# TIMELIKE $B_2$ -SLANT HELICES IN MINKOWSKI SPACE $E_1^4$

Ahmad T. Ali and Rafael López

ABSTRACT. We consider a unit speed timelike curve  $\alpha$  in Minkowski 4-space  $\mathbf{E}_1^4$  and denote the Frenet frame of  $\alpha$  by  $\{\mathbf{T}, \mathbf{N}, \mathbf{B}_1, \mathbf{B}_2\}$ . We say that  $\alpha$  is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction U of  $\mathbf{E}_1^4$ . In this work we study those helices where the function  $\langle \mathbf{B}_2, U \rangle$  is constant and we give different characterizations of such curves.

### 1. INTRODUCTION AND STATEMENT OF RESULTS

A helix in Euclidean 3-space  $\mathbf{E}^3$  is a curve where the tangent lines make a constant angle with a fixed direction. A helix curve is characterized by the fact that the ratio  $\tau/\kappa$  is constant along the curve, where  $\tau$  and  $\kappa$  denote the torsion and the curvature, respectively. Helices are well known curves in classical differential geometry of space curves [8] and we refer to the reader for recent works on this type of curves [4, 12]. Recently, Izumiya and Takeuchi have introduced the concept of slant helix by saying that the normal lines make a constant angle with a fixed direction [5]. They characterize a slant helix if and only if the function

(1) 
$$\frac{\kappa^2}{(\kappa^2 + \tau^2)^{3/2}} \left(\frac{\tau}{\kappa}\right)'$$

is constant. The article [5] motivated generalizations in a twofold sense: first, by considering arbitrary dimension of Euclidean space [7, 9]; second, by considering analogous problems in other ambient spaces, for example, in Minkowski space  $\mathbf{E}_1^n$  [1, 3, 6, 11, 13].

In this work we consider the generalization of the concept of helix in Minkowski 4-space, when the helix is a timelike curve. We denote by  $\mathbf{E}_1^4$  the Minkowski 4-space, that is,  $\mathbf{E}_1^4$  is the real vector space  $\mathbb{R}^4$  endowed with the standard Lorentzian metric

$$\langle \ , \ \rangle = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2 \,,$$

where  $(x_1, x_2, x_3, x_4)$  is a rectangular coordinate system of  $\mathbb{R}^4$ . An arbitrary vector  $v \in \mathbf{E}_1^4$  is said spacelike (resp. timelike, lightlike) if  $\langle v, v \rangle > 0$  or v = 0 (resp.  $\langle v, v \rangle < 0, \langle v, v \rangle = 0$  and  $v \neq 0$ ). Let  $\alpha \colon I \subset \mathbb{R} \to \mathbf{E}_1^4$  be a (differentiable) curve

<sup>2000</sup> Mathematics Subject Classification: primary 53C50; secondary 53B30.

Key words and phrases: Minkowski space, timelike curve, Frenet equations, slant helix.

Partially supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andalucía grant no. P06-FQM-01642.

Received January 27, 2009, revised October 2009. Editor J. Slovák.

with  $\alpha'(t) \neq 0$ , where  $\alpha'(t) = d\alpha/dt(t)$ . The curve  $\alpha$  is said timelike if all its velocity vectors  $\alpha'(t)$  are timelike. Then it is possible to re-parametrize  $\alpha$  by a new parameter s, in such way that  $\langle \alpha'(s), \alpha'(s) \rangle = -1$ , for any  $s \in I$ . We say then that  $\alpha$  is a unit speed timelike curve.

Consider  $\alpha = \alpha(s)$  a unit speed timelike curve in  $\mathbf{E}_1^4$ . Let  $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}_1(s), \mathbf{B}_2(s)\}$  be the moving frame along  $\alpha$ , where  $\mathbf{T}, \mathbf{N}, \mathbf{B}_1$  and  $\mathbf{B}_2$  denote the tangent, the principal normal, the first binormal and second binormal vector fields, respectively. Here  $\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}_1(s)$  and  $\mathbf{B}_2(s)$  are mutually orthogonal vectors satisfying

$$\langle \mathbf{T}, \mathbf{T} \rangle = -1, \langle \mathbf{N}, \mathbf{N} \rangle = \langle \mathbf{B}_1, \mathbf{B}_1 \rangle = \langle \mathbf{B}_2, \mathbf{B}_2 \rangle = 1.$$

Then the Frenet equations for  $\alpha$  are given by

(2) 
$$\begin{bmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}'_1 \\ \mathbf{B}'_2 \end{bmatrix} = \begin{bmatrix} 0 & \kappa_1 & 0 & 0 \\ \kappa_1 & 0 & \kappa_2 & 0 \\ 0 & -\kappa_2 & 0 & \kappa_3 \\ 0 & 0 & -\kappa_3 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix}$$

Recall the functions  $\kappa_1(s)$ ,  $\kappa_2(s)$  and  $\kappa_3(s)$  are called respectively, the first, the second and the third curvatures of  $\alpha$ . If  $\kappa_3(s) = 0$  for any  $s \in I$ , then  $\mathbf{B}_2(s)$  is a constant vector B and the curve  $\alpha$  lies in a three-dimensional affine subspace orthogonal to B, which is isometric to the Minkowski 3-space  $\mathbf{E}_1^3$ .

We will assume throughout this work that all the three curvatures satisfy  $\kappa_i(s) \neq 0$  for any  $s \in I$ ,  $1 \leq i \leq 3$ .

**Definition 1.1.** A unit speed timelike curve  $\alpha: I \to \mathbf{E}_1^4$  is said to be a generalized (timelike) helix if there exists a constant vector field U different from zero and a vector field  $X \in \{\mathbf{T}, \mathbf{N}, \mathbf{B}_1, \mathbf{B}_2\}$  such that the function

$$s \longmapsto \langle X(s), U \rangle, \quad s \in I$$

is constant.

In this work we are interested in generalized timelike helices in  $\mathbf{E}_1^4$  where the function  $\langle \mathbf{B}_2, U \rangle$  is constant. Motivated by the concept of slant helix in  $\mathbf{E}^4$  [9], we give the following

**Definition 1.2.** A unit speed timelike curve  $\alpha$  is called a  $B_2$ -slant helix if there exists a constant vector field U such that the function  $\langle \mathbf{B}_2(s), U \rangle$  is constant.

Our main result in this work follows similar ideas as in [6] for timelike helices in  $\mathbf{E}_1^4$ . In this sense, we have the following characterization of  $B_2$ -slant helices in the spirit of the one given in equation (1) for a slant helix in  $\mathbf{E}^3$ :

A unit speed timelike curve in  $\mathbf{E}_1^4$  is a  $B_2$ -slant helix if and only if the function

$$\frac{1}{\kappa_1^2} \left(\frac{\kappa_3}{\kappa_2}\right)^{\prime 2} - \left(\frac{\kappa_3}{\kappa_2}\right)^2$$

is constant.

When  $\alpha$  is a lightlike curve, similar computations have been given by Erdogan and Yilmaz in [2].

### 2. Basic equations of timelike helices

Let  $\alpha$  be a unit speed timelike curve in  $\mathbf{E}_1^4$  and let U be a unit constant vector field in  $\mathbf{E}_1^4$ . For each  $s \in I$ , the vector U is expressed as linear combination of the orthonormal basis { $\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}_1(s), \mathbf{B}_2(s)$ }. Consider the differentiable functions  $a_i, 1 \leq i \leq 4$ ,

(3) 
$$U = a_1(s) \mathbf{T}(s) + a_2(s) \mathbf{N}(s) + a_3(s) \mathbf{B}_1(s) + a_4(s) \mathbf{B}_2(s), \quad s \in I,$$

that is,

$$a_1 = -\langle \mathbf{T}, U \rangle$$
,  $a_2 = \langle \mathbf{N}, U \rangle$ ,  $a_3 = \langle \mathbf{B}_1, U \rangle$ ,  $a_4 = \langle \mathbf{B}_2, U \rangle$ .

Because the vector field U is constant, a differentiation in (3) together (2) gives the following ordinary differential equation system

(4) 
$$\begin{cases} a'_1 + \kappa_1 a_2 = 0\\ a'_2 + \kappa_1 a_1 - \kappa_2 a_3 = 0\\ a'_3 + \kappa_2 a_2 - \kappa_3 a_4 = 0\\ a'_4 + \kappa_3 a_3 = 0 \end{cases}$$

In the case that U is spacelike (resp. timelike), we will assume that  $\langle U, U \rangle = 1$  (resp. -1). This means that the constant M defined by

(5) 
$$M := \langle U, U \rangle = -a_1^2 + a_2^2 + a_3^2 + a_4^2$$

is 1, -1 or 0 depending if U is spacelike, timelike or lightlike, respectively.

We now suppose that  $\alpha$  is a generalized helix. This means that there exists i,  $1 \leq i \leq 4$ , such that the function  $a_i = a_i(s)$  is constant. Thus in the system (4) we have four differential equations and three derivatives of functions.

The first case that appears is that the function  $a_1$  is constant, that is, the function  $\langle \mathbf{T}(s), U \rangle$  is constant. If U is timelike, that is, the tangent lines of  $\alpha$  make a constant (hyperbolic) angle with a fixed timelike direction, the curve  $\alpha$  is called a timelike cylindrical helix [6]. Then it is known that  $\alpha$  is timelike cylindrical helix if and only if the function

$$\frac{1}{\kappa_3^2} \left(\frac{\kappa_1}{\kappa_2}\right)^{\prime 2} + \left(\frac{\kappa_1}{\kappa_2}\right)^2$$

is constant [6].

However the hypothesis that U is timelike can be dropped and we can assume that U has any causal character, as for example, spacelike or lightlike. We explain this situation. In Euclidean space one speaks on the angle that makes a fixed direction with the tangent lines (cylindrical helices) or the normal lines (slant helices). In Minkowski space, one can only speak about the angle between two vectors  $\{u, v\}$  if both are timelike and the belong to the same timecone (hyperbolic angle). See [10, page 144]. This is the reason to avoid any reference about 'angles' in Definition 1.1.

Suppose now that the function  $\langle \mathbf{T}(s), U \rangle$  is constant, independent on the causal character of U. From the expression of U in (3), we know that  $a'_1 = 0$  and by

using (4), we obtain  $a_2 = 0$  and

$$a_3 = \frac{\kappa_1}{\kappa_2} a_1, \quad a'_3 = \kappa_3 a_4, \quad a'_4 + \kappa_3 a_3 = 0.$$

Consider the change of variable  $t(s) = \int_0^s \kappa_3(x) dx$ . Then  $\frac{dt}{ds}(s) = \kappa_3(s)$  and the last two above equations write as  $a''_3(t) + a_3(t) = a''_4(t) + a_4(t) = 0$ . Then one obtains that there exist constants A and B such that

$$a_3(s) = A\cos\int_0^s \kappa_3(s)ds + B\sin\int_0^s \kappa_3(s)\,ds$$
$$a_4(s) = -A\sin\int_0^s \kappa_3(s)ds + B\cos\int_0^s \kappa_3(s)ds\,.$$

Since  $a_3^2 + a_4^2 = \langle U, U \rangle + a_1^2$  is constant, and

$$a_4 = \frac{1}{\kappa_3} a'_3 = \frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2}\right)' a_1,$$

it follows that

$$\frac{1}{\kappa_3^2} \left(\frac{\kappa_1}{\kappa_2}\right)^{\prime 2} + \left(\frac{\kappa_1}{\kappa_2}\right)^2 = \text{constant.}$$

Thus we have proved the following theorem.

**Theorem 2.1.** Let  $\alpha$  be a unit speed timelike curve in  $\mathbf{E}_1^4$ . Then the function  $\langle \mathbf{T}(s), U \rangle$  is constant for a fixed constant vector field U if and only if the the function

$$\frac{1}{\kappa_3^2} \left(\frac{\kappa_1}{\kappa_2}\right)^{\prime 2} + \left(\frac{\kappa_1}{\kappa_2}\right)^2$$

is constant.

When U is a timelike constant vector field, we re-discover the result given in [6].

# 3. TIMELIKE $B_2$ -SLANT HELICES

Let  $\alpha$  be a  $B_2$ -slant helix, that is, a unit speed timelike curve in  $\mathbf{E}_1^4$  such that the function  $\langle \mathbf{B}_2(s), U \rangle$ ,  $s \in I$ , is constant for a fixed constant vector field U. We point out that U can be of any causal character. In the particular case that Uis spacelike, and since  $\mathbf{B}_2$  is too, we can say that a  $B_2$ -slant helix is a timelike curve whose second binormal lines make a constant angle with a fixed (spacelike) direction.

Using the system (3), the fact that  $\alpha$  is a  $B_2$ -slant helix means that the function  $a_4$  is constant. Then (4) gives  $a_3 = 0$  and (3) writes as

(6) 
$$U = a_1(s) \mathbf{T}(s) + a_2(s) \mathbf{N}(s) + a_4 \mathbf{B}_2(s), \quad a_4 \in \mathbb{R}$$

where

(7) 
$$a_2 = \frac{\kappa_3}{\kappa_2} a_4 = -\frac{1}{\kappa_1} a'_1, \qquad a'_2 + \kappa_1 a_1 = 0.$$

We remark that  $a_4 \neq 0$ : on the contrary, and from (4), we conclude  $a_i = 0$ ,  $1 \leq i \leq 4$ , that is, U = 0: contradiction.

It follows from (7) that the function  $a_1$  satisfies the following second order differential equation:

$$\frac{1}{\kappa_1}\frac{d}{ds}\left(\frac{1}{\kappa_1}a_1'\right) - a_1 = 0.$$

If we change variables in the above equation as  $\frac{1}{\kappa_1} \frac{d}{ds} = \frac{d}{dt}$ , that is,  $t = \int_0^s \kappa_1(s) ds$ , then we get

$$\frac{d^2 a_1}{dt^2} - a_1 = 0 \,.$$

The general solution of this equation is

(8) 
$$a_1(s) = A \cosh \int_0^s \kappa_1(s) \, ds + B \sinh \int_0^s \kappa_1(s) \, ds \, ,$$

where A and B are arbitrary constants. From (7) and (8) we have

(9) 
$$a_2(s) = -A \sinh \int_0^s \kappa_1(s) \, ds - B \cosh \int_0^s \kappa_1(s) \, ds$$

The above expressions of  $a_1$  and  $a_2$  give

(10)  
$$A = -\left[\frac{\kappa_3}{\kappa_2}\sinh\int_0^s \kappa_1(s)\,ds + \frac{1}{\kappa_1}\left(\frac{\kappa_3}{\kappa_2}\right)'\cosh\int_0^s \kappa_1(s)\,ds\right]a_4\,,$$
$$B = -\left[\frac{1}{\kappa_1}\left(\frac{\kappa_3}{\kappa_2}\right)'\sinh\int_0^s \kappa_1(s)\,ds + \frac{\kappa_3}{\kappa_2}\cosh\int_0^s \kappa_1(s)\,ds\right]a_4\,.$$

From (10),

$$A^{2} - B^{2} = \left[\frac{1}{\kappa_{1}^{2}} \left(\frac{\kappa_{3}}{\kappa_{2}}\right)^{\prime 2} - \frac{\kappa_{3}^{2}}{\kappa_{2}^{2}}\right] a_{4}^{2}$$

Therefore

(11) 
$$\frac{1}{\kappa_1^2} \left(\frac{\kappa_3}{\kappa_2}\right)^{\prime 2} - \frac{\kappa_3^2}{\kappa_2^2} = \text{constant} := m \,.$$

Conversely, if the condition (11) is satisfied for a timelike curve, then we can always find a constant vector field U such that the function  $\langle \mathbf{B}_2(s), U \rangle$  is constant: it suffices if we define

$$U = \left[ -\frac{1}{\kappa_1} \left( \frac{\kappa_3}{\kappa_2} \right)' \mathbf{T} + \frac{\kappa_3}{\kappa_2} \mathbf{N} + \mathbf{B}_2 \right].$$

By taking account of the differentiation of (11) and the Frenet equations (2), we have that  $\frac{dU}{ds} = 0$  and this means that U is a constant vector. On the other hand,  $\langle \mathbf{B}_2(s), U \rangle = 1$ . The above computations can be summarized as follows:

**Theorem 3.1.** Let  $\alpha$  be a unit speed timelike curve in  $\mathbf{E}_1^4$ . Then  $\alpha$  is a  $B_2$ -slant helix if and only if the function

$$\frac{1}{\kappa_1^2} \left(\frac{\kappa_3}{\kappa_2}\right)^{\prime 2} - \left(\frac{\kappa_3}{\kappa_2}\right)^2$$

is constant.

From (5), (8) and (9) we get

$$A^2 - B^2 = a_4^2 - M = a_4^2 m$$
.

Thus, the sign of the constant m agrees with the one  $A^2 - B^2$ . So, if U is timelike or lightlike, m is positive. If U is spacelike, then the sign of m depends on  $a_4^2 - 1$ . For example, m = 0 if and only if  $a_4^2 = 1$ . With similar computations as above, we have

**Corollary 3.2.** Let  $\alpha$  be a unit speed timelike curve in  $\mathbf{E}_1^4$  and let U be a unit spacelike constant vector field. Then  $\langle \mathbf{B}_2(s), U \rangle^2 = 1$  for any  $s \in I$  if and only if there exists a constant A such that

$$\frac{\kappa_3}{\kappa_2}(s) = A \, \exp\left(\int_0^s \kappa_1(t) \, dt\right).$$

As a consequence of Theorem 3.1, we obtain other characterization of  $B_2$ -slant helices. The first one is the following

**Corollary 3.3.** Let  $\alpha$  be a unit speed timelike curve in  $\mathbf{E}_1^4$ . Then  $\alpha$  is a  $B_2$ -slant helix if and only if there exists real numbers C and D such that

(12) 
$$\frac{\kappa_3}{\kappa_2}(s) = C \sinh \int_0^s \kappa_1(s) \, ds + D \cosh \int_0^s \kappa_1(s) \, ds$$

**Proof.** Assume that  $\alpha$  is a  $B_2$ -slant helix. From (7) and (9), the choice  $C = -A/a_4$  and  $D = -B/a_4$  yields (12).

We now suppose that (12) is satisfied. A straightforward computation gives

$$\frac{1}{\kappa_1^2} \left(\frac{\kappa_3}{\kappa_2}\right)^{\prime 2} - \left(\frac{\kappa_3}{\kappa_2}\right)^2 = C^2 - D^2$$

We now use Theorem 3.1.

We end this section with a new characterization for  $B_2$ -slant helices. Let now assume that  $\alpha$  is a  $B_2$ -slant helix in  $\mathbf{E}_1^4$ . By differentiation (11) with respect to swe get

(13) 
$$\frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)' \left[\frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)'\right]' - \left(\frac{\kappa_3}{\kappa_2}\right) \left(\frac{\kappa_3}{\kappa_2}\right)' = 0,$$

and hence

$$\frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)' = \frac{\left(\frac{\kappa_3}{\kappa_2}\right) \left(\frac{\kappa_3}{\kappa_2}\right)'}{\left[\frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)'\right]'},$$

If we define a function f(s) as

$$f(s) = \frac{\left(\frac{\kappa_3}{\kappa_2}\right) \left(\frac{\kappa_3}{\kappa_2}\right)'}{\left[\frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)'\right]'},$$

then

(14) 
$$f(s)\kappa_1(s) = \left(\frac{\kappa_3}{\kappa_2}\right)'.$$

By using (13) and (14), we have

$$f'(s) = \frac{\kappa_1 \kappa_3}{\kappa_2} \,.$$

Conversely, consider the function  $f(s) = \frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)'$  and assume that  $f'(s) = \frac{\kappa_1 \kappa_3}{\kappa_2}$ . We compute

(15) 
$$\frac{d}{ds} \left[ \frac{1}{\kappa_1^2} \left( \frac{\kappa_3}{\kappa_2} \right)'^2 - \frac{\kappa_3^2}{\kappa_2^2} \right] = \frac{d}{ds} \left[ f(s)^2 - \frac{f'(s)^2}{\kappa_1^2} \right] := \varphi(s) \, .$$

As  $f(s)f'(s) = \left(\frac{\kappa_3}{\kappa_2}\right)\left(\frac{\kappa_3}{\kappa_2}\right)'$  and  $f''(s) = \kappa_1'\left(\frac{\kappa_3}{\kappa_2}\right) + \kappa_1\left(\frac{\kappa_3}{\kappa_2}\right)'$  we obtain  $f'(s)f''(s) = \kappa_1\kappa_1'\left(\frac{\kappa_3}{\kappa_2}\right)^2 + \kappa_1^2\left(\frac{\kappa_3}{\kappa_2}\right)\left(\frac{\kappa_3}{\kappa_2}\right)'.$ 

$$f'(s)f''(s) = \kappa_1 \kappa_1' \left(\frac{\kappa_3}{\kappa_2}\right) + \kappa_1^2 \left(\frac{\kappa_3}{\kappa_2}\right) \left(\frac{\kappa_3}{\kappa_2}\right) .$$

As consequence of above computations

$$\varphi(s) = 2\left(f(s)f'(s) - \frac{f'(s)f''(s)}{\kappa_1^2} + \frac{\kappa_1'f'(s)^2}{\kappa_1^3}\right) = 0,$$

that is, the function  $\frac{1}{\kappa_1^2} \left(\frac{\kappa_3}{\kappa_2}\right)^{\prime 2} - \left(\frac{\kappa_3}{\kappa_2}\right)^2$  is constant. Therefore we have proved the following

**Theorem 3.4.** Let  $\alpha$  be a unit speed timelike curve in  $\mathbf{E}_1^4$ . Then  $\alpha$  is a  $B_2$ -slant helix if and only if the function  $f(s) = \frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2}\right)'$  satisfies  $f'(s) = \frac{\kappa_1 \kappa_3}{\kappa_2}$ .

#### References

- Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), 1503–1509.
- [2] Erdoğan, M., Yilmaz, G., Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space, Int. J. Contemp. Math. Sci. 3 (2008), 1113–1120.
- [3] Ferrandez, A., Gimenez, A., Luca, P., Null helices in Lorentzian space forms, Int. J. Mod. Phys. A 16 (2001), 4845–4863.
- [4] Gluck, H., Higher curvatures of curves in Eulidean space, Amer. Math. Monthly 73 (1996), 699-704.
- [5] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), 531–537.
- [6] Kocayiğit, H., Önder, M., Timelike curves of constant slope in Minkowski space E<sup>4</sup><sub>1</sub>, J. Science Techn. Beykent Univ. 1 (2007), 311–318.
- [7] Kula, L., Yayli, Y., On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600–607.
- [8] Millman, R. S., Parker, G. D., *Elements of differential geometry*, Prentice-Hall Inc., Englewood Cliffs, N. J., 1977.
- [9] Önder, M., Kazaz, M., Kocayiğit, H., Kilic, O., B<sub>2</sub>-slant helix in Euclidean 4-space E<sup>4</sup>, Int. J. Contemp. Math. Sci. 3 (29) (2008), 1433–1440.
- [10] O'Neill, B., Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, vol. 103, Academic Press, Inc., New York, 1983.
- [11] Petrovic-Torgasev, M., Sucurovic, E., W-curves in Minkowski spacetime, Novi Sad J. Math. 32 (2002), 55–65.

- [12] Scofield, P. D., Curves of constant precession, Amer. Math. Monthly 102 (1995), 531-537.
- [13] Synge, J. L., Timelike helices in flat space-time, Proc. Roy. Irish Acad. Sect. A 65 (1967), 27–42.

Ahmad T. Ali Al-Azhar University, Faculty of Science Mathematics Department, Nasr City, 11448, Cairo, Egypt *E-mail*: atali71@yahoo.com

RAFAEL LÓPEZ UNIVERSIDAD DE GRANADA DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA 18071 GRANADA, SPAIN *E-mail*: rcamino@ugr.es

46