ON THE LIPSCHITZ OPERATOR ALGEBRAS

A. EBADIAN AND A. A. SHOKRI

ABSTRACT. In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an α -Lipschitz operator from a compact metric space into a Banach space A is defined and characterized in a natural way in the sence that $F:K\to A$ is a α -Lipschitz operator if and only if for each $\sigma\in X^*$ the mapping $\sigma\circ F$ is a α -Lipschitz function. The Lipschitz operators algebras $L^{\alpha}(K,A)$ and $l^{\alpha}(K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^{\alpha}(K,A)$ and $l^{\alpha}(K,A)$ are isometrically isomorphic to $L^{\alpha}(K)\check{\otimes}A$ and $l^{\alpha}(K)\check{\otimes}A$ respectively. Also we study homomorphisms on the $L^{\alpha}_{A}(X,B)$.

1. Introduction

Let (K,d) be compact metric space with at least two elements and $(X,\|\cdot\|)$ be a Banach space over the scalar field \mathbf{F} (= R or C). For a constant $\alpha > 0$ and an operator $T \colon K \to X$, set

(1)
$$L_{\alpha}(T) := \sup_{s \neq t} \frac{\|T(t) - T(s)\|}{d(s, t)^{\alpha}},$$

which is called the Lipschitz constant of T. Define

$$T_{\alpha}(x,y) = \frac{T(x) - T(y)}{d(x,y)^{\alpha}}, \quad x \neq y$$

$$L^{\alpha}(K,X) = \{T \colon K \to X : L_{\alpha}(T) < \infty\}$$

and

$$l^{\alpha}(K, X) = \{T : K \to X : ||T_{\alpha}(x, y)|| \to 0 \text{ as } d(x, y) \to 0\}.$$

The elements of $L^{\alpha}(K, X)$ and $l^{\alpha}(K, X)$ are called big and little Lipschitz operators, respectively [1].

Let C(K,X) be the set of all continuous operators from K into X and for each $T \in C(K,X)$, define

$$||T||_{\infty} = \sup_{x \in K} ||T(x)||.$$

For S, T in C(K, X) and λ in F, define

$$(S+T)(x) = S(x) + T(x), \quad (\lambda T)(x) = \lambda T(x), \quad (x \in X).$$

2000 Mathematics Subject Classification: primary 47B48; secondary 46J10. Key words and phrases: Lipschitz algebras, amenability, homomorphism.

Received October 7, 2008. Editor A. Pultr.

It is easy to see that $(C(K,X), \|\cdot\|_{\infty})$ becomes a Banach space over F and $L^{\alpha}(K,X)$ is a linear subspace of C(K,X). For each element T of $L^{\alpha}(K,X)$, define $\|T\|_{\alpha} = L_{\alpha}(T) + \|T\|_{\infty}$.

In their papers [3, 4], Cao, Zhang and Xu proved that $(L^{\alpha}(K,X), \|\cdot\|_{\alpha})$ is a Banach space over F and $l^{\alpha}(K,X)$ is a closed linear subspace of $(L^{\alpha}(K,X), \|\cdot\|_{\alpha})$. Now, let $(A, \|\cdot\|)$ be a unital Banach algebra with unit e. In this paper, we show that $(L^{\alpha}(K,A), \|\cdot\|_{\alpha})$ is a Banach algebra under pointwise and scalar multiplication and $l^{\alpha}(K,A)$ is a closed linear subalgebra of $(L^{\alpha}(K,A), \|\cdot\|_{\alpha})$ and study many aspects of these algebras. The spaces $L^{\alpha}(K,A)$ and $l^{\alpha}(K,A)$ are called big and little Lipschitz operators algebras. Note that Lipschitz operators algebras are, in fact, extensions of Lipschitz algebras. Sherbert [11, 12], Weaver [13, 14], Honary and Mahyar [7], Johnson [8, 9], Alimohammadi and Ebadian [1], Ebadian [6], Bade, Curtis and Dales [2], studied some properties of Lipschitz algebras. We will study (weak) amenability of Lipschitz operators algebras. Also we study homomorphisms on the $L^{\alpha}_{A}(X,B)$.

2. Characterizations of Lipschitz operators algebras

In this section, let (K, d) be a compact metric space which has at least two elements and $(A, \|\cdot\|)$ to denote a unital Banach algebra over the scalar field F (= R or C).

Theorem 2.1. $(L^{\alpha}(K,A), \|\cdot\|_{\alpha})$ is a Banach algebra over F and $l^{\alpha}(K,A)$ is a closed linear subspace of $(L^{\alpha}(K,A), \|\cdot\|_{\alpha})$.

Proof. As we have already $L^{\alpha}(K, A)$ is a Banach space and $l^{\alpha}(K, A)$ is a closed linear subspace if it. Now let $T, S \in L^{\alpha}(K, A)$, and define

$$(TS)(t) = T(t)S(t) \quad (t \in K).$$

Then

$$||TS||_{\alpha} = ||TS||_{\infty} + L_{\alpha}(TS)$$

$$\leq ||T||_{\infty} ||S||_{\infty} + \sup_{t \neq s} \frac{||T(t)S(t) - T(s)S(s)||}{d(t,s)^{\alpha}}$$

$$\leq ||T||_{\infty} ||S||_{\infty} + ||T||_{\infty} L_{\alpha}(S) + ||S||_{\infty} L_{\alpha}(T)$$

$$\leq (||T||_{\infty} + L_{\alpha}(T)) (||S||_{\infty} + L_{\alpha}(S))$$

$$= ||T||_{\alpha} ||S||_{\alpha}.$$

So that we see that $(L^{\alpha}(K,A), \|\cdot\|_{\alpha})$ is a Banach algebra and $l^{\alpha}(K,A)$ is a closed linear subspace of $(L^{\alpha}(K,A), \|\cdot\|_{\alpha})$.

Theorem 2.2. Let (K,d) be a compact metric space. Then $L^{\alpha}(K,A)$ is uniformly dense in C(K,A).

Proof. Let $f \in C(K, A)$. Then for every $\sigma \in A^*$ we have $\sigma \circ f \in C(K)$, so that there is $g \in L^{\alpha}(K)$ such that $\|g - \sigma \circ f\|_{\infty} < \varepsilon$. We define, the map $\eta \colon C \to A$ by

 $\eta(\lambda) = \lambda \cdot e$. It is easy to see that $\eta \circ g \in L^{\alpha}(K, A)$, and for every $\sigma \in A^*$, we have

$$|\sigma(g(x) \cdot e - f(x))| = |g(x) - (\sigma \circ f)(x)| < \varepsilon, \quad (x \in K).$$

Therefore $|\sigma(\eta \circ g - f)(x)| < \varepsilon$ for every $\sigma \in A^*$ and $x \in K$. This implies that $\|(\eta \circ g - f)(x)\| < \varepsilon$ for every $x \in K$. Therefore, $\|\eta \circ g - f\|_{\infty} < \varepsilon$ and the proof is complete.

Remark 2.3. Let A, B be unital Banach algebras over F. Then the injective tensor $A \check{\otimes} B$ is a unital Banach algebra under norm $\|\cdot\|_{\epsilon}$, [10].

Theorem 2.4.
$$L^{\alpha}(K, A) = \{F : K \to A \mid \sigma \circ F \in L^{\alpha}(K, \mathbb{C}), (\forall \sigma \in A^*)\}$$

Proof. Use the principle of Uniform Boundedness.

Lemma 2.5. Let $(E_1, \|\cdot\|_1), (E_2, \|\cdot\|_2)$ be Banach spaces. Then for $G \in E_1 \check{\otimes} E_2$

$$||G||_{\varepsilon} = \sup \left\{ ||(\operatorname{id} \otimes \phi)(G)||_{1} : \phi \in E_{2}^{*}, ||\phi|| \leq 1 \right\}.$$

Proof. See
$$[10]$$
.

Theorem 2.6. Let (K,d) be a compact metric space and A be a unital commutative Banach algebra. Then $L^{\alpha}(K,A)$ is isometrically isomorphic to $L^{\alpha}(K)\check{\otimes}A$.

Proof. It is straightforward to prove that the mapping $V: L^{\alpha}(K) \times A \to L^{\alpha}(K, A)$ defined by

$$V(f,a) = fa \qquad (f \in L^{\alpha}(K), \ a \in A),$$

$$(fa)(x) := f(x)a \qquad (x \in K),$$

is bilinear. Therefore there exists a unique linear map $T : L^{\alpha}(K) \check{\otimes} A \to L^{\alpha}(K, A)$ such that $T(f \otimes a) = V(f, a) = fa$, [10]. For every $G \in L^{\alpha}(K) \check{\otimes} A$, there is $m \in \mathbb{N}$, $f_j \in L^{\alpha}(K)$ and $a_j \in A$ $(1 \leq j \leq m)$ such that $G = \sum_{j=1}^m f_j \otimes a_j$, so we have

$$||G||_{\varepsilon} = \sup_{\phi \in A^*, ||\phi|| \le 1} ||(\mathrm{id} \otimes \phi)(G)||_{\alpha} = \sup_{\phi \in A^*, ||\phi|| \le 1} ||(\mathrm{id} \otimes \phi) \left(\sum_{j=1}^m f_j \otimes a_j\right)||$$

$$= \sup_{\phi \in A^*, ||\phi|| \le 1} ||\sum_{j=1}^m f_j \phi(a_j)||_{\alpha} = \sup_{\phi \in A^*, ||\phi|| \le 1} \left[\sup_{x \in K} \left|\sum_{j=1}^m f_j(x) \phi(a_j)\right| + \sup_{x \ne y} \frac{\left|\sum_{j=1}^m f_j(x) \phi(a_j) - \sum_{j=1}^m f_j(y) \phi(a_j)\right|}{d^{\alpha}(x, y)}\right]$$

$$= \sup_{\phi \in A^*, ||\phi|| \le 1} \left[\sup_{x \in K} \left|\phi \left(\sum_{j=1}^m f_j(x) a_j\right)\right| + \sup_{x \ne y} \frac{\left|\phi \left(\sum_{j=1}^m (f_j(x) a_j - f_j(y) a_j)\right)\right|}{d^{\alpha}(x, y)}\right]$$

$$\leq \sup_{\phi \in A^*, \|\phi\| \leq 1} \left[\sup_{x \in K} \|\phi\| \left\| \sum_{j=1}^m f_j(x) a_j \right\| + \sup_{x \neq y} \|\phi\| \frac{\|\sum_{j=1}^m f_j(x) a_j - \sum_{j=1}^m f_j(y) a_j\|}{d^{\alpha}(x, y)} \right]$$

$$\leq \sup_{x \in K} \left\| \sum_{j=1}^m f_j(x) a_j \right\| + \sup_{x \neq y} \frac{\|\sum_{j=1}^m f_j(x) a_j - \sum_{j=1}^m f_j(y) a_j\|}{d^{\alpha}(x, y)}$$

$$= \left\| \sum_{j=1}^m f_j a_j \right\|_{\infty} + p_{\alpha} \left(\sum_{j=1}^m f_j a_j \right) = \left\| \sum_{j=1}^m f_j a_j \right\|_{\alpha} = \left\| T \left(\sum_{j=1}^m f_j \otimes a_j \right) \right\|_{\alpha}$$

$$= \|TG\|_{\alpha} \implies \|G\|_{\varepsilon} \leq \|TG\|_{\alpha}.$$

Now let $\gamma > 0$ be arbitrary, such that $||TG||_{\alpha} > \gamma$. Then $||\sum_{j=1}^{m} f_j a_j||_{\alpha} > \gamma$, and so we have

$$\begin{split} \left\| \sum_{j=1}^{m} f_{j} a_{j} \right\|_{\infty} + p_{\alpha} \left(\sum_{j=1}^{m} f_{j} a_{j} \right) > \gamma \\ \Rightarrow \sup_{x \in K} \left\| \sum_{j=1}^{m} f_{j}(x) a_{j} \right\| + \sup_{x \neq y} \frac{\left\| \sum_{j=1}^{m} f_{j}(x) a_{j} - \sum_{j=1}^{m} f_{j}(y) a_{j} \right\|}{d^{\alpha}(x,y)} > \gamma \\ \Rightarrow \sup_{\phi \in A^{*}, \|\phi\| \leq 1} \left[\sup_{x \in K} \left| \sum_{j=1}^{m} f_{j}(x) \phi(a_{j}) \right| + \sup_{x \neq y} \frac{\left| \sum_{j=1}^{m} f_{j}(x) \phi(a_{j}) - \sum_{j=1}^{m} f_{j}(y) \phi(a_{j}) \right|}{d^{\alpha}(x,y)} \right] > \gamma \\ \Rightarrow \sup_{\phi \in A^{*}, \|\phi\| \leq 1} \left[\left\| \sum_{j=1}^{m} f_{j} \phi(a_{j}) \right\|_{\infty} + p_{\alpha} \left(\sum_{j=1}^{m} f_{j} \phi(a_{j}) \right) \right] > \gamma \\ \Rightarrow \sup_{\phi \in A^{*}, \|\phi\| \leq 1} \left[\left\| (\operatorname{id} \otimes \phi) \left(\sum_{j=1}^{m} f_{j} \otimes a_{j} \right) \right\|_{\infty} + p_{\alpha} \left((\operatorname{id} \otimes \phi) \left(\sum_{j=1}^{m} f_{j} \otimes a_{j} \right) \right) \right] > \gamma \\ \Rightarrow \sup_{\phi \in A^{*}, \|\phi\| \leq 1} \left\| (\operatorname{id} \otimes \phi) \left(\sum_{j=1}^{m} f_{j} \otimes a_{j} \right) \right\|_{\alpha} > \gamma \\ \Rightarrow \left\| \sum_{j=1}^{m} f_{j} \otimes a_{j} \right\|_{\varepsilon} > \gamma \quad \Rightarrow \|G\|_{\varepsilon} > \gamma \,. \end{split}$$

Since $\gamma > 0$ is arbitrary, then we have $||TG||_{\alpha} \le ||G||_{\varepsilon}$. Therefore $||TG||_{\alpha} = ||G||_{\varepsilon}$ and this implies that T is a linear isometry map. So T one-one and continuous map. Now, we show that T is a onto map. For this, we show that the range of T, R_T is a closed and dense subset of $L^{\alpha}(K,A)$. It is easy to see that R_T is closed. Let $f \in L^{\alpha}(K,A)$ and $\gamma > 0$. There exist $a_1, \ldots, a_n \in A$ such that $X := f(K) \subset \bigcup_{i=1}^n B(a_i, \gamma)$. Set $U_j = f^{-1}(B(a_j, \gamma))$ where $j = 1, \ldots, n$. Then there

exist $f_1, \ldots, f_n \in L^{\alpha}(K, A)$ and $\sigma \in A^*$ such that $\operatorname{supp}(f_j) \subset U_j$ for $j = 1, \ldots, n$ and $\sigma \circ (f_1 + \ldots + f_n) = 1$. For every $x \in K$ we have,

$$\begin{aligned} \left\| f(x) - \left((\sigma \circ f_1) a_1 + \dots + (\sigma \circ f_n) a_n \right) (x) \right\| \\ &= \left\| f(x) \left((\sigma \circ f_1) (x) + \dots + (\sigma \circ f_n) (x) \right) \right. \\ &- \left. \left((\sigma \circ f_1) (x) a_1 + \dots + (\sigma \circ f_n) (x) a_n \right) \right\| \\ &= \left\| (\sigma \circ f_1) (x) \left(f(x) - a_1 \right) + \dots + (\sigma \circ f_n) (x) \left(f(x) - a_n \right) \right\| \\ &\leq \sum_{i=1}^n \left| (\sigma \circ f_i) (x) \right| \left\| f(x) - a_i \right\| < \gamma \,, \end{aligned}$$

since supp $f_j \subset U_j$. Therefore,

$$||f - ((\sigma \circ f_1)a_1 + \cdots + (\sigma \circ f_n)a_n)||_{\alpha} < \gamma.$$

This implies that

$$\left\| f - \sum_{i=1}^{n} T(\sigma \circ f_{i} \otimes a_{i}) \right\|_{\alpha} < \gamma.$$

We conclude that $\bar{R}_T = L^{\alpha}(K, A)$. So $R_T = L^{\alpha}(K, A)$, since R_T is closed. Hence T is a onto map. Also by product \bullet on $L^{\alpha}(K) \check{\otimes} A$

$$(f \otimes a) \bullet (g \otimes b) = fg \otimes ab \quad (f, g \in L^{\alpha}(K), a, b \in A),$$

clearly T is homomorphism.

Furthermore T is open map, for this purpose, let τ and τ' be topologies on $L^{\alpha}(K)\check{\otimes}A$ and $L^{\alpha}(K,A)$ respectively. Let $U\in\tau$, we show that $T(U)\in\tau'$. Let p be a limit point in $L^{\alpha}(K,A)\backslash T(U)$. Then there exists a sequence $\{p_n\}$ in $L^{\alpha}(K,A)\backslash T(U)$ converges to p. Since T is onto, there is a sequence $\{q_n\}$ and q in $L^{\alpha}(K)\check{\otimes}A$ such that $T(q_n)=p_n$ and Tq=p. Therefore $T(q_n)$ converges to p in $L^{\alpha}(K)$. Since $q_n\in L^{\alpha}(K)\check{\otimes}A$, we can find $m\in\mathbb{N}$, $f_j^{(n)}\in L^{\alpha}(K)$ and $a_j^{(n)}\in A$ such that whenever $1\leq j\leq m$ we have

(1)
$$T(q_n) = \sum_{j=1}^m f_j^{(n)} a_j^{(n)}.$$

Also, since $q \in L^{\alpha}(K) \check{\otimes} A$ there exist $r \in \mathbb{N}$, $g_i \in L^{\alpha}(K)$ and $b_i \in A$ such that

(2)
$$p = T(q) = \sum_{i=1}^{r} g_i b_i.$$

Since $||T(q_n) - p||_{\alpha} \to 0$ as $n \to \infty$, for every positive number γ there exists a positive integer N such that

(3)
$$\left\| \sum_{j=1}^{m} f_{j}^{(n)} a_{j}^{(n)} - \sum_{i=1}^{r} g_{i} b_{i} \right\|_{\alpha} < \gamma,$$

when $n \geq N$. By applying (3), we have

$$\sup_{(x \in K)} \left\| \sum_{j=1}^{m} f_{j}^{(n)}(x) a_{j}^{(n)} - \sum_{i=1}^{r} g_{i}(x) b_{i} \right\| + \sup_{(x \neq y)} \frac{1}{d(x, y)^{\alpha}}$$

$$\times \left\| \sum_{j=1}^{m} f_{j}^{(n)}(x) a_{j}^{(n)} - \sum_{i=1}^{r} g_{i}(x) b_{i} - \sum_{j=1}^{m} f_{j}^{(n)}(y) a_{j}^{(n)} + \sum_{i=1}^{r} g_{i}(y) b_{i} \right\| < \gamma.$$

Therefore if $\sigma \in A^*$ with $\|\sigma\| \le 1$ then

$$\sup_{(x \in K)} \left\| \sum_{j=1}^{m} f_{j}^{(n)}(x) \sigma(a_{j}^{(n)}) - \sum_{i=1}^{r} g_{i}(x) \sigma(b_{i}) \right\| + \sup_{(x \neq y)} \frac{1}{d(x, y)^{\alpha}}$$

$$\times \left\| \sum_{j=1}^{m} f_{j}^{(n)}(x) \sigma(a_{j}^{(n)}) - \sum_{i=1}^{r} g_{i}(x) \sigma(b_{i}) \sum_{j=1}^{m} f_{j}^{(n)}(y) \sigma(a_{j}^{(n)}) + \sum_{i=1}^{r} g_{i}(y) \sigma(b_{i}) \right\| < \gamma.$$

This implies that

(4)
$$\left\| \sum_{i=1}^{m} f_j^{(n)} \sigma(a_j^{(n)}) - \sum_{i=1}^{r} g_i \sigma(b_i) \right\|_{\alpha} < \gamma$$

Now by using (4), for every $\phi \in L^{\alpha}(K)^*$ with $\|\phi\|_{\alpha} \leq 1$ we have,

$$\left| \phi \left(\sum_{i=1}^{m} f_j^{(n)} \sigma(a_j^{(n)}) - \sum_{i=1}^{r} g_i \sigma(b_i) \right) \right| < \gamma,$$

hence

(5)
$$\left| \sum_{j=1}^{m} \phi(f_j^{(n)}) \sigma(a_j^{(n)}) - \sum_{i=1}^{r} \phi(g_i) \sigma(b_i) \right| < \gamma,$$

By (5), we conclude

(6)
$$\sup \left| \sum_{j=1}^{m} \phi(f_j^{(n)}) \sigma(a_j^{(n)}) - \sum_{i=1}^{r} \phi(g_i) \sigma(b_i) \right| < \gamma, \qquad \|\sigma\| \le 1, \ \|\phi\|_{\alpha} \le 1.$$

Therefore $||q_n - q||_{\epsilon} \leq \gamma$ and hence $q_n \to q$ or $q_n \to T^{-1}p$ in $L^{\alpha}(K) \check{\otimes} A$. This show that $p \in T(U)^c$.

Remark 2.7. By using the above theorem we can prove that $l^{\alpha}(K,A) \cong l^{\alpha}(K) \check{\otimes} A$.

3. (Weak) Amenability of
$$L^{\alpha}(K,A)$$

Let A be a Banach algebra and X be a Banach A-module over F. The linear map $D\colon A\to X$ is called an X-derivation on A, if $D(ab)=D(a)\cdot b+a\cdot D(b)$, for every $a,b\in A$. The set of all continues X-derivations on A is a vector space over F which is denoted by $Z^1(A,X)$. For each $x\in X$ the map $\delta_x\colon A\to X$, defined by $\delta_x(a)=a\cdot x-x\cdot a$, is a continues X-derivation on A. The X-derivation $D\colon A\to X$ is called an inner derivation on A if there exists an $x\in X$ such that $D=\delta_x$. The set of all inner X-derivations on A is a linear subspace of $Z^1(A,X)$

which is denoted by $B^1(A, X)$. The quotient space $Z^1(A, X)/B^1(A, X)$ is denoted by $H^1(A, X)$ and is called the first cohomology group of A with coefficients in X.

Definition 3.1. The Banach algebra A over F is called amenable if for every Banach A-module X over F, $H^1(A, X^*) = \{0\}$. The Banach algebra A over F is called weakly amenable if $H^1(A, A^*) = \{0\}$.

The notion of amenability of Banach algebras were first introduced by B. E. Johnson in 1972 [8]. Bade, Curtis and Dales [2], studied the (weak) amenability of Lipschitz algebras in 1987 [2]. In this section, we study the (weak) amenability of $L^{\alpha}(K,A)$.

For every Banach algebra B, let Φ_B be the space of maximal ideal of B.

Definition 3.2. Let A be a commutative Banach algebra and let $\phi \in \Phi_A \cup \{0\}$. The non-zero linear functional D on A is called point derivation at ϕ if

$$D(ab) = \phi(a)D(b) + \phi(b)D(a), \quad (a, b \in A).$$

Lemma 3.3. For each non-isolated point $x \in K$ and $\sigma \in A^*$, if the map $\phi: L^{\alpha}(K, A) \to C$ is given by

$$\phi(f) = (\sigma \circ f)(x), \quad (f \in L^{\alpha}(K, A))$$

then $\phi \in \Phi_{L^{\alpha}(K,A)}$.

Proof. Obvious.

Let (K, d) be a fixed non-empty compact metric space, set

$$\Delta = \{(x, y) \in K \times K : x = y\}, \quad W = K \times K - \Delta.$$

We now examine the amenability and weak amenability of Lipschitz operators algebras $L^{\alpha}(K, A)$ and $l^{\alpha}(K, A)$.

Theorem 3.4. Let (K, d) be an infinite compact metric space and take $\alpha \in (0, 1]$. Then $L^{\alpha}(K, A)$ is not weakly amenable.

Proof. Let x be a non-isolated point in K. We define

$$W_x := \{\{(x_n, y_n)\}_{n=1}^{\infty} : (x_n, y_n) \in W, (x_n, y_n) \to (x, x) \text{ as } n \to \infty\}.$$

For the net $w = \{(x_n, y_n)\}_{n=1}^{\infty}$ in W_x and $\sigma \in A^*$, we put

$$\overline{w}(f) = \frac{(\sigma \circ f)(x_n) - (\sigma \circ f)(y_n)}{d(x_n, y_n)^{\alpha}}, \quad (f \in L^{\alpha}(K, A))$$

then $\|\overline{w}(f)\|_{\infty} \leq \|\sigma\| \|f\|_{\alpha}$. Hence, \overline{w} is continues. Now set

$$D_w(f) = \text{LIM}(\overline{w}(f)), \quad (f \in L^{\alpha}(K, A)),$$

where LIM(·) is Banach limit [12]. We show that the linear map D_w is a non-zero point derivation at ϕ , which ϕ is given by Lemma 6. We have,

$$D_{w}(fg) = \operatorname{LIM}(\overline{w}(fg))$$

$$= \operatorname{LIM} \frac{(\sigma \circ fg)(x_{n}) - (\sigma \circ fg)(y_{n})}{d(x_{n}, y_{n})^{\alpha}}$$

$$= \operatorname{LIM} \frac{1}{d(x_{n}, y_{n})^{\alpha}} \left[\sigma \circ \left(f(x_{n})g(x_{n}) - f(x_{n})g(y_{n}) \right) \right]$$

$$= \operatorname{LIM} \frac{1}{d(x_{n}, y_{n})^{\alpha}} \left[\sigma \circ \left(f(x_{n}) \left(g(x_{n}) - g(y_{n}) \right) + g(y_{n}) \left(f(x_{n}) - f(y_{n}) \right) \right) \right]$$

$$= (\sigma \circ f)(x) \operatorname{LIM} \left(\overline{w}(g) \right) + (\sigma \circ g)(x) \operatorname{LIM} \left(\overline{w}(g) \right)$$

$$= \phi(f) D_{w}(g) + \phi(g) D_{w}(f)$$

Therefore, by the continuity f, g and properties of Banach limit we conclude D_w is a non-zero, continues point derivation at ϕ on $L^{\alpha}(K, A)$, an so by [5], $L^{\alpha}(K, A)$ is not weakly amenable.

Corollary 3.5. $L^{\alpha}(K, A)$ is not amenable.

Theorem 3.6. Let $K \subseteq \mathbb{C}$ be an infinite compact set, and take $\alpha \in (0,1)$. Then $l^{\alpha}(K,A)$ is not amenable.

Proof. Let $x_0 \in K$. We define

$$M_{x_0} := \left\{ f \in l^{\alpha}(K, A) : (\sigma \circ f)(x_0) = 0 \quad \forall \sigma \in A^* \right\}.$$

If $\sigma \in A^*$, then for each $f \in M_{x_0}^2$ we have

$$\frac{(\sigma \circ f)(x)}{d(x,x_0)^{2\alpha}} \longrightarrow 0$$
 as $d(x,x_0) \longrightarrow 0$.

For $\beta \in (\alpha, 2\alpha)$, set $f_{\beta}(x) := \eta(d(x, x_0)^{\beta})$, $x \in K$ where, the map $\eta \colon C \to A$ defined by $\eta(\lambda) = \lambda \cdot e$. Then $f_{\beta} \in M_{x_0}$ and $\{f_{\beta} + M_{x_0}^2 : \beta \in (\alpha, 2\alpha)\}$ is a linearly independent set in $\frac{M_{x_0}}{M_{x_0}^2}$ because x_0 is non-isolated in K. Therefore $M_{x_0}^2$ has infinite codimension in M_{x_0} , and so $M_{x_0} \neq M_{x_0}^2$ then by [5] M_{x_0} has not a bounded approximate identity, and since M_{x_0} is closed ideal in $l^{\alpha}(K, A)$, then $l^{\alpha}(K, A)$ is not amenable.

Theorem 3.7. Let (K,d) be a compact metric space and A be a unital commutative Banach algebra. If $\frac{1}{2} < \alpha < 1$, then $l^{\alpha}(T,A)$ is not weakly amenable, where T is unit circle in complex plane.

Proof. By Remark 2.7, we have $l^{\alpha}(T, A) \cong l^{\alpha}(T) \check{\otimes} A$. Since by [5], $l^{\alpha}(T)$ is not weakly amenable, hence $l^{\alpha}(T, A)$ is not weakly amenable.

Corollary 3.8. Let A be a finite-dimensional weakly amenable Banach algebra. If $0 < \alpha < \frac{1}{2}$, then $l^{\alpha}(K, A)$ is weakly amenable.

Proof. By [10], $l^{\alpha}(K) \hat{\otimes} A$ is weakly amenable. Now by [10], we have $l^{\alpha}(K) \hat{\otimes} A \cong l^{\alpha}(K) \check{\otimes} A$ and this implies that $l^{\alpha}(K) \check{\otimes} A$ is weakly amenable and so $l^{\alpha}(K,A)$ is weakly amenable.

4. Homomorphisms on the $L_A^{\alpha}(X,B)$

Definition 4.1. Let (X, d) be a compact metric space in C, $\alpha \in (0, 1]$, $(B, \|\cdot\|)$ be a commutative Banach algebra with unit \mathbf{e} , and B^* be the dual space of B, define

$$A(X,B) = \left\{ f \in C(X,B) : \Lambda \circ f \text{ is analytic in interior of } X, \Lambda \in B^* \right\}$$

$$L_A^{\alpha}(X,B) = \left\{ f \in L^{\alpha}(X,B) : \Lambda \circ f \text{ is analytic in interior of } X, \ \Lambda \in B^* \right\}$$

$$l_A^{\alpha}(X,B) = \{ f \in l^{\alpha}(X,B) : \Lambda \circ f \text{ is analytic in interior of } X, \ \Lambda \in B^* \}$$

In this case, we have

$$L_A^{\alpha}(X,B) = L^{\alpha}(X,B) \cap A(X,B)$$

and

$$l_A^{\alpha}(X,B) = l^{\alpha}(X,B) \cap A(X,B).$$

So $L_A^{\alpha}(X,B) \cong L_A^{\alpha}(X) \check{\otimes} B$ and $l_A^{\alpha}(X,B) \cong l_A^{\alpha}(X) \check{\otimes} B$.

Theorem 4.2. Every character χ on $L_A^{\alpha}(X, B)$ (and $l_A^{\alpha}(X, B)$) is of form $\chi = \psi \circ \delta_z$ for some character ψ on B and some $z \in X$.

Proof. Since $L_A^{\alpha}(X,B) \cong L_A^{\alpha}(X) \check{\otimes} B$, let $j: L^{\alpha}(X) \to L_A^{\alpha}(X,B)$, $h \mapsto h \otimes \mathbf{e}$, be the canonical embedding. Then there is $z \in X$ such that $\chi \circ j$ is the evaluation in z, that is $\chi \circ j = \delta_z$ where $\delta_z(\varphi) = \varphi(z)$. Consider the ideal

$$I := \left\{ f \in L_A^{\alpha}(X, B) : f(z) = 0 \right\}.$$

We will show that I is contained in the kernel of χ . Given $f \in I$ we define,

$$\varphi(\omega) := \begin{cases} \omega - z & \text{if } \omega \neq z; \\ 0 & \text{if } \omega = z. \end{cases}$$

and

$$g(\omega) := \begin{cases} \frac{f(\omega)}{\omega - z} & \text{if } \omega \neq z; \\ f'(z) & \text{if } \omega = z. \end{cases}$$

Since f has a Taylor series expansion

$$f(\omega) = \sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n!} (\omega - z)^n$$

around z, it is easy to see that $\Lambda \circ g$ is holomorphic $(\Lambda \in B^*)$, and hence $g \in L_A^{\alpha}(X,B)$. We have

$$\chi(f) = \chi \big(j(\varphi)g \big) = (\chi \circ j)(\varphi) \chi(g) = \delta_z(\varphi) \chi(g) = \varphi(z) \chi(g) = 0.$$

The evaluation δ_z is an epimorphism and since $\ker \delta_z = I \subset \ker \chi$, we obtain the desired factorization $\chi = \psi \circ \delta_z$ for some character ψ on B.

References

- Alimohammadi, D., Ebadian, A., Headberg's theorem in real Lipschitz algebras, Indian J. Pure Appl. Math. 32 (2001), 1479–1493.
- Bade, W. G., Curtis, P. C., Dales, H. G., Amenability and weak amenability for Berurling and Lipschitz algebras, Proc. London Math. Soc. 55 (3) (1987), 359–377.
- [3] Cao, H. X., Xu, Z. B., Some properties of Lipschitz-α operators, Acta Math. Sin. (Engl. Ser.) 45 (2) (2002), 279–286.
- [4] Cao, H. X., Zhang, J. H., Xu, Z. B., Characterizations and extentions of Lipschitz-α operators, Acta Math. Sin. (Engl. Ser.) 22 (3) (2006), 671–678.
- [5] Dales, H. G., Banach Algebras and Automatic Continuty, Clarendon Press, Oxford, 2000.
- [6] Ebadian, A., Prime ideals in Lipschitz algebras of finite differentable function, Honam Math. J. 22 (2000), 21–30.
- [7] Honary, T. G, Mahyar, H., Approximation in Lipschitz algebras, Quaest. Math. 23 (2000), 13–19.
- [8] Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [9] Johnson, B. E., Lipschitz spaces, Pacific J. Math. 51 (1975), 177–186.
- [10] Runde, V., Lectures on Amenability, Springer, 2001.
- [11] Sherbert, D. R., Banach algebras of Lipschitz functions, Pacific J. Math. 3 (1963), 1387–1399.
- [12] Sherbert, D. R., The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240–272.
- [13] Weaver, N., Subalgebras of little Lipschitz algebras, Pacific J. Math. 173 (1996), 283–293.
- [14] Weaver, N., Lipschitz Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.

FACULTY OF BASIC SCIENCE, SCIENCE AND RESEARCH BRUNCH ISLAMIC AZAD UNIVERSITY (IAU), TEHRAN, IRAN *E-mail*: a-shokri@iau-ahar.ac.ir

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE URMIA UNIVERSITY, URMIA, IRAN E-mail: a.ebadian@urmia.ac.ir