A NOTE ON LINEAR PERTURBATIONS OF OSCILLATORY SECOND ORDER DIFFERENTIAL EQUATIONS

Renato Manfrin

Abstract

Under suitable hypotheses on $\gamma(t), \lambda(t), q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime}+\gamma(t) u^{\prime}+(q(t)+\lambda(t)) u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime}+q(t) u=0$.

1. Introduction

Let $q:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ and $\gamma, \lambda:\left[t_{0}, \infty\right) \rightarrow \mathbb{C}$ be continuous functions. We will consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}+\gamma(t) u^{\prime}+(q(t)+\lambda(t)) u=0, \quad t_{0} \leq t<\infty \tag{1.1}
\end{equation*}
$$

as a perturbation of

$$
\begin{equation*}
u^{\prime \prime}+q(t) u=0, \quad t_{0} \leq t<\infty . \tag{1.2}
\end{equation*}
$$

A number of papers have dealt with the linear perturbations of (1.2) assuming q, or the solutions of (1.2), suitably well-behaved as $t \rightarrow \infty$. For instance, R. Bellman [1] proved that if all solutions of (1.2) belong to $L^{p}\left[t_{0}, \infty\right) \cap L^{p^{\prime}}\left[t_{0}, \infty\right)$, where $1 \leq p \leq p^{\prime} \leq \infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1\left(p^{\prime}=\infty\right.$, if $\left.p=1\right)$ then all solutions of

$$
\begin{equation*}
u^{\prime \prime}+(q(t)+\lambda(t)) u=0, \tag{1.3}
\end{equation*}
$$

where λ is bounded, belong to $L^{p}\left[t_{0}, \infty\right) \cap L^{p^{\prime}}\left[t_{0}, \infty\right)$; Z. Opial $[9$ showed that if q is nondecreasing, then all solutions of 1.3 are bounded as $t \rightarrow \infty$, if $\int^{\infty}|\lambda| q^{-\frac{1}{2}} d x<$ ∞; W. F. Trench [10] demonstrated that if $\int^{\infty}|\lambda|\left|z_{i}\right|^{2} d t<\infty(i=1,2)$, where z_{1}, z_{2} are two linearly independent solutions of (1.2), then every solution of 1.3) can be written in the form $\alpha z_{1}+\beta z_{2}$ with α, β suitable absolutely continuous functions. For other results of this type we may refer to [2, 3, 5].

Now, one observes immediately that many of these criteria place rather ineffective conditions, since one needs to know the behavior of solutions of the unperturbed equation 1.2 as $t \rightarrow \infty$. On the other hand, assuming q nondecreasing, in Opial's criteria [9] this a-priori knowledge is not required.

In this note, applying some results proved in [7], we will derive new effective conditions on q, γ, λ which, if q is positive and sufficiently smooth, ensure that

[^0]all solutions of (1.1) are bounded or p-integrable (i.e. $\int_{t_{0}}^{\infty}|u|^{p} d t<\infty$ for some $p>0)$ on $\left[t_{0}, \infty\right)$. Precisely, under the assumption that
(1.4) $\quad q(t) \geq \delta>0 \quad$ and $\quad \frac{d^{m}}{d t^{m}}\left(q^{-\frac{1}{2}}\right) \quad$ is of bounded variation in $\left[t_{0}, \infty\right)$,
for some integer $m \geq 1$, we shall prove the following:
Theorem 1.1. Assume (1.4) holds and that $\int_{t_{0}}^{\infty}\left(|\gamma|+|\lambda| q^{-\frac{1}{2}}\right) d \tau<\infty$. Then all solutions of 1.1) are p-integrable $(p>0)$ if and only if $\int_{t_{0}}^{\infty} q^{-\frac{p}{4}} d t<\infty$.

According to the Weyl classification, for $p=2$ the conclusion of Th. 1.1 means that if $|\gamma|+|\lambda| q^{-\frac{1}{2}}$ is integrable then equation (1.1) retains the limit circle property.

Concerning the boundedness and the asymptotic behavior of solutions of (1.1), we introduce the energy:

$$
\begin{equation*}
\mathcal{E}(u, t) \stackrel{\text { def }}{=} q(t)^{\frac{1}{2}}|u(t)|^{2}+q(t)^{-\frac{1}{2}}\left|u^{\prime}(t)\right|^{2}, \quad t \geq t_{0} \tag{1.5}
\end{equation*}
$$

Then, we have:
Theorem 1.2. Assume (1.4) and $\int_{t_{0}}^{\infty}\left(|\gamma|+|\lambda| q^{-\frac{1}{2}}\right) d x<\infty$. Then for every solution u of (1.1) there exists the finite limit $\lim _{t \rightarrow \infty} \mathcal{E}(u, t) \stackrel{\text { def }}{=} \mathcal{E}_{u}$, with $\mathcal{E}_{u}>0$ if $u \not \equiv 0$.

Moreover, if z_{1}, z_{2} are linearly independent solutions of (1.2), there exist unique $\alpha, \beta \in A C\left[t_{0}, \infty\right)$ (i.e. $\alpha^{\prime}, \beta^{\prime} \in L^{1}\left[t_{0}, \infty\right)$) such that

$$
\begin{equation*}
u=\alpha z_{1}+\beta z_{2}, \quad u^{\prime}=\alpha z_{1}^{\prime}+\beta z_{2}^{\prime} . \tag{1.6}
\end{equation*}
$$

Finally, if $q(t) \rightarrow \infty$ as $t \rightarrow \infty$, we also have:
Theorem 1.3. Assume (1.4) holds with $q \rightarrow \infty$ as $t \rightarrow \infty$. In addition suppose that there exists a constant $\mathcal{C}>2$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\int_{t_{0}}^{t}\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d \tau-\frac{1}{\mathcal{C}} \ln q(t)\right)<\infty . \tag{1.7}
\end{equation*}
$$

Then all solutions of (1.1) satisfy $\lim _{t \rightarrow \infty} u(t)=0$. Furthermore, 1.6 holds with $\alpha, \beta \in A C_{\mathrm{loc}}\left[t_{0}, \infty\right)$, i.e. $\alpha^{\prime}, \beta^{\prime} \in L_{\mathrm{loc}}^{1}\left[t_{0}, \infty\right)$.

We do not know if the condition $\mathcal{C}>2$ in 1.7 is the best possible. However, we can show that it is not sufficient to require that 1.7 holds for an arbitrary constant $\mathcal{C}>0$. See Example 5.4 below.

Remark 1.4. It is possible to prove all the previous results under slightly different assumptions on q. More precisely, the following holds:

Assume $q(t)>0$ and $\left(q^{-\frac{1}{2}}\right)^{(m)} \in A C_{\mathrm{loc}}\left[t_{0}, \infty\right)$ for some integer $m \geq 1$. Then Th. 1.1 1.2 1.3 remain to hold if, instead of 1.4 , we suppose:

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(q^{-\frac{1}{2}}(t)\right)^{1-\frac{1}{h}}\left|\left(q^{-\frac{1}{2}}\right)^{(h)}(t)\right|^{\frac{1}{h}}=0, \quad 1 \leq h \leq m \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{-\eta_{0} / 2}\left(\frac{d}{d t} q^{-\frac{1}{2}}\right)^{\eta_{1}} \cdots\left(\frac{d^{m+1}}{d t^{m+1}} q^{-\frac{1}{2}}\right)^{\eta_{m+1}} \in L^{1}\left(t_{0}, \infty\right) \tag{1.9}
\end{equation*}
$$

for all integers $\eta_{0}, \ldots, \eta_{m+1} \geq 0$ such that

$$
\begin{equation*}
\sum_{0 \leq h \leq m+1} \eta_{h}=m, \quad \sum_{1 \leq h \leq m+1} h \eta_{h}=m+1 \tag{1.10}
\end{equation*}
$$

See [7, Prop. 6.1, Cor. 6.3]. One can also show that q satisfies (1.8)-1.10) if (1.4) holds and $\left(q^{-\frac{1}{2}}\right)^{(m)} \in A C_{\mathrm{loc}}\left[t_{0}, \infty\right)$. In some cases the conditions $1.8-1.10$ are less restrictive than (1.4). See [8, [7, Section 7] and Remark 5.3 below.

2. Some preliminaries

To demonstrate Th. $1.1,1.2$ and 1.3 we will apply some results of [7] (see also [6, 8]) on the asymptotic behavior of solutions of the unperturbed equation 1.2 . Below we briefly state the main results which will be needed in the proofs.

Theorem 2.1 ([7] Th. 1.1]). Assume that (1.4) holds. Then all solutions of (1.2) are p-integrable, $p>0$, if and only if $\int_{t_{0}}^{\infty} q^{-\frac{p}{4}} d t<\infty$.
Theorem 2.2 ([7, Th. 1.2]). Assume that 1.4 holds and let u be a solution of (1.2). Then there exists the finite limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathcal{E}(u, t) \stackrel{\text { def }}{=} \mathcal{E}_{u}, \quad \text { with } \quad \mathcal{E}_{u}>0 \quad \text { if } \quad u \not \equiv 0 \tag{2.1}
\end{equation*}
$$

Remark 2.3. All these statements remain true if, instead of 1.4 , we assume one of the following conditions:
$-q$ satisfies the conditions (1.8)- 1.10), see [7];
$-0<\delta \leq q(t) \leq \hat{\delta}<\infty$ and $q^{(m)}$ is of bounded variation for some $m \geq 1$;
if $m=1$ it is enough to suppose $q(t) \geq \delta>0$. See [8].
On the other hand if, instead of (1.4) with $m \geq 1$, we only suppose $q \geq \delta>0$ and $q^{-\frac{1}{2}}$ of bounded variation, the conclusions of Th. 2.1 and Th. 2.2 are, in general, false. This happens even if we further require that $q(t) \rightarrow \infty$ as $t \rightarrow \infty$. See [4].

Notation. Given $a, b \in \mathbb{R}$, we shall use the symbol $a \vee b$ for $\max \{a, b\}$.
From now on we fix

$$
\begin{equation*}
z_{1}, z_{2}:\left[t_{0}, \infty\right) \rightarrow \mathbb{C} \tag{2.2}
\end{equation*}
$$

two linearly independent solutions of 1.2 . Namely we suppose that, for $i=1,2$,

$$
\begin{equation*}
z_{i}^{\prime \prime}+q(t) z_{i}=0 \quad \text { in } \quad\left[t_{0}, \infty\right) \tag{2.3}
\end{equation*}
$$

with nonzero wronskian, i.e. $W\left(z_{i}, z_{2}\right)=z_{1} z_{2}^{\prime}-z_{1}^{\prime} z_{2} \neq 0$.
Applying Th. 2.2 we deduce the following:
Lemma 2.4. Assume that (1.4) holds. Then there exists the finite limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right) \stackrel{\text { def }}{=} \mathcal{E}_{12} \tag{2.4}
\end{equation*}
$$

In addition, setting $\mathcal{\mathcal { E } _ { i }} \stackrel{\text { def }}{=} \lim _{t \rightarrow \infty} \mathcal{E}\left(z_{i}, t\right) \quad(i=1,2)$, the quadratic form

$$
\begin{equation*}
Q(a, b) \stackrel{\text { def }}{=} \mathcal{E}_{1}|a|^{2}+\mathcal{E}_{2}|b|^{2}+2 \operatorname{Re}\left(\mathcal{E}_{12} a \bar{b}\right), \quad(a, b) \in \mathbb{C}^{2} \tag{2.5}
\end{equation*}
$$

is positive definite.
Proof. By Th. 2.2 there exist finite, the limits as $t \rightarrow \infty$, of

$$
\begin{equation*}
\mathcal{E}\left(z_{1}, t\right), \mathcal{E}\left(z_{2}, t\right), \mathcal{E}\left(z_{1}+z_{2}, t\right), \mathcal{E}\left(z_{1}+i z_{2}, t\right) . \tag{2.6}
\end{equation*}
$$

Observing that

$$
\begin{equation*}
\mathcal{E}\left(z_{1}+z_{2}, t\right)=\mathcal{E}\left(z_{1}, t\right)+\mathcal{E}\left(z_{2}, t\right)+2 \operatorname{Re}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right), \tag{2.7}
\end{equation*}
$$

we deduce that there exits the finite limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{Re}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right) . \tag{2.8}
\end{equation*}
$$

Moreover, since

$$
\begin{equation*}
\mathcal{E}\left(z_{1}+i z_{2}, t\right)=\mathcal{E}\left(z_{1}, t\right)+\mathcal{E}\left(z_{2}, t\right)+2 \operatorname{Im}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right) \tag{2.9}
\end{equation*}
$$

we also deduce that there exits the finite limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{Im}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right) . \tag{2.10}
\end{equation*}
$$

Thus, it is clear that there exists the finite limit (2.4).
To continue, if $u=a z_{1}+b z_{2}(a, b \in \mathbb{C})$ is any solution of (1.2), we easily have

$$
\begin{align*}
\lim _{t \rightarrow \infty} \mathcal{E}(u, t)= & \lim _{t \rightarrow \infty} \mathcal{E}\left(a z_{1}+b z_{2}, t\right) \\
= & |a|^{2} \lim _{t \rightarrow \infty} \mathcal{E}\left(z_{1}, t\right)+|b|^{2} \lim _{t \rightarrow \infty} \mathcal{E}\left(z_{2}, t\right) \\
& +2 \operatorname{Re} \lim _{t \rightarrow \infty} a \bar{b}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right) \tag{2.11}\\
= & \mathcal{E}_{1}|a|^{2}+\mathcal{E}_{2}|b|^{2}+2 \operatorname{Re}\left(\mathcal{E}_{12} a \bar{b}\right),
\end{align*}
$$

Since $\lim _{t \rightarrow \infty} \mathcal{E}(u, t)>0$ if $u \not \equiv 0$, by definition (2.5) it follows that

$$
\begin{equation*}
Q(a, b)>0, \quad \forall(a, b) \in \mathbb{C}^{2} \backslash\{(0,0)\} . \tag{2.12}
\end{equation*}
$$

Thus the quadratic form 2.5 is positive definite.
Further, we also have:
Lemma 2.5. Assume that (1.4) holds. Given $\Lambda>1$ there exists $t_{\Lambda} \geq t_{0}$ such that for all solutions u of (1.2) one has

$$
\begin{equation*}
\Lambda^{-1} \mathcal{E}\left(u, t_{1}\right) \leq \mathcal{E}\left(u, t_{2}\right) \leq \Lambda \mathcal{E}\left(u, t_{1}\right), \tag{2.13}
\end{equation*}
$$

for all $t_{1}, t_{2} \geq t_{\Lambda}$.
Proof. It is clearly sufficient to prove the second inequality in 2.13 .
Since the quadratic form (2.5) is positive definite, there exists $\rho>0$ such that

$$
\begin{equation*}
Q(a, b)>2 \rho\left(|a|^{2}+|b|^{2}\right), \quad \forall(a, b) \in \mathbb{C}^{2} . \tag{2.14}
\end{equation*}
$$

By a continuity argument, this in turn implies that

$$
\begin{equation*}
\mathcal{E}\left(a z_{1}+b z_{2}, t\right) \geq \rho\left(|a|^{2}+|b|^{2}\right), \quad \forall(a, b) \in \mathbb{C}^{2}, \tag{2.15}
\end{equation*}
$$

provided t is large enough, say $t \geq \bar{t} \geq t_{0}$. Moreover, $\forall \varepsilon>0$ there exists $t_{\varepsilon} \geq t_{0}$ such that

$$
\begin{equation*}
\left|\mathcal{E}\left(a z_{1}+b z_{2}, t_{2}\right)-\mathcal{E}\left(a z_{1}+b z_{2}, t_{1}\right)\right| \leq \varepsilon\left(|a|^{2}+|b|^{2}\right), \tag{2.16}
\end{equation*}
$$

for all $(a, b) \in \mathbb{C}^{2}$, for all $t_{1}, t_{2} \geq t_{\varepsilon}$. Hence

$$
\begin{equation*}
\left|\mathcal{E}\left(a z_{1}+b z_{2}, t_{2}\right)-\mathcal{E}\left(a z_{1}+b z_{2}, t_{1}\right)\right| \leq \varepsilon \rho^{-1} \mathcal{E}\left(a z_{1}+b z_{2}, t_{1}\right) \tag{2.17}
\end{equation*}
$$

if $t_{1}, t_{2} \geq\left(t_{\varepsilon} \vee \bar{t}\right)$. From this, we obtain that

$$
\begin{equation*}
\mathcal{E}\left(a z_{1}+b z_{2}, t_{2}\right) \leq\left(1+\varepsilon \rho^{-1}\right) \mathcal{E}\left(a z_{1}+b z_{2}, t_{1}\right) \tag{2.18}
\end{equation*}
$$

for all $(a, b) \in \mathbb{C}^{2}$, if $t_{1}, t_{2} \geq\left(t_{\varepsilon} \vee \bar{t}\right)$.
Hence, if

$$
\begin{equation*}
u=a z_{1}+b z_{2} \tag{2.19}
\end{equation*}
$$

is any solution of 1.2$)$, we have

$$
\begin{equation*}
\mathcal{E}\left(u, t_{2}\right) \leq\left(1+\varepsilon \rho^{-1}\right) \mathcal{E}\left(u, t_{1}\right), \quad \forall t_{1}, t_{2} \geq\left(t_{\varepsilon} \vee \bar{t}\right) \tag{2.20}
\end{equation*}
$$

Finally, given $\Lambda>1$, setting

$$
\begin{equation*}
\varepsilon=\rho(\Lambda-1) \quad \text { and } \quad t_{\Lambda}=\left(t_{\varepsilon} \vee \bar{t}\right) \tag{2.21}
\end{equation*}
$$

we obtain the second inequality of (2.13).

3. Proofs of Theorems $1.1,1.2$

Let z_{1}, z_{2} be the independent solutions of (1.2) fixed in (2.2)-(2.3). Denoting with

$$
\begin{equation*}
W \stackrel{\text { def }}{=} W\left(z_{1}, z_{2}\right)=z_{1} z_{2}^{\prime}-z_{1}^{\prime} z_{2} \tag{3.1}
\end{equation*}
$$

the wronskian, we clearly have

$$
\begin{equation*}
W(t)=W\left(t_{0}\right) \neq 0, \quad \forall t \in\left[t_{0}, \infty\right) \tag{3.2}
\end{equation*}
$$

Then, recalling (1.5), we introduce the quantity

$$
\begin{equation*}
A \stackrel{\text { def }}{=} \sup _{t \geq t_{0}}\left[\mathcal{E}\left(z_{1}, t\right) \vee \mathcal{E}\left(z_{2}, t\right)\right] \tag{3.3}
\end{equation*}
$$

By Th. 2.2. we know that $0<A<\infty$.
Besides, since $\mathcal{E}\left(z_{i}, t\right) \stackrel{\text { def }}{=} q(t)^{\frac{1}{2}}\left|z_{i}(t)\right|^{2}+q(t)^{-\frac{1}{2}}\left|z_{i}^{\prime}(t)\right|^{2}$, for all $t \geq t_{0}$ we have:

$$
\begin{align*}
\left|z_{1}\right|,\left|z_{2}\right| & \leq \sqrt{A} q^{-\frac{1}{4}}, \\
\left|z_{1}^{\prime}\right|,\left|z_{2}^{\prime}\right| & \leq \sqrt{A} q^{\frac{1}{4}}, \tag{3.4}\\
\left|z_{1} z_{1}^{\prime}\right|,\left|z_{2} z_{2}^{\prime}\right| & \leq \frac{A}{2},
\end{align*}
$$

where the last inequality of (3.4) is a consequence of the fact that

$$
\begin{equation*}
\left|z_{i}(t) z_{i}^{\prime}(t)\right| \leq 2^{-1} \mathcal{E}\left(z_{i}, t\right) \quad(i=1,2) \tag{3.5}
\end{equation*}
$$

via the classical inequality: $a b \leq\left(a^{2}+b^{2}\right) / 2$ for $a, b \in \mathbb{R}$.

Now, let

$$
\begin{equation*}
u:\left[t_{0}, \infty\right) \rightarrow \mathbb{C} \tag{3.6}
\end{equation*}
$$

be a given solution of (1.1). Following the argument of W. F. Trench 10, we look for $\alpha, \beta:\left[t_{0}, \infty\right) \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
u=\alpha z_{1}+\beta z_{2}, \quad u^{\prime}=\alpha z_{1}^{\prime}+\beta z_{2}^{\prime} \tag{3.7}
\end{equation*}
$$

If (3.7) holds, then α, β are uniquely determined by

$$
\begin{equation*}
\alpha=\frac{u z_{2}^{\prime}-u^{\prime} z_{2}}{W} \quad \text { and } \quad \beta=\frac{u^{\prime} z_{1}-u z_{1}^{\prime}}{W} . \tag{3.8}
\end{equation*}
$$

On the other hand, differentiating the expression $\alpha z_{1}+\beta z_{2}$ twice and substituting into (1.1), we easily see that (3.7) holds if and only if α, β verify

$$
\left\{\begin{array}{l}
\alpha^{\prime} z_{1}^{\prime}+\beta^{\prime} z_{2}^{\prime}=-\gamma\left(\alpha z_{1}^{\prime}+\beta z_{2}^{\prime}\right)-\lambda\left(\alpha z_{1}+\beta z_{2}\right) \tag{3.9}\\
\alpha^{\prime} z_{1}+\beta^{\prime} z_{2}=0
\end{array}\right.
$$

with initial data, at $t=t_{0}$,

$$
\begin{equation*}
\alpha\left(t_{0}\right)=\left.\frac{u z_{2}^{\prime}-u^{\prime} z_{2}}{W}\right|_{t=t_{0}}, \quad \beta\left(t_{0}\right)=\left.\frac{u^{\prime} z_{1}-u z_{1}^{\prime}}{W}\right|_{t=t_{0}} \tag{3.10}
\end{equation*}
$$

Solving (3.9) with respect to α^{\prime}, β^{\prime} we obtain the first order, linear system

$$
\left\{\begin{array}{l}
\alpha^{\prime}=\frac{\alpha}{W}\left(\gamma z_{2} z_{1}^{\prime}+\lambda z_{1} z_{2}\right)+\frac{\beta}{W}\left(\gamma z_{2} z_{2}^{\prime}+\lambda z_{2}^{2}\right) \tag{3.11}\\
\beta^{\prime}=-\frac{\alpha}{W}\left(\gamma z_{1} z_{1}^{\prime}+\lambda z_{1}^{2}\right)-\frac{\beta}{W}\left(\gamma z_{1} z_{2}^{\prime}+\lambda z_{1} z_{2}\right)
\end{array} \quad t \geq t_{0}\right.
$$

Since the Cauchy problem (3.10-3.11) has a unique solution in $\left[t_{0}, \infty\right)$, we conclude that there exist α, β such that (3.7) holds.

Now, using the integral representation

$$
\begin{align*}
& \alpha(t)=\alpha\left(t_{0}\right)+\frac{1}{W} \int_{t_{0}}^{t}\left[\alpha\left(\gamma z_{2} z_{1}^{\prime}+\lambda z_{1} z_{2}\right)+\beta\left(\gamma z_{2} z_{2}^{\prime}+\lambda z_{2}^{2}\right)\right] d s \\
& \beta(t)=\beta\left(t_{0}\right)-\frac{1}{W} \int_{t_{0}}^{t}\left[\alpha\left(\gamma z_{1} z_{1}^{\prime}+\lambda z_{1}^{2}\right)+\beta\left(\gamma z_{1} z_{2}^{\prime}+\lambda z_{1} z_{2}\right)\right] d s \tag{3.12}
\end{align*}
$$

for all $t \geq t_{0}$, we can estimate α, β.
In fact, setting

$$
\begin{equation*}
Z(t) \stackrel{\text { def }}{=}|\alpha(t)|+|\beta(t)| \tag{3.13}
\end{equation*}
$$

from (3.4) and (3.12) it follows that

$$
\begin{equation*}
Z(t) \leq Z\left(t_{0}\right)+\frac{A}{2|W|} \int_{t_{0}}^{t} Z\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d s \tag{3.14}
\end{equation*}
$$

for all $t \geq t_{0}$. Then, applying Gronwall's Lemma to (3.14), we finally deduce

$$
\begin{equation*}
Z(t) \leq Z\left(t_{0}\right) \exp \frac{A}{2|W|} \int_{t_{0}}^{t}\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d s \tag{3.15}
\end{equation*}
$$

for all $t \geq t_{0}$.

Remark 3.1. More generally, given $t_{1}, t_{2} \geq t_{0}$, one can also prove that

$$
\begin{equation*}
Z\left(t_{2}\right) \leq Z\left(t_{1}\right) \exp \frac{A}{2|W|}\left|\int_{t_{1}}^{t_{2}}\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d s\right| \tag{3.16}
\end{equation*}
$$

For $t_{2} \geq t_{1}$ it is clear that (3.16) holds; for $t_{2}<t_{1}$ it sufficient to apply Gronwall's Lemma backward in time. In particular, if $\int_{t_{0}}^{\infty}\left(|\gamma|+|\lambda| q^{-\frac{1}{2}}\right) d x<\infty$, it follows from (3.16) that there exists the finite limit

$$
\lim _{t \rightarrow \infty} Z(t) \stackrel{\text { def }}{=} Z_{\infty}, \quad \text { with } \quad Z_{\infty}>0 \quad \text { if } \quad u \not \equiv 0
$$

We are now in position to prove Th. 1.2 and then Th. 1.1

3.1. The Proof of Th. $\mathbf{1 . 2}$, The assumption

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(|\gamma|+|\lambda| q^{-\frac{1}{2}}\right) d t<\infty \tag{3.17}
\end{equation*}
$$

and inequality (3.15) imply that $Z(t) \leq C$ in $\left[t_{0}, \infty\right)$, for a suitable $C \geq 0$. Thus

$$
\begin{equation*}
|\alpha(t)|,|\beta(t)| \leq C \quad \text { in } \quad\left[t_{0}, \infty\right) \tag{3.18}
\end{equation*}
$$

From this, we easily see that

$$
\begin{equation*}
\mathcal{E}(u, t) \leq 2 C^{2} A \quad \text { for all } \quad t \geq t_{0} \tag{3.19}
\end{equation*}
$$

Further, from (3.4), (3.17) and (3.18), it turns out that the integrals in the right hand-side of (3.12) are absolutely convergent. This means that $\alpha, \beta \in A C\left[t_{0}, \infty\right)$, i.e. $\alpha^{\prime}, \beta^{\prime} \in L^{1}\left[t_{0}, \infty\right)$. In particular, it follows that there exist the finite limits

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \beta(t)=\beta_{\infty}, \quad \lim _{t \rightarrow \infty} \alpha(t)=\alpha_{\infty} \tag{3.20}
\end{equation*}
$$

By Th. 2.2 and Lemma 2.4 we know that there exist the finite limits:

$$
\begin{gather*}
\lim _{t \rightarrow \infty} \mathcal{E}\left(z_{i}, t\right)=\mathcal{E}_{i} \quad(i=1,2) \tag{3.21}\\
\lim _{t \rightarrow \infty}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right)=\mathcal{E}_{12} \tag{3.22}
\end{gather*}
$$

Then, by 3.7), one has

$$
\begin{align*}
\lim _{t \rightarrow \infty} \mathcal{E}(u, t)= & \lim _{t \rightarrow \infty} \mathcal{E}\left(\alpha z_{1}+\beta z_{2}, t\right) \\
= & \lim _{t \rightarrow \infty}|\alpha|^{2} \mathcal{E}\left(z_{1}, t\right)+\lim _{t \rightarrow \infty}|\beta|^{2} \mathcal{E}\left(z_{2}, t\right) \\
& +2 \operatorname{Re} \lim _{t \rightarrow \infty} \alpha \bar{\beta}\left(q^{\frac{1}{2}} z_{1} \bar{z}_{2}+q^{-\frac{1}{2}} z_{1}^{\prime} \bar{z}_{2}^{\prime}\right) \tag{3.23}\\
= & \mathcal{E}_{1}\left|\alpha_{\infty}\right|^{2}+\mathcal{E}_{2}\left|\beta_{\infty}\right|^{2}+2 \operatorname{Re}\left(\mathcal{E}_{12} \alpha_{\infty} \bar{\beta}_{\infty}\right) \\
= & Q\left(\alpha_{\infty}, \beta_{\infty}\right),
\end{align*}
$$

where $Q(\cdot, \cdot)$ is the quadratic form (2.5). This means that $\mathcal{E}(u, t)$ tends to a finite limit as $t \rightarrow \infty$. Moreover, by Remark 3.1. we know that

$$
\begin{equation*}
\left|\alpha_{\infty}\right|+\left|\beta_{\infty}\right|=Z_{\infty}>0 \quad \text { if } \quad u \not \equiv 0 . \tag{3.24}
\end{equation*}
$$

Since $Q(\cdot, \cdot)$ is positive definite, the limit (3.23) is strictly positive if $u \not \equiv 0$.
3.2. The Proof of Th. 1.1. Assuming (1.4), by Th. 2.1 the condition $\int_{t_{0}}^{\infty} q^{-\frac{p}{4}} d t<$ $\infty(p>0)$ is equivalent to the p-integrability of z_{1}, z_{2}, namely

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left|z_{1}\right|^{p} d t<\infty, \quad \int_{t_{0}}^{\infty}\left|z_{2}\right|^{p} d t<\infty \tag{3.25}
\end{equation*}
$$

Besides, the assumption $\int_{t_{0}}^{\infty}\left(|\gamma|+|\lambda| q^{-\frac{1}{2}}\right) d t<\infty$ and 3.15) lead to 3.18). Hence, by (3.7), we obtain

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|u|^{p} d t \leq 2^{p} C^{p} \int_{t_{0}}^{\infty}\left(\left|z_{1}\right|^{p}+\left|z_{2}\right|^{p}\right) d t<\infty . \tag{3.26}
\end{equation*}
$$

Conversely, let us suppose that all solutions of (1.1) are p-integrable. By Th. 1.2 we know that for every solution $u \not \equiv 0$ of 1.1 there exists a finite and positive the limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathcal{E}(u, t) \stackrel{\text { def }}{=} \mathcal{E}_{u}>0 \tag{3.27}
\end{equation*}
$$

This implies that if u_{1}, u_{2} are two linearly independent solutions of (1.1) then

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \sqrt{q(t)}\left(\left|u_{1}(t)\right|^{2}+\left|u_{2}(t)\right|^{2}\right)>0 \tag{3.28}
\end{equation*}
$$

In fact, if 3.28 does not hold, there exists a sequence $\left\{t_{n}\right\}_{n>1}, t_{n} \rightarrow \infty$, such that $\sqrt{q\left(t_{n}\right)}\left(\left|u_{1}\left(t_{n}\right)\right|^{2}+\left|u_{2}\left(t_{n}\right)\right|^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then, by Th. 1.2,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|u_{1}^{\prime}\left(t_{n}\right)\right|^{2}}{\sqrt{q\left(t_{n}\right)}}=\mathcal{E}_{u_{1}}, \quad \lim _{n \rightarrow \infty} \frac{\left|u_{2}^{\prime}\left(t_{n}\right)\right|^{2}}{\sqrt{q\left(t_{n}\right)}}=\mathcal{E}_{u_{2}} \tag{3.29}
\end{equation*}
$$

with $0<\mathcal{E}_{u_{1}}, \mathcal{E}_{u_{2}}<\infty$. In particular $\left|u_{1}^{\prime}\left(t_{n}\right)\right|,\left|u_{2}^{\prime}\left(t_{n}\right)\right|>0$ for n large enough, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|u_{1}^{\prime}\left(t_{n}\right)\right|}{\left|u_{2}^{\prime}\left(t_{n}\right)\right|}=\mathcal{E}_{u_{1}}^{\frac{1}{2}} \mathcal{E}_{u_{2}}^{-\frac{1}{2}} \tag{3.30}
\end{equation*}
$$

Hence, for a suitable subsequence $\left\{\tau_{n}\right\}_{n \geq 1} \subset\left\{t_{n}\right\}_{n \geq 1}$ we may suppose that $u_{2}^{\prime}\left(\tau_{n}\right) \neq 0$ for all $n \geq 1$ and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{u_{1}^{\prime}\left(\tau_{n}\right)}{u_{2}^{\prime}\left(\tau_{n}\right)}=\zeta \quad \text { with } \quad|\zeta|=\mathcal{E}_{u_{1}}^{\frac{1}{2}} \mathcal{E}_{u_{2}}^{-\frac{1}{2}} \tag{3.31}
\end{equation*}
$$

Next, we consider

$$
\begin{equation*}
v(t) \stackrel{\text { def }}{=} u_{1}(t)-\zeta u_{2}(t) . \tag{3.32}
\end{equation*}
$$

Since u_{1}, u_{2} are linearly independent, v is a non-zero solution of 1.1). It follows that

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \sqrt{q\left(\tau_{n}\right)}\left|v\left(\tau_{n}\right)\right|^{2} \\
& \quad \leq 2 \lim _{n \rightarrow \infty} \sqrt{q\left(\tau_{n}\right)}\left(\left|u_{1}\left(\tau_{n}\right)\right|^{2}+|\zeta|^{2}\left|u_{2}\left(\tau_{n}\right)\right|^{2}\right)=0 . \tag{3.33}
\end{align*}
$$

Moreover, by (3.29) and 3.31)-3.32 we have also

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{\left|v^{\prime}\left(\tau_{n}\right)\right|^{2}}{\sqrt{q\left(\tau_{n}\right)}} & =\lim _{n \rightarrow \infty} \frac{\left|u_{1}^{\prime}\left(\tau_{n}\right)-\zeta u_{2}^{\prime}\left(\tau_{n}\right)\right|^{2}}{\sqrt{q\left(\tau_{n}\right)}} \\
& =\lim _{n \rightarrow \infty} \frac{\left|u_{2}^{\prime}\left(\tau_{n}\right)\right|^{2}}{\sqrt{q\left(\tau_{n}\right)}}\left|\frac{u_{1}^{\prime}\left(\tau_{n}\right)}{u_{2}^{\prime}\left(\tau_{n}\right)}-\zeta\right|^{2}=0 \tag{3.34}
\end{align*}
$$

From (3.33) and (3.34) it follows that $\lim _{n \rightarrow \infty} \mathcal{E}\left(v, \tau_{n}\right)=0$. On the other hand, by Th. 1.2 we must have $\lim _{t \rightarrow \infty} \mathcal{E}(v, t)=\mathcal{E}_{v}>0$ because $v \not \equiv 0$.

This contradiction proves that 3.28 holds.
Now we can show that $\int_{t_{0}}^{\infty} q^{-\frac{p}{4}} d t<\infty$, if all the solutions of 1.2 are p-integrable. In fact, (3.28) implies that there exists $\varepsilon>0$ such that $\sqrt{q(t)}\left(\left|u_{1}(t)\right|^{2}+\right.$ $\left.\left|u_{2}(t)\right|^{2}\right) \geq \varepsilon$ for t large enough, say $t \geq \bar{t} \geq t_{0}$. Hence, since $p>0$, we have the inequalities

$$
\begin{align*}
\int_{\bar{t}}^{\infty} q(t)^{-\frac{p}{4}} d t & \leq\left(\frac{1}{\varepsilon}\right)^{\frac{p}{2}} \int_{\bar{t}}^{\infty}\left(\left|u_{1}(t)\right|^{2}+\left|u_{2}(t)\right|^{2}\right)^{\frac{p}{2}} d t \tag{3.35}\\
& \leq\left(\frac{2}{\varepsilon}\right)^{\frac{p}{2}} \int_{\bar{t}}^{\infty}\left(\left|u_{1}(t)\right|^{p}+\left|u_{2}(t)\right|^{p}\right) d t<\infty
\end{align*}
$$

4. Proof of Theorem 1.3

First of all we prove that the solutions of (1.1) are bounded if 1.7 holds. To this end, we select suitable linearly independent solutions of 1.2 . More precisely, fixed $\tau \geq t_{0}$, we denote by v_{τ}, w_{τ} the solutions of (1.2) satisfying, for $t=\tau$, the initial conditions

$$
\left\{\begin{array} { l }
{ v _ { \tau } (\tau) = q (\tau) ^ { - \frac { 1 } { 2 } } } \tag{4.1}\\
{ v _ { \tau } ^ { \prime } (\tau) = 0 }
\end{array} \quad \left\{\begin{array}{l}
w_{\tau}(\tau)=0 \\
w_{\tau}^{\prime}(\tau)=1
\end{array}\right.\right.
$$

Denoting with $W_{\tau} \stackrel{\text { def }}{=} v_{\tau} w_{\tau}^{\prime}-v_{\tau}^{\prime} w_{\tau}$ the wronskian of v_{τ}, w_{τ}, from 4.1) we clearly have

$$
\begin{equation*}
W_{\tau}(t)=q(\tau)^{-\frac{1}{2}}, \quad \forall t \in\left[t_{0}, \infty\right) \tag{4.2}
\end{equation*}
$$

Taking (1.5) into account, we introduce the quantity

$$
\begin{equation*}
A_{\tau} \stackrel{\text { def }}{=} \sup _{t \geq \tau}\left[\mathcal{E}\left(v_{\tau}, t\right) \vee \mathcal{E}\left(w_{\tau}, t\right)\right] \tag{4.3}
\end{equation*}
$$

By Th. 2.2, $0<A_{\tau}<\infty$. In addition, we have:

$$
\begin{align*}
\left|v_{\tau}\right|,\left|w_{\tau}\right| & \leq \sqrt{A_{\tau}} q^{-\frac{1}{4}} \\
\left|v_{\tau}^{\prime}\right|,\left|w_{\tau}^{\prime}\right| & \leq \sqrt{A_{\tau}} q^{\frac{1}{4}} \tag{4.4}\\
\left|v_{\tau} v_{\tau}^{\prime}\right|,\left|w_{\tau} w_{\tau}^{\prime}\right| & \leq \frac{A_{\tau}}{2}
\end{align*}
$$

for all $t \geq \tau$. Now, let

$$
\begin{equation*}
u:\left[t_{0}, \infty\right) \rightarrow \mathbb{C} \tag{4.5}
\end{equation*}
$$

be a solution of 1.1. We look for $\tilde{\alpha}, \tilde{\beta}:\left[t_{0}, \infty\right) \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
u=\tilde{\alpha} v_{\tau}+\tilde{\beta} w_{\tau}, \quad u^{\prime}=\tilde{\alpha} v_{\tau}^{\prime}+\tilde{\beta} w_{\tau}^{\prime} . \tag{4.6}
\end{equation*}
$$

As in the proofs of Th. 1.1 and 1.2 differentiating the expression $u=\tilde{\alpha} v_{\tau}+\tilde{\beta} w_{\tau}$ twice (with respect to t) and substituting into (1.1), we easily see that $\tilde{\alpha}, \tilde{\beta}$ must satisfy the integral equations

$$
\begin{align*}
& \tilde{\alpha}(t)=\tilde{\alpha}(\tau)+\frac{1}{W_{\tau}} \int_{\tau}^{t}\left[\tilde{\alpha}\left(\gamma w_{\tau} v_{\tau}^{\prime}+\lambda v_{\tau} w_{\tau}\right)+\tilde{\beta}\left(\gamma w_{\tau} w_{\tau}^{\prime}+\lambda w_{\tau}^{2}\right)\right] d s \tag{4.7}\\
& \tilde{\beta}(t)=\tilde{\beta}(\tau)-\frac{1}{W_{\tau}} \int_{\tau}^{t}\left[\tilde{\alpha}\left(\gamma v_{\tau} v_{\tau}^{\prime}+\lambda v_{\tau}^{2}\right)+\tilde{\beta}\left(\gamma v_{\tau} w_{\tau}^{\prime}+\lambda v_{\tau} w_{\tau}\right)\right] d s
\end{align*}
$$

with initial data, at $t=\tau$,

$$
\left\{\begin{array}{l}
\tilde{\alpha}(\tau)=u(\tau) q(\tau)^{\frac{1}{2}} \tag{4.8}\\
\tilde{\beta}(\tau)=u^{\prime}(\tau)
\end{array}\right.
$$

From (4.4) and 4.7, it follows that

$$
\begin{align*}
|\tilde{\alpha}(t)|+|\tilde{\beta}(t)| \leq & |\tilde{\alpha}(\tau)|+|\tilde{\beta}(\tau)| \\
& +\frac{A_{\tau}}{2 W_{\tau}} \int_{\tau}^{t}(|\tilde{\alpha}|+|\tilde{\beta}|)\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d s \tag{4.9}
\end{align*}
$$

for all $t \geq \tau$. Thus, by Gronwall's Lemma, we obtain:

$$
\begin{equation*}
|\tilde{\alpha}(t)|+|\tilde{\beta}(t)| \leq(|\tilde{\alpha}(\tau)|+|\tilde{\beta}(\tau)|) \exp \frac{A_{\tau}}{2 W_{\tau}} \int_{\tau}^{t}\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d s \tag{4.10}
\end{equation*}
$$

Then, from 4.4, 4.6, 4.8 and 4.10 we have

$$
\begin{equation*}
|u(t)| \leq B_{\tau} q(t)^{-\frac{1}{4}} \exp \frac{A_{\tau}}{2 W_{\tau}} \int_{\tau}^{t}\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d s \tag{4.11}
\end{equation*}
$$

for all $t \geq \tau$, with $B_{\tau}=\sqrt{A_{\tau}}\left(|u(\tau)| q(\tau)^{\frac{1}{2}}+\left|u^{\prime}(\tau)\right|\right)$.
We can now prove that u remains bounded as $t \rightarrow \infty$. In fact, by (4.11), u is uniformly bounded in $\left[t_{0}, \infty\right)$ if the quantity

$$
\begin{equation*}
K_{\tau}(t) \stackrel{\text { def }}{=} \int_{\tau}^{t}\left(3|\gamma|+4|\lambda| q^{-\frac{1}{2}}\right) d x-\frac{W_{\tau}}{2 A_{\tau}} \ln q(t) \tag{4.12}
\end{equation*}
$$

remains bounded as $t \rightarrow \infty$, i.e. if 1.7 is verified for some $\mathcal{C} \geq \frac{2 A_{\tau}}{W_{\tau}}$. Hence, it is clearly enough that 1.7 holds for some \mathcal{C} such that

$$
\begin{equation*}
\mathcal{C}>2 \inf _{\tau \geq t_{0}} \frac{A_{\tau}}{W_{\tau}} \tag{4.13}
\end{equation*}
$$

We claim that the greatest lower bound of the quotient A_{τ} / W_{τ} is equal to one. To see this, we observe that the initial conditions (4.1)-(4.2) give

$$
\begin{equation*}
\mathcal{E}\left(v_{\tau}, \tau\right)=\mathcal{E}\left(w_{\tau}, \tau\right)=q(\tau)^{-\frac{1}{2}} \tag{4.14}
\end{equation*}
$$

Thus, by 4.2 4.3), we have $A_{\tau} / W_{\tau} \geq 1$ for all $\tau \geq t_{0}$.

On the other hand, by Lemma 2.5, for all $\Lambda>1$ there exists $t_{\Lambda} \geq t_{0}$ such that

$$
\begin{equation*}
\mathcal{E}\left(v_{\tau}, t\right) \leq \Lambda \mathcal{E}\left(v_{\tau}, \tau\right), \quad \mathcal{E}\left(w_{\tau}, t\right) \leq \Lambda \mathcal{E}\left(w_{\tau}, \tau\right) \tag{4.15}
\end{equation*}
$$

for all $t, \tau \geq t_{\Lambda}$. Hence, by (4.3) and (4.14), we have

$$
\begin{equation*}
A_{\tau} \leq \Lambda q(\tau)^{-\frac{1}{2}}, \quad \text { for } \quad \tau \geq t_{\Lambda} \tag{4.16}
\end{equation*}
$$

It follows that $A_{\tau} / W_{\tau} \leq \Lambda$ for $\tau \geq t_{\Lambda}$ and we my conclude that

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \frac{A_{\tau}}{W_{\tau}}=1 \tag{4.17}
\end{equation*}
$$

From (4.13) we deduce that u remains bounded if (1.7) holds with $\mathcal{C}>2$.
Finally, let us prove that $u(t) \rightarrow 0$, as $t \rightarrow \infty$, if (1.7) is verified with $\mathcal{C}>2$. In fact, by 4.17) we may fix $\tau_{o} \geq t_{0}$ such that

$$
\begin{equation*}
\mathcal{C}>\frac{2 A_{\tau_{0}}}{W_{\tau_{0}}} \tag{4.18}
\end{equation*}
$$

Then, by 1.7], there exists $\rho \in \mathbb{R}$ such that

$$
\begin{equation*}
K_{\tau_{0}}(t) \leq \rho+\left(\frac{1}{\mathcal{C}}-\frac{W_{\tau_{0}}}{2 A_{\tau_{o}}}\right) \ln q(t), \quad \forall t \geq \tau_{0} \tag{4.19}
\end{equation*}
$$

where K_{τ} is the quantity introduced in 4.12). Hence, since $q(t) \rightarrow \infty$, from (4.18-4.19) we see that $K_{\tau_{0}}(t) \rightarrow-\infty$ as $t \rightarrow \infty$. Then, setting $\tau=\tau_{o}$ in 4.11, we deduce that $u(t) \rightarrow 0$ as $t \rightarrow \infty$.

5. Some applications

We give here some applications of Th. 1.1, 1.2 and 1.3 . We will also compare these results with the criteria of R. Bellman [1] and Z. Opial 9] stated in the introduction.

In the following examples, C will stands for a generic positive constant, independent of t; in addition, r, r^{\prime}, s will always indicate real numbers.

Example 5.1. Let us consider equation (1.1] in $[e, \infty)$, with $q(t)=\left(2+\sin \left(t^{s}\right)\right) \ln t$, $0 \leq s<1 ; \gamma(t)=\frac{\phi_{1}(t)}{t \ln t}, \lambda(t)=\frac{\phi_{2}(t)}{t \sqrt{\ln t}}$ where ϕ_{1}, ϕ_{2} are bounded, continuous functions.

Then $q(t) \geq \ln t \geq 1$ in $[e, \infty)$, moreover

$$
\begin{equation*}
\left|\left(q^{-\frac{1}{2}}\right)^{(h)}\right| \leq C \frac{t^{h(s-1)}}{\sqrt{\ln t}} \quad \text { in } \quad[e, \infty) \tag{5.1}
\end{equation*}
$$

for all integers $h \geq 1$. Hence (1.4) is verified taking a positive integer $m>\frac{s}{1-s}$.
It is easy to show that 1.7) holds if $3\left\|\phi_{1}\right\|_{L^{\infty}}+4\left\|\phi_{2}\right\|_{L^{\infty}}<\frac{1}{2}$. In this case, applying Th. 1.3 we deduce that every solution u of 1.1 tends to 0 as $t \rightarrow \infty$. The assumptions of [9] are not verified, because q is not monotone. Since $\int^{\infty} q^{-\frac{p}{4}} d t=$ $+\infty$ for all $p>0$, by Th. 2.1 for every $p>0$ there exists at least a solution of 1.2 which is not p-integrable on $\left[t_{0}, \infty\right)$. Thus the criterium of [1] is not applicable.

Example 5.2. Consider the equation

$$
\begin{equation*}
u^{\prime \prime}+\frac{\phi}{t} u^{\prime}+\left[t^{r}+a t^{r^{\prime}} \sin \left(t^{s}\right)\right] u=0 \quad \text { for } \quad t \geq t_{0} \geq 1 \tag{5.2}
\end{equation*}
$$

where ϕ is a continuous function, $a \in \mathbb{R}, r \geq 0$.

1) Case $r^{\prime}<\frac{r}{2}-1, \int^{\infty} \frac{|\phi|}{t}<\infty$. Setting $q(t)=t^{r},(1.4)$ is easily verified and we can apply Th. 1.1 and Th. 1.2 Therefore for every solution u of (5.2) there exists the finite limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(t^{\frac{r}{2}}|u(t)|^{2}+t^{-\frac{r}{2}}\left|u^{\prime}(t)\right|^{2}\right)=\mathcal{E}_{u}, \quad \text { with } \quad \mathcal{E}_{u}>0 \quad \text { if } \quad u \not \equiv 0 ; \tag{5.3}
\end{equation*}
$$

if $r>0$ then every solution u of 5.2 is p-integrable for $p>\frac{4}{r}$.
1^{\prime}) Case $r^{\prime} \leq \frac{r}{2}-1$, ϕ bounded. Setting $q(t)=t^{r}$ as above, condition (1.7) holds if we suppose if $3\|\phi\|_{L^{\infty}}+4|a|<\frac{r}{2}\left(3\|\phi\|_{L^{\infty}}<\frac{r}{2}\right.$, if $\left.r^{\prime}<\frac{r}{2}-1\right)$. In this case, by Th. 1.3 every solutions u tends to 0 as $t \rightarrow \infty$.

Observe that in cases 1) and 1^{\prime}) there are no restrictions on s. Even if $\phi \equiv 0$, the criterium of [1] is applicable only for $r>2$ and $r^{\prime} \leq 0$.
2) Case $\frac{r}{2}-1<r^{\prime}<r, 0 \leq s<1$. In this case we must set $q=t^{r}+a t^{r^{\prime}} \sin \left(t^{s}\right)$. Then, we have the inequalities

$$
\begin{equation*}
\left|\left(q^{-\frac{1}{2}}\right)^{(h)}\right| \leq C\left(t^{-\frac{r}{2}-h}+t^{r^{\prime}-\frac{3 r}{2}+h(s-1)}\right) \quad \text { in } \quad\left[t_{0}, \infty\right), \tag{5.4}
\end{equation*}
$$

for all integers $h \geq 0$, provided t_{0} is sufficiently large. This means that 1.4 is verified if we take a positive integer $m>\frac{2 s+2 r^{\prime}-3 r}{2(1-s)}$. Then we have:

- if $\int^{\infty} \frac{|\phi|}{t}<\infty$, we can apply Th. 1.1 and 1.2 as in the previous cases;
- if ϕ is bounded, condition 1.7) holds if $3\|\phi\|_{L^{\infty}}<\frac{r}{2}$. In this case, by Th. 1.3 every solutions u tends to 0 as $t \rightarrow \infty$.

3) Case $r^{\prime}=r, 0 \leq s<1$. Setting $q=t^{r}+a t^{r} \sin \left(t^{s}\right)$, we have exactly the previous situation, provided $|a|<1$.

In cases 2) and 3) the criterium of [9] is not applicable if q is not monotone nondecreasing, i.e. respectively if $s>r-r^{\prime}$ and $s>0$.

Remark 5.3. Let us consider equation (5.2) in $[1, \infty)$ with $r^{\prime}=r \geq 0,|a|<1$ and $s \geq 1$. Setting $q=t^{r}+a t^{r} \sin \left(t^{s}\right)$ as above, we have $q(t) \geq t^{r}(1-|a|)$ in $[1, \infty)$. The assumptions stated in 1.8-1.10) of Remark 1.4 are easily verified if we suppose

$$
\begin{equation*}
r>2(s-1) \tag{5.5}
\end{equation*}
$$

and m is a sufficiently large, positive integer. In fact, from (5.4 we obtain

$$
\begin{equation*}
\left(q^{-\frac{1}{2}}\right)^{1-\frac{1}{h}}\left|\left(q^{-\frac{1}{2}}\right)^{(h)}\right|^{\frac{1}{h}} \leq C t^{-\frac{r}{2}+(s-1)} \quad \forall h \geq 1 . \tag{5.6}
\end{equation*}
$$

Thus (5.5) implies (1.8). In addition, 5.4 also gives

$$
\begin{equation*}
\left|q^{-\eta_{0} / 2}\left(\frac{d}{d t} q^{-\frac{1}{2}}\right)^{\eta_{1}} \cdots\left(\frac{d^{m+1}}{d t^{m+1}} q^{-\frac{1}{2}}\right)^{\eta_{m+1}}\right| \leq C t^{-\frac{m r}{2}+(m+1)(s-1)}, \tag{5.7}
\end{equation*}
$$

for all integers $\eta_{0}, \ldots, \eta_{m+1} \geq 0$ satisfying 1.10 . Hence, 1.9 is verified if

$$
\begin{equation*}
r>\frac{2}{m}+2(s-1) \frac{m+1}{m} . \tag{5.8}
\end{equation*}
$$

From (5.5) again, we can see that (5.8 holds if m is large enough. As stated in Remark 1.4, we are therefore in a position to apply Th. 1.1, 1.2 and 1.3 More precisely, assuming $\int^{\infty} \frac{|\phi|}{t}<\infty$, we can apply Th. 1.1 and 1.2 as in the previous cases. Condition (1.7) holds if $3\|\phi\|_{L^{\infty}}<\frac{r}{2}$ and, in this case, every solution u tends to 0 as $t \rightarrow \infty$.

Example 5.4. Here we will show that the conclusion of Th. $1.3(u(t) \rightarrow 0$ as $t \rightarrow \infty$) may be false if we only require that (1.7) holds for an arbitrary $\mathcal{C}>0$. In other words, we must suppose $\mathcal{C} \geq \mathcal{C}_{0}$, for a suitable $\mathcal{C}_{0}>0$. In fact, let us consider the equation

$$
\begin{equation*}
u^{\prime \prime}+\gamma(t) u^{\prime}+q(t) u=0, \quad t \in[\tau, \infty) . \tag{5.9}
\end{equation*}
$$

As it is known, if $\gamma \in C^{1}$, the substitution $u=v e^{-\frac{1}{2} \int_{\tau}^{t} \gamma d t}$ transforms 5.9) into

$$
\begin{equation*}
v^{\prime \prime}+\left(q-\frac{\gamma^{\prime}}{2}-\frac{\gamma^{2}}{4}\right) v=0, \quad t \in[\tau, \infty) \tag{5.10}
\end{equation*}
$$

Now, setting $q=t, \gamma=\frac{a}{t}(a \in \mathbb{R})$ and $\tau=1$ we obtain the equation

$$
\begin{equation*}
v^{\prime \prime}+\left(t+\frac{a}{2 t^{2}}-\frac{a^{2}}{4 t^{2}}\right) v=0 \quad t \in[1, \infty) \tag{5.11}
\end{equation*}
$$

Equation (5.11) satisfies the assumptions of Th. 1.2 in $\left[t_{0}, \infty\right) \subseteq[1, \infty)$, provided t_{0} is large enough; for every nonzero solution v there exists finite and positive the limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(t^{\frac{1}{2}}|v(t)|^{2}+t^{-\frac{1}{2}}\left|v^{\prime}(t)\right|^{2}\right) \stackrel{\text { def }}{=} \mathcal{E}_{v} \tag{5.12}
\end{equation*}
$$

Now, let \tilde{v} be a fixed nonzero solution of (5.11, thus $\mathcal{E}_{\tilde{v}}>0$. Since \tilde{v} is oscillating, there exists a sequence $\left\{t_{n}\right\}_{n \geq 1}, t_{n} \rightarrow \infty$ as $n \rightarrow \infty$, such that

$$
\begin{equation*}
\left|\tilde{v}\left(t_{n}\right)\right| \geq \frac{\mathcal{E}_{\tilde{v}}}{2 \sqrt[4]{t_{n}}}, \quad \forall n \geq 1 \tag{5.13}
\end{equation*}
$$

Then $\tilde{u}=\tilde{v} e^{-\frac{1}{2} \int_{1}^{t} \gamma d t}=t^{-\frac{a}{2}} \tilde{v}$ is a solution of (5.9) in [1, ∞) satisfying:

$$
\begin{equation*}
\left|\tilde{u}\left(t_{n}\right)\right| \geq \frac{\mathcal{E}_{\tilde{v}}}{2} t_{n}^{-\frac{a}{2}-\frac{1}{4}}, \quad \forall n \geq 1 \tag{5.14}
\end{equation*}
$$

In particular, it follows that $\tilde{u}\left(t_{n}\right) \nrightarrow 0$, as $n \rightarrow \infty$, if $a \leq-\frac{1}{2}$. Hence, for $a \leq-\frac{1}{2}$, the conclusion of Th. 1.3 cannot hold.

On the other hand, taking $q=t, \gamma=\frac{a}{t}$ it is easy to see that equation 5.9) satisfies condition (1.7) only if $|a|<\frac{1}{6}$.

References

[1] Bellman, R., A stability property of solutions of linear differential equations, Duke Math. J. 11 (1944), 513-516.
[2] Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book Company, New York, 1953.
[3] Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1963.
[4] Galbraith, A., McShane, E. J., Parrish, G., On the solutions of the linear second-order differential equations, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247-249.
[5] Knowles, I., On stability conditions for second order linear differential equations, J. Differential Equations 34 (1979), 179-203.
[6] Manfrin, R., Quadratic forms for the Liouville equation $w_{t t}+\lambda^{2} a(t) w=0$ with applications to Kirchhoff equation, Portugal. Math. 65 (2008), 447-484.
[7] Manfrin, R., L^{p} solutions of second order differential equations, Funkcial. Ekvac. 52 (2009), 255-279.
[8] Manfrin, R., On the boundedness of solutions of the equation $u^{\prime \prime}+(1+f(t)) u=0$, Discrete Contin. Dynam. Systems 23 (2009), 991-1008.
[9] Opial, Z., Nouvelles remarques sur l'équation différentielle $u^{\prime \prime}+a(t) u=0$, Ann. Polon. Math. 6 (1959), 75-81.
[10] Trench, W. F., On the asymptotic behavior of solutions of second order linear differential equations, Proc. Amer. Math. Soc. 14 (1963), 12-14.

Università IUAV di Venezia
Tolentini S. Croce 191, 30135 Venezia, Italy
E-mail: manfrin@iuav.it

[^0]: 2000 Mathematics Subject Classification: primary 34C11; secondary 34D10.
 Key words and phrases: second order ODE, boundedness of solutions, linear perturbations. Received June 1, 2009, revised November 2009. Editor O. Došlý.

