right)
$$

Furthermore, there exists $t_{1} \in\left[t_{0}, \tau\right)$ such that

$$
\begin{equation*}
y(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} y^{\prime}(s) \mathrm{d} s \leq y\left(t_{0}\right)+y^{\prime}(t)\left(\tau-t_{0}\right) \leq C_{3} y^{\prime}(t) \tag{41}
\end{equation*}
$$

for $t \in\left[t_{1}, \tau\right)$ with $C_{3}=2\left(\tau-t_{0}\right)$. Now, we estimate y from below. By applying Lemma 1 with $[a, b)=\left[t_{1}, \tau\right)$ and $\delta=\frac{2}{m+3} \in\left(0, \frac{1}{2}\right)$. We have $\delta m+3 \delta-2=0$ and

$$
\begin{align*}
C_{3}^{\frac{m+3}{m-1}} y^{-\frac{2(m+3)}{m-1}}(t) m & \geq\left(y^{\prime}(t) y(t)\right)^{-\frac{1}{1-2 \delta}} \geq \omega \int_{t}^{\tau}\left(y^{\prime \prime}(s)\right)^{\delta}(y(s))^{3 \delta-2} \mathrm{~d} s \\
& \geq C_{4} \int_{t}^{\tau} y^{\delta m+3 \delta-2}(s) \mathrm{d} s=C_{4}(\tau-t) \quad \text { on } \quad\left[t_{1}, \tau\right) \tag{42}
\end{align*}
$$

where $C_{4}=\omega \min _{t_{0} \leq \sigma \leq \tau}|r(\sigma)|$. From this we have

$$
y(t) \leq C(\tau-t)^{-\frac{m-1}{2(m+3)}} \quad \text { on } \quad\left[t_{1}, \tau\right)
$$

with a suitable positive C. The rest of the statement follows from Theorem 4
Acknowledgement. The work was supported by the Grant No. 201/08/0469 of the Grant Agency of the Czech Republic.

References

[1] Astašova, I. V., On asymptotic behaviour of solutions of nonlinear differential equations, Dokl. Semin. Inst. Prikl. Mat. im. I. N. Vekua 1 (3) (1985), 9-11.
[2] Bartušek, M., On noncontinuable solutions of n-th order differential equations, DCDIS A, Supplement, to appear.
[3] Bartušek, M., On existence of singular solution of n-th order differential equations, Arch. Math. (Brno) 36 (2000), 395-404.
[4] Bartušek, M., On existence unbounded noncontinuable solutions, Ann. Mat. Pura Appl. (4) 185 (2006), 93-107.
[5] Bartušek, M., Graef, J. R., Strong nonlinear limit-point/limit-circle problem for second order nonlinear equations, Nonlinear Stud. 9 (1) (2006), 361-369.
[6] Bartušek, M., Graef, J. R., The strong nonlinear limit-point/limit-circle properties for a class of even order equations, Comm. Appl. Nonlinear Anal. 15 (3) (2008), 29-45.
[7] Bartušek, M., Medved, M., Existence of global solutions for systems of second-order functional-differential equations with p-Laplacian, EJDE 40 (2008), 1-8.
[8] Bartušek, M., Osička, J., On existence of singular solutions, Georgian Math. J. 8 (2001), 669-681.
[9] Bartušek, M., Pekárková, E., On existence of proper solutions of quasilinear second order differential equations, EJQTD 1 (2007), 1-14.
[10] Bartušková, I., Problem of Computations of Sewerage Systems, Ph.D. thesis, FAST Technical University Brno, 1997, in Czech.
[11] Chanturia, T., On existence of singular and unbounded oscillatory solutions of differential equations of Emden-Fowler type, Differ. Uravn. 28 (1992), 1009-1022.
[12] Jaroš, J., Kusano, T., On black hole solutions of second order differential equation with singularity in the diffential operator, Funkcial. Ekvac. 43 (2000), 491-509.
[13] Kiguradze, I. T., Chanturia, T., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Dordrecht, Kluwer, 1993.
[14] Medved', M., Pekárková, E., Existence of global solutions of systems of second order differential equations with p-Laplacian, EJDE 136 (2007), 1-9.
[15] Mirzov, J. D., Asymptotic Properties of Solutions of System of Nonlinear Nonautonomous Differential Equations, Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 (2004).

[^1]
[^0]: 2000 Mathematics Subject Classification: primary 34C11.
 Key words and phrases: second order differential equation, p-Laplacian, asymptotic properties, lower estimate, singular solution.

 Received June 5, 2009, revised October 2009. Editor O. Došlý.

[^1]: Department of Mathematics and Statistics, Faculty of Science, Masaryk University Kotlářská 2, 61137 Brno, Czech Republic
 E-mail: evapek@centrum.cz

