TIMELIKE B_{2}-SLANT HELICES IN MINKOWSKI SPACE \mathbf{E}_{1}^{4}

Ahmad T. Ali and Rafael López

Abstract

We consider a unit speed timelike curve α in Minkowski 4-space \mathbf{E}_{1}^{4} and denote the Frenet frame of α by $\left\{\mathbf{T}, \mathbf{N}, \mathbf{B}_{1}, \mathbf{B}_{2}\right\}$. We say that α is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction U of \mathbf{E}_{1}^{4}. In this work we study those helices where the function $\left\langle\mathbf{B}_{2}, U\right\rangle$ is constant and we give different characterizations of such curves.

1. Introduction and statement of Results

A helix in Euclidean 3 -space \mathbf{E}^{3} is a curve where the tangent lines make a constant angle with a fixed direction. A helix curve is characterized by the fact that the ratio τ / κ is constant along the curve, where τ and κ denote the torsion and the curvature, respectively. Helices are well known curves in classical differential geometry of space curves [8] and we refer to the reader for recent works on this type of curves [4, 12]. Recently, Izumiya and Takeuchi have introduced the concept of slant helix by saying that the normal lines make a constant angle with a fixed direction [5]. They characterize a slant helix if and only if the function

$$
\begin{equation*}
\frac{\kappa^{2}}{\left(\kappa^{2}+\tau^{2}\right)^{3 / 2}}\left(\frac{\tau}{\kappa}\right)^{\prime} \tag{1}
\end{equation*}
$$

is constant. The article [5] motivated generalizations in a twofold sense: first, by considering arbitrary dimension of Euclidean space [7, 9]; second, by considering analogous problems in other ambient spaces, for example, in Minkowski space \mathbf{E}_{1}^{n} [1, 3, 6, 11, 13.

In this work we consider the generalization of the concept of helix in Minkowski 4 -space, when the helix is a timelike curve. We denote by \mathbf{E}_{1}^{4} the Minkowski 4-space, that is, \mathbf{E}_{1}^{4} is the real vector space \mathbb{R}^{4} endowed with the standard Lorentzian metric

$$
\langle,\rangle=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a rectangular coordinate system of \mathbb{R}^{4}. An arbitrary vector $v \in \mathbf{E}_{1}^{4}$ is said spacelike (resp. timelike, lightlike) if $\langle v, v\rangle>0$ or $v=0$ (resp. $\langle v, v\rangle<0,\langle v, v\rangle=0$ and $v \neq 0)$. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbf{E}_{1}^{4}$ be a (differentiable) curve

[^0]with $\alpha^{\prime}(t) \neq 0$, where $\alpha^{\prime}(t)=d \alpha / d t(t)$. The curve α is said timelike if all its velocity vectors $\alpha^{\prime}(t)$ are timelike. Then it is possible to re-parametrize α by a new parameter s, in such way that $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle=-1$, for any $s \in I$. We say then that α is a unit speed timelike curve.

Consider $\alpha=\alpha(s)$ a unit speed timelike curve in \mathbf{E}_{1}^{4}. Let $\left\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}_{1}(s)\right.$, $\left.\mathbf{B}_{2}(s)\right\}$ be the moving frame along α, where $\mathbf{T}, \mathbf{N}, \mathbf{B}_{1}$ and \mathbf{B}_{2} denote the tangent, the principal normal, the first binormal and second binormal vector fields, respectively. Here $\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}_{1}(s)$ and $\mathbf{B}_{2}(s)$ are mutually orthogonal vectors satisfying

$$
\langle\mathbf{T}, \mathbf{T}\rangle=-1,\langle\mathbf{N}, \mathbf{N}\rangle=\left\langle\mathbf{B}_{1}, \mathbf{B}_{1}\right\rangle=\left\langle\mathbf{B}_{2}, \mathbf{B}_{2}\right\rangle=1
$$

Then the Frenet equations for α are given by

$$
\left[\begin{array}{l}
\mathbf{T}^{\prime} \tag{2}\\
\mathbf{N}^{\prime} \\
\mathbf{B}_{1}^{\prime} \\
\mathbf{B}_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \kappa_{1} & 0 & 0 \\
\kappa_{1} & 0 & \kappa_{2} & 0 \\
0 & -\kappa_{2} & 0 & \kappa_{3} \\
0 & 0 & -\kappa_{3} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}_{1} \\
\mathbf{B}_{2}
\end{array}\right] .
$$

Recall the functions $\kappa_{1}(s), \kappa_{2}(s)$ and $\kappa_{3}(s)$ are called respectively, the first, the second and the third curvatures of α. If $\kappa_{3}(s)=0$ for any $s \in I$, then $\mathbf{B}_{2}(s)$ is a constant vector B and the curve α lies in a three-dimensional affine subspace orthogonal to B, which is isometric to the Minkowski 3-space \mathbf{E}_{1}^{3}.

We will assume throughout this work that all the three curvatures satisfy $\kappa_{i}(s) \neq 0$ for any $s \in I, 1 \leq i \leq 3$.

Definition 1.1. A unit speed timelike curve $\alpha: I \rightarrow \mathbf{E}_{1}^{4}$ is said to be a generalized (timelike) helix if there exists a constant vector field U different from zero and a vector field $X \in\left\{\mathbf{T}, \mathbf{N}, \mathbf{B}_{1}, \mathbf{B}_{2}\right\}$ such that the function

$$
s \longmapsto\langle X(s), U\rangle, \quad s \in I
$$

is constant.
In this work we are interested in generalized timelike helices in \mathbf{E}_{1}^{4} where the function $\left\langle\mathbf{B}_{2}, U\right\rangle$ is constant. Motivated by the concept of slant helix in \mathbf{E}^{4} [9], we give the following

Definition 1.2. A unit speed timelike curve α is called a B_{2}-slant helix if there exists a constant vector field U such that the function $\left\langle\mathbf{B}_{2}(s), U\right\rangle$ is constant.

Our main result in this work follows similar ideas as in [6] for timelike helices in \mathbf{E}_{1}^{4}. In this sense, we have the following characterization of B_{2}-slant helices in the spirit of the one given in equation (1) for a slant helix in \mathbf{E}^{3} :
A unit speed timelike curve in \mathbf{E}_{1}^{4} is a B_{2}-slant helix if and only if the function

$$
\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{2}
$$

is constant.
When α is a lightlike curve, similar computations have been given by Erdogan and Yilmaz in [2].

2. Basic equations of timelike helices

Let α be a unit speed timelike curve in \mathbf{E}_{1}^{4} and let U be a unit constant vector field in \mathbf{E}_{1}^{4}. For each $s \in I$, the vector U is expressed as linear combination of the orthonormal basis $\left\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}_{1}(s), \mathbf{B}_{2}(s)\right\}$. Consider the differentiable functions $a_{i}, 1 \leq i \leq 4$,

$$
\begin{equation*}
U=a_{1}(s) \mathbf{T}(s)+a_{2}(s) \mathbf{N}(s)+a_{3}(s) \mathbf{B}_{1}(s)+a_{4}(s) \mathbf{B}_{2}(s), \quad s \in I \tag{3}
\end{equation*}
$$

that is,

$$
a_{1}=-\langle\mathbf{T}, U\rangle, \quad a_{2}=\langle\mathbf{N}, U\rangle, \quad a_{3}=\left\langle\mathbf{B}_{1}, U\right\rangle, \quad a_{4}=\left\langle\mathbf{B}_{2}, U\right\rangle
$$

Because the vector field U is constant, a differentiation in (3) together (2) gives the following ordinary differential equation system

$$
\left\{\begin{array}{l}
a_{1}^{\prime}+\kappa_{1} a_{2}=0 \tag{4}\\
a_{2}^{\prime}+\kappa_{1} a_{1}-\kappa_{2} a_{3}=0 \\
a_{3}^{\prime}+\kappa_{2} a_{2}-\kappa_{3} a_{4}=0 \\
a_{4}^{\prime}+\kappa_{3} a_{3}=0
\end{array}\right.
$$

In the case that U is spacelike (resp. timelike), we will assume that $\langle U, U\rangle=1$ (resp. -1). This means that the constant M defined by

$$
\begin{equation*}
M:=\langle U, U\rangle=-a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \tag{5}
\end{equation*}
$$

is $1,-1$ or 0 depending if U is spacelike, timelike or lightlike, respectively.
We now suppose that α is a generalized helix. This means that there exists i, $1 \leq i \leq 4$, such that the function $a_{i}=a_{i}(s)$ is constant. Thus in the system (4) we have four differential equations and three derivatives of functions.

The first case that appears is that the function a_{1} is constant, that is, the function $\langle\mathbf{T}(s), U\rangle$ is constant. If U is timelike, that is, the tangent lines of α make a constant (hyperbolic) angle with a fixed timelike direction, the curve α is called a timelike cylindrical helix [6]. Then it is known that α is timelike cylindrical helix if and only if the function

$$
\frac{1}{\kappa_{3}^{2}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime 2}+\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{2}
$$

is constant [6].
However the hypothesis that U is timelike can be dropped and we can assume that U has any causal character, as for example, spacelike or lightlike. We explain this situation. In Euclidean space one speaks on the angle that makes a fixed direction with the tangent lines (cylindrical helices) or the normal lines (slant helices). In Minkowski space, one can only speak about the angle between two vectors $\{u, v\}$ if both are timelike and the belong to the same timecone (hyperbolic angle). See [10, page 144]. This is the reason to avoid any reference about 'angles' in Definition 1.1

Suppose now that the function $\langle\mathbf{T}(s), U\rangle$ is constant, independent on the causal character of U. From the expression of U in (3), we know that $a_{1}^{\prime}=0$ and by
using (4), we obtain $a_{2}=0$ and

$$
a_{3}=\frac{\kappa_{1}}{\kappa_{2}} a_{1}, \quad a_{3}^{\prime}=\kappa_{3} a_{4}, \quad a_{4}^{\prime}+\kappa_{3} a_{3}=0 .
$$

Consider the change of variable $t(s)=\int_{0}^{s} \kappa_{3}(x) d x$. Then $\frac{d t}{d s}(s)=\kappa_{3}(s)$ and the last two above equations write as $a_{3}^{\prime \prime}(t)+a_{3}(t)=a_{4}^{\prime \prime}(t)+a_{4}(t)=0$. Then one obtains that there exist constants A and B such that

$$
\begin{aligned}
& a_{3}(s)=A \cos \int_{0}^{s} \kappa_{3}(s) d s+B \sin \int_{0}^{s} \kappa_{3}(s) d s \\
& a_{4}(s)=-A \sin \int_{0}^{s} \kappa_{3}(s) d s+B \cos \int_{0}^{s} \kappa_{3}(s) d s
\end{aligned}
$$

Since $a_{3}^{2}+a_{4}^{2}=\langle U, U\rangle+a_{1}^{2}$ is constant, and

$$
a_{4}=\frac{1}{\kappa_{3}} a_{3}^{\prime}=\frac{1}{\kappa_{3}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime} a_{1},
$$

it follows that

$$
\frac{1}{\kappa_{3}^{2}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime 2}+\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{2}=\text { constant } .
$$

Thus we have proved the following theorem.
Theorem 2.1. Let α be a unit speed timelike curve in \mathbf{E}_{1}^{4}. Then the function $\langle\mathbf{T}(s), U\rangle$ is constant for a fixed constant vector field U if and only if the the function

$$
\frac{1}{\kappa_{3}^{2}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime 2}+\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{2}
$$

is constant.
When U is a timelike constant vector field, we re-discover the result given in [6].

3. Timelike B_{2}-Slant helices

Let α be a B_{2}-slant helix, that is, a unit speed timelike curve in \mathbf{E}_{1}^{4} such that the function $\left\langle\mathbf{B}_{2}(s), U\right\rangle, s \in I$, is constant for a fixed constant vector field U. We point out that U can be of any causal character. In the particular case that U is spacelike, and since \mathbf{B}_{2} is too, we can say that a B_{2}-slant helix is a timelike curve whose second binormal lines make a constant angle with a fixed (spacelike) direction.

Using the system (3), the fact that α is a B_{2}-slant helix means that the function a_{4} is constant. Then (4) gives $a_{3}=0$ and (3) writes as

$$
\begin{equation*}
U=a_{1}(s) \mathbf{T}(s)+a_{2}(s) \mathbf{N}(s)+a_{4} \mathbf{B}_{2}(s), \quad a_{4} \in \mathbb{R} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2}=\frac{\kappa_{3}}{\kappa_{2}} a_{4}=-\frac{1}{\kappa_{1}} a_{1}^{\prime}, \quad \quad a_{2}^{\prime}+\kappa_{1} a_{1}=0 \tag{7}
\end{equation*}
$$

We remark that $a_{4} \neq 0$: on the contrary, and from (4), we conclude $a_{i}=0$, $1 \leq i \leq 4$, that is, $U=0$: contradiction.

It follows from (7) that the function a_{1} satisfies the following second order differential equation:

$$
\frac{1}{\kappa_{1}} \frac{d}{d s}\left(\frac{1}{\kappa_{1}} a_{1}^{\prime}\right)-a_{1}=0 .
$$

If we change variables in the above equation as $\frac{1}{\kappa_{1}} \frac{d}{d s}=\frac{d}{d t}$, that is, $t=\int_{0}^{s} \kappa_{1}(s) d s$, then we get

$$
\frac{d^{2} a_{1}}{d t^{2}}-a_{1}=0
$$

The general solution of this equation is

$$
\begin{equation*}
a_{1}(s)=A \cosh \int_{0}^{s} \kappa_{1}(s) d s+B \sinh \int_{0}^{s} \kappa_{1}(s) d s \tag{8}
\end{equation*}
$$

where A and B are arbitrary constants. From (7) and 8 we have

$$
\begin{equation*}
a_{2}(s)=-A \sinh \int_{0}^{s} \kappa_{1}(s) d s-B \cosh \int_{0}^{s} \kappa_{1}(s) d s \tag{9}
\end{equation*}
$$

The above expressions of a_{1} and a_{2} give

$$
\begin{align*}
& A=-\left[\frac{\kappa_{3}}{\kappa_{2}} \sinh \int_{0}^{s} \kappa_{1}(s) d s+\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime} \cosh \int_{0}^{s} \kappa_{1}(s) d s\right] a_{4} \tag{10}\\
& B=-\left[\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime} \sinh \int_{0}^{s} \kappa_{1}(s) d s+\frac{\kappa_{3}}{\kappa_{2}} \cosh \int_{0}^{s} \kappa_{1}(s) d s\right] a_{4}
\end{align*}
$$

From (10),

$$
A^{2}-B^{2}=\left[\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\frac{\kappa_{3}^{2}}{\kappa_{2}^{2}}\right] a_{4}^{2} .
$$

Therefore

$$
\begin{equation*}
\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\frac{\kappa_{3}^{2}}{\kappa_{2}^{2}}=\text { constant }:=m \tag{11}
\end{equation*}
$$

Conversely, if the condition (11) is satisfied for a timelike curve, then we can always find a constant vector field U such that the function $\left\langle\mathbf{B}_{2}(s), U\right\rangle$ is constant: it suffices if we define

$$
U=\left[-\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime} \mathbf{T}+\frac{\kappa_{3}}{\kappa_{2}} \mathbf{N}+\mathbf{B}_{2}\right] .
$$

By taking account of the differentiation of (11) and the Frenet equations (2), we have that $\frac{d U}{d s}=0$ and this means that U is a constant vector. On the other hand, $\left\langle\mathbf{B}_{2}(s), U\right\rangle=1$. The above computations can be summarized as follows:

Theorem 3.1. Let α be a unit speed timelike curve in \mathbf{E}_{1}^{4}. Then α is a B_{2}-slant helix if and only if the function

$$
\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{2}
$$

is constant.

From (5), (8) and (9) we get

$$
A^{2}-B^{2}=a_{4}^{2}-M=a_{4}^{2} m
$$

Thus, the sign of the constant m agrees with the one $A^{2}-B^{2}$. So, if U is timelike or lightlike, m is positive. If U is spacelike, then the sign of m depends on $a_{4}^{2}-1$. For example, $m=0$ if and only if $a_{4}^{2}=1$. With similar computations as above, we have

Corollary 3.2. Let α be a unit speed timelike curve in \mathbf{E}_{1}^{4} and let U be a unit spacelike constant vector field. Then $\left\langle\mathbf{B}_{2}(s), U\right\rangle^{2}=1$ for any $s \in I$ if and only if there exists a constant A such that

$$
\frac{\kappa_{3}}{\kappa_{2}}(s)=A \exp \left(\int_{0}^{s} \kappa_{1}(t) d t\right) .
$$

As a consequence of Theorem 3.1, we obtain other characterization of B_{2}-slant helices. The first one is the following
Corollary 3.3. Let α be a unit speed timelike curve in \mathbf{E}_{1}^{4}. Then α is a B_{2}-slant helix if and only if there exists real numbers C and D such that

$$
\begin{equation*}
\frac{\kappa_{3}}{\kappa_{2}}(s)=C \sinh \int_{0}^{s} \kappa_{1}(s) d s+D \cosh \int_{0}^{s} \kappa_{1}(s) d s \tag{12}
\end{equation*}
$$

Proof. Assume that α is a B_{2}-slant helix. From (7) and (9), the choice $C=-A / a_{4}$ and $D=-B / a_{4}$ yields (12).

We now suppose that (12) is satisfied. A straightforward computation gives

$$
\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{2}=C^{2}-D^{2}
$$

We now use Theorem 3.1.
We end this section with a new characterization for B_{2}-slant helices. Let now assume that α is a B_{2}-slant helix in \mathbf{E}_{1}^{4}. By differentiation with respect to s we get

$$
\begin{equation*}
\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}\left[\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}\right]^{\prime}-\left(\frac{\kappa_{3}}{\kappa_{2}}\right)\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}=0 \tag{13}
\end{equation*}
$$

and hence

$$
\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}=\frac{\left(\frac{\kappa_{3}}{\kappa_{2}}\right)\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}}{\left[\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}\right]^{\prime}}
$$

If we define a function $f(s)$ as

$$
f(s)=\frac{\left(\frac{\kappa_{3}}{\kappa_{2}}\right)\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}}{\left[\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}\right]^{\prime}},
$$

then

$$
\begin{equation*}
f(s) \kappa_{1}(s)=\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime} \tag{14}
\end{equation*}
$$

By using (13) and (14), we have

$$
f^{\prime}(s)=\frac{\kappa_{1} \kappa_{3}}{\kappa_{2}}
$$

Conversely, consider the function $f(s)=\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}$ and assume that $f^{\prime}(s)=\frac{\kappa_{1} \kappa_{3}}{\kappa_{2}}$. We compute

$$
\begin{equation*}
\frac{d}{d s}\left[\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\frac{\kappa_{3}^{2}}{\kappa_{2}^{2}}\right]=\frac{d}{d s}\left[f(s)^{2}-\frac{f^{\prime}(s)^{2}}{\kappa_{1}^{2}}\right]:=\varphi(s) . \tag{15}
\end{equation*}
$$

As $f(s) f^{\prime}(s)=\left(\frac{\kappa_{3}}{\kappa_{2}}\right)\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}$ and $f^{\prime \prime}(s)=\kappa_{1}^{\prime}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)+\kappa_{1}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}$ we obtain

$$
f^{\prime}(s) f^{\prime \prime}(s)=\kappa_{1} \kappa_{1}^{\prime}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{2}+\kappa_{1}^{2}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}
$$

As consequence of above computations

$$
\varphi(s)=2\left(f(s) f^{\prime}(s)-\frac{f^{\prime}(s) f^{\prime \prime}(s)}{\kappa_{1}^{2}}+\frac{\kappa_{1}^{\prime} f^{\prime}(s)^{2}}{\kappa_{1}^{3}}\right)=0
$$

that is, the function $\frac{1}{\kappa_{1}^{2}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2}-\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{2}$ is constant. Therefore we have proved the following
Theorem 3.4. Let α be a unit speed timelike curve in \mathbf{E}_{1}^{4}. Then α is a B_{2}-slant helix if and only if the function $f(s)=\frac{1}{\kappa_{1}}\left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime}$ satisfies $f^{\prime}(s)=\frac{\kappa_{1} \kappa_{3}}{\kappa_{2}}$.

References

[1] Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), 1503-1509.
[2] Erdoǧan, M., Yilmaz, G., Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space, Int. J. Contemp. Math. Sci. 3 (2008), 1113-1120.
[3] Ferrandez, A., Gimenez, A., Luca, P., Null helices in Lorentzian space forms, Int. J. Mod. Phys. A 16 (2001), 4845-4863.
[4] Gluck, H., Higher curvatures of curves in Eulidean space, Amer. Math. Monthly 73 (1996), 699-704.
[5] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), 531-537.
[6] Kocayiǧit, H., Önder, M., Timelike curves of constant slope in Minkowski space \mathbf{E}_{1}^{4}, J. Science Techn. Beykent Univ. 1 (2007), 311-318.
[7] Kula, L., Yayli, Y., On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600-607.
[8] Millman, R. S., Parker, G. D., Elements of differential geometry, Prentice-Hall Inc., Englewood Cliffs, N. J., 1977.
[9] Önder, M., Kazaz, M., Kocayiǧit, H., Kilic, O., B2-slant helix in Euclidean 4-space E ${ }^{4}$, Int. J. Contemp. Math. Sci. 3 (29) (2008), 1433-1440.
[10] O'Neill, B., Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, vol. 103, Academic Press, Inc., New York, 1983.
[11] Petrovic-Torgasev, M., Sucurovic, E., W-curves in Minkowski spacetime, Novi Sad J. Math. 32 (2002), 55-65.
[12] Scofield, P. D., Curves of constant precession, Amer. Math. Monthly 102 (1995), 531-537.
[13] Synge, J. L., Timelike helices in flat space-time, Proc. Roy. Irish Acad. Sect. A 65 (1967), 27-42.

Ahmad T. Ali
Al-Azhar University, Faculty of Science Mathematics Department, Nasr City, 11448, Cairo, Egypt
E-mail: atali71@yahoo.com

Rafael López
Universidad de Granada
Departamento de Geometría y Topología
18071 Granada, Spain
E-mail: rcamino@ugr.es

[^0]: 2000 Mathematics Subject Classification: primary 53C50; secondary 53B30.
 Key words and phrases: Minkowski space, timelike curve, Frenet equations, slant helix.
 Partially supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andalucía grant no. P06-FQM-01642.

 Received January 27, 2009, revised October 2009. Editor J. Slovák.

