# GENERAL IMPLICIT VARIATIONAL INCLUSION PROBLEMS INVOLVING $A$-MAXIMAL RELAXED ACCRETIVE MAPPINGS IN BANACH SPACES 

Ram U. Verma


#### Abstract

A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on $A$-maximal relaxed accretive mappings in a real Banach space setting.


## 1. Introduction

We consider a real Banach space $X$ with $X^{*}$, its dual space. Let $\|\cdot\|$ denote the norm on $X$ and $X^{*}$, and let $\langle\cdot, \cdot\rangle$ denote the duality pairing between $X$ and $X^{*}$. We consider the implicit inclusion problem: determine a solution $u \in X$ such that

$$
\begin{equation*}
0 \in A(u)+M(g(u)), \tag{1}
\end{equation*}
$$

where $A, g: X \rightarrow X$ are single-valued mappings, and $M: X \rightarrow 2^{X}$ is a set-valued mapping on $X$ such that range $(g) \cap \operatorname{dom}(M) \neq \emptyset$.

Recently, Huang, Fang and Cho [4] applied a three-step algorithmic process to approximating the solution of a class of implicit variational inclusion problems of the form (1) in a Hilbert space. In their investigation, they used the resolvent operator of the form $J_{\rho}^{M}=(I+\rho M)^{-1}$ for $\rho>0$, in a Hilbert space setting. Here we generalize the existence results to the case of $A$-maximal relaxed accretive mappings in a real uniformly smooth Banach space setting. As matter of fact, the obtained results generalize their investigation to the case of $H$-maximal accretive mappings as well. For more literature, we refer the reader to [2]-[20].

## 2. $A$-MAXIMAL RELAXED ACCRETIVENESS

In this section we discuss some basic properties and auxiliary results on $A$-maximal relaxed accretiveness. Let $X$ be a real Banach space and $X^{*}$ be the dual space of $X$. Let $\|\cdot\|$ denote the norm on $X$ and $X^{*}$ and let $\langle\cdot, \cdot\rangle$ denote the duality pairing between $X$ and $X^{*}$. Let $M: X \rightarrow 2^{X}$ be a multivalued mapping on $X$. We shall denote both the map $M$ and its graph by $M$, that is, the set $\{(x, y): y \in M(x)\}$. This is equivalent to stating that a mapping is any subset $M$ of $X \times X$, and

[^0]$M(x)=\{y:(x, y) \in M\}$. If $M$ is single-valued, we shall still use $M(x)$ to represent the unique $y$ such that $(x, y) \in M$ rather than the singleton set $\{y\}$. This interpretation shall much depend on the context. The domain of a map $M$ is defined (as its projection onto the first argument) by
$$
D(M)=\{x \in X: \exists y \in X:(x, y) \in M\}=\{x \in X: M(x) \neq \emptyset\} .
$$
$D(M)=X$, shall denote the full domain of $M$, and the range of $M$ is defined by
$$
R(M)=\{y \in X: \exists x \in X:(x, y) \in M\} .
$$

The inverse $M^{-1}$ of $M$ is $\{(y, x):(x, y) \in M\}$. For a real number $\rho$ and a mapping $M$, let $\rho M=\{x, \rho y):(x, y) \in M\}$. If $L$ and $M$ are any mappings, we define

$$
L+M=\{(x, y+z):(x, y) \in L,(x, z) \in M\}
$$

As we prepare for basic notions, we start with the generalized duality mapping $J_{q}: X \rightarrow 2^{X^{*}}$, that is defined by

$$
J_{q}(x)=\left\{f^{*} \in X^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{q},\left\|f^{*}\right\|=\|x\|^{q-1}\right\} \forall x \in X,
$$

where $q>1$. As a special case, $J_{2}$ is the normalized duality mapping, and $J_{q}(x)=$ $\|x\|^{q-2} J_{2}(x)$ for $x \neq 0$. Next, as we are heading to uniformly smooth Banach spaces, we define the modulus of smoothness $\rho_{X}:[0, \infty) \rightarrow[0, \infty)$ by

$$
\rho_{X}(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1:\|x\| \leq 1,\|y\| \leq t\right\} .
$$

A Banach space $X$ is uniformly smooth if

$$
\lim _{t \rightarrow 0} \frac{\rho_{X}(t)}{t}=0
$$

and $X$ is $q$-uniformly smooth if there is a positive constant $c$ such that

$$
\rho_{X}(t) \leq c t^{q}, \quad q>1 .
$$

Note that $J_{q}$ is single-valued if $X$ is uniformly smooth. In this context, we state the following Lemma from Xu [17].

Lemma 2.1 ([17]). Let $X$ be a uniformly smooth Banach space. Then $X$ is $q$-uniformly smooth if there exists a positive constant $c_{q}$ such that

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q}(x)\right\rangle+c_{q}\|y\|^{q} .
$$

Lemma 2.2. For any two nonnegative real numbers $a$ and $b$, we have

$$
(a+b)^{q} \leq 2^{q}\left(a^{q}+b^{q}\right) .
$$

Definition 2.1. Let $M: X \rightarrow 2^{X}$ be a multivalued mapping on $X$. The map $M$ is said to be:
(i) $(r)$ - strongly accretive if there exists a positive constant $r$ such that

$$
\left\langle u^{*}-v^{*}, J_{q}(u-v)\right\rangle \geq r\|u-v\|^{q} \forall\left(u, u^{*}\right),\left(v, v^{*}\right) \in \operatorname{graph}(M) .
$$

(ii) $(m)$-relaxed accretive if there exists a positive constant m such that

$$
\left\langle u^{*}-v^{*}, J_{q}(u-v)\right\rangle \geq(-m)\|u-v\|^{q} \forall\left(u, u^{*}\right),\left(v, v^{*}\right) \in \operatorname{graph}(M) .
$$

Definition 2.2 ([5]). Let $A: X \rightarrow X$ be a single-valued mapping. The map $M: X \rightarrow 2^{X}$ is said to be $A$ - maximal $(m)$-relaxed accretive if:
(i) $M$ is $(m)$-relaxed accretive for $m>0$.
(ii) $R(A+\rho M)=X$ for $\rho>0$.

Definition 2.3 (5]). Let $A: X \rightarrow X$ be an $(r)$-strongly accretive mapping and let $M: X \rightarrow 2^{X}$ be an $A$-maximal accretive mapping. Then the generalized resolvent operator $J_{\rho, A}^{M}: X \rightarrow X$ is defined by

$$
J_{\rho, A}^{M}(u)=(A+\rho M)^{-1}(u) .
$$

Definition $2.4(2)$. Let $H: X \rightarrow X$ be $(r)$-strongly accretive. The map $M: X \rightarrow$ $2^{X}$ is said to be to $H$-maximal accretive if
(i) $M$ is accretive,
(ii) $R(H+\rho M)=X$ for $\rho>0$.

Definition 2.5. Let $H: X \rightarrow X$ be an $(r)$-strongly accretive mapping and let $M: X \rightarrow 2^{X}$ be an $H$-accretive mapping. Then the generalized resolvent operator $J_{\rho, H}^{M}: X \rightarrow X$ is defined by

$$
J_{\rho, H}^{M}(u)=(H+\rho M)^{-1}(u) .
$$

Proposition 2.1 ([5]). Let $A: X \rightarrow X$ be an (r)-strongly accretive single-valued mapping and let $M: X \rightarrow 2^{X}$ be an $A$-maximal ( $m$ )-relaxed accretive mapping. Then $(A+\rho M)$ is maximal accretive for $\rho>0$.

Proposition 2.2 ([5]). Let $A: X \rightarrow X$ be an $(r)$-strongly accretive mapping and let $M: X \rightarrow 2^{X}$ be an $A$-maximal relaxed accretive mapping. Then the operator $(A+\rho M)^{-1}$ is single-valued.
Proposition 2.3 ([2]). Let $H: X \rightarrow X$ be $a(r)$-strongly accretive single-valued mapping and let $M: X \rightarrow 2^{X}$ be an $H$-maximal accretive mapping. Then $(H+\rho M)$ is maximal accretive for $\rho>0$.

Proposition 2.4 ([2]). Let $H: X \rightarrow X$ be an (r)-strongly accretive mapping and let $M: X \rightarrow 2^{X}$ be an H-maximal accretive mapping. Then the operator $(H+\rho M)^{-1}$ is single-valued.

## 3. Existence theorems

This section deals with the existence theorems on solving the implicit inclusion problem (1) based on the $A$ - maximal relaxed accretiveness.
Lemma 3.1 ([5]). Let $X$ be a real Banach space, let $A: X \rightarrow X$ be ( $r$ )-strongly accretive, and let $M: X \rightarrow 2^{X}$ be $A$-maximal relaxed accretive. Then the generalized resolvent operator associated with $M$ and defined by

$$
J_{\rho, A}^{M}(u)=(A+\rho M)^{-1}(u) \forall u \in X
$$

is $\left(\frac{1}{r-\rho m}\right)$-Lipschitz continuous for $r-\rho m>0$.

Lemma 3.2. Let $X$ be a real Banach space, let $A: X \rightarrow X$ be $(r)$-strongly accretive, and let $M: X \rightarrow 2^{X}$ be $A$-maximal $(m)$-relaxed accretive. In addition, let $g: X \rightarrow X$ be a ( $\beta$ )-Lipschitz continuous mapping on $X$. Then the generalized resolvent operator associated with $M$ and defined by

$$
J_{\rho, A}^{M}(u)=(A+\rho M)^{-1}(u) \forall u \in X,
$$

satisfies

$$
\left\|J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right\| \leq \frac{\beta}{r-\rho m}\|u-v\|
$$

where $r-\rho m>0$.
Furthermore, we have
$\left\langle J_{q}\left(J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right), g(u)-g(v)\right\rangle \geq(r-\rho m)\left\|J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right\|^{q}$,
where $r-\rho m>0$.
Proof. For any elements $u, v \in X$ (and hence $g(u), g(v) \in X$ ), we have from the definition of the resolvent operator $J_{\rho, A}^{M}$ that

$$
\frac{1}{\rho}\left[g(u)-A\left(J_{\rho, A}^{M}(g(u))\right)\right] \in M\left(J_{\rho, A}^{M}(g(u))\right),
$$

and

$$
\frac{1}{\rho}\left[g(v)-A\left(J_{\rho, A}^{M}(g(v))\right)\right] \in M\left(J_{\rho, A}^{M}(g(v))\right) .
$$

Since $M$ is $A$-maximal ( $m$ )-relaxed accretive, it implies that

$$
\begin{gather*}
\left\langle g(u)-g(v)-\left[A\left(J_{\rho, A}^{M}(g(u))\right)-A\left(J_{\rho, A}^{M}(g(v))\right)\right], J_{q}\left(J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right)\right\rangle \\
\geq(-\rho m)\left\|J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right\|^{q} . \tag{2}
\end{gather*}
$$

Based on (2), using the $(r)$-strong accretiveness of $A$, we get

$$
\begin{aligned}
\langle g(u) & \left.-g(v), J_{q}\left(J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right)\right\rangle \\
\geq & \left\langle A\left(J_{\rho, A}^{M}(g(u))\right)-A\left(J_{\rho, A}^{M}(g(v))\right), J_{q}\left(J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right)\right\rangle \\
& \quad-\rho m\left\|J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right\|^{q} \\
\geq & (r-\rho m)\left\|J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right\|^{q} .
\end{aligned}
$$

Therefore,
$\left\langle g(u)-g(v), J_{q}\left(J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right)\right\rangle \geq(r-\rho m)\left\|J_{\rho, A}^{M}(g(u))-J_{\rho, A}^{M}(g(v))\right\|^{q}$.
This completes the proof.
Theorem 3.1. Let $X$ be a real Banach space, let $A: X \rightarrow X$ be (r)-strongly accretive, and let $M: X \rightarrow 2^{X}$ be A-maximal (m)-relaxed accretive. Let $g: X \rightarrow X$ be a map on $X$. Then the following statements are equivalent:
(i) An element $u \in X$ is a solution to (1).
(ii) For an $u \in X$, we have

$$
g(u)=J_{\rho, A}^{M}(A(g(u))-\rho A(u)),
$$

where

$$
J_{\rho, A}^{M}(u)=(A+\rho M)^{-1}(u) .
$$

Proof. It follows from the definition of the resolvent operator $J_{\rho, A}^{M}$.
Theorem 3.2. Let $X$ be a real Banach space, let $H: X \rightarrow X$ be (r)-strongly accretive, and let $M: X \rightarrow 2^{X}$ be $H$-maximal accretive. Let $g: X \rightarrow X$ be a map on $X$. Then the following statements are equivalent:
(i) An element $u \in X$ is a solution to (1).
(ii) For an $u \in X$, we have

$$
g(u)=J_{\rho, H}^{M}(H(g(u))-\rho H(u)),
$$

where

$$
J_{\rho, H}^{M}(u)=(H+\rho M)^{-1}(u) .
$$

Theorem 3.3. Let $X$ be a real $q$-uniformly smooth Banach space, let $A: X \rightarrow X$ be ( $r$ )-strongly accretive and (s)-Lipschitz continuous, and let $M: X \rightarrow 2^{X}$ be A-maximal ( $m$ )-relaxed accretive. Let $g: X \rightarrow X$ be $(t)$-strongly accretive and ( $\beta$ )-Lipschitz continuous. Then there exists a unique solution $x^{*} \in X$ to (1) for

$$
\begin{align*}
\theta= & \left(1+\frac{1}{r-\rho m}\right) \sqrt[q]{1-q t+c_{q} \beta^{q}}+\frac{1}{r-\rho m} \sqrt[q]{\beta^{q}-q r t^{q}+c_{q} s^{q} \beta^{q}} \\
& +\frac{1}{r-\rho m} \sqrt[q]{1-q r \rho+c_{q} \rho^{q} s^{q}}<1 \tag{3}
\end{align*}
$$

for $r-\rho m>1$ and $c_{q}>0$.
Proof. First we define a function $F: X \rightarrow X$ by

$$
F(u)=u-g(u)+J_{\rho, A}^{M}(A(g(u))-\rho A(u))
$$

and then prove that $F$ is contractive. Applying Lemma 3.1 we estimate

$$
\begin{align*}
\|F(u)-F(v)\|=\| u- & v-(g(u)-g(v))+J_{\rho, A}^{M}(A(g(u))-\rho A(u)) \\
& -J_{\rho, A}^{M}(A(g(v))-\rho A(v)) \| \\
\leq \| u- & v-(g(u)-g(v))\left\|+\frac{1}{r-\rho m}\right\| A(g(u)) \\
& -A(g(v))-\rho(A(u)-A(v)) \| \tag{4}
\end{align*}
$$

$$
\leq\left(1+\frac{1}{r-\rho m}\right)\|u-v-(g(u)-g(v))\|
$$

$$
+\frac{1}{r-\rho m}\|A(g(u))-A(g(v))-(g(u)-g(v))\|
$$

$$
+\frac{1}{r-\rho m}\|u-v-\rho(A(u)-A(v))\|
$$

Since $g$ is $(t)$-strongly accretive and $(\beta)$-Lipschitz continuous, we have

$$
\begin{aligned}
\|u-v-(g(u)-g(v))\|^{q} & =\|u-v\|^{q}-q\left\langle g(u)-g(v), J_{q}(u-v)\right\rangle+c_{q}\|g(u)-g(v)\|^{q} \\
& \leq\|u-v\|^{q}-q t\|u-v\|^{q}+c_{q} \beta^{q}\|u-v\|^{q} \\
& =\left(1-q t+c_{q} \beta^{q}\right)\|u-v\|^{q} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\|u-v-(g(u)-g(v))\| \leq \sqrt[q]{1-q t+c_{q} \beta^{q}} \tag{5}
\end{equation*}
$$

Similarly, based on the strong accretiveness and Lipschitz continuity of $A$ and $g$, we get

$$
\begin{equation*}
\|A(g(u))-A(g(v))-(g(u)-g(v))\| \leq \sqrt[q]{\beta^{q}-q r t^{q}+c_{q} s^{q} \beta^{q}}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u-v-\rho(A(u)-A(v))\| \leq \sqrt[q]{1-q r \rho+c_{q} \rho^{q} s^{q}} \tag{7}
\end{equation*}
$$

In light of above arguments, we have

$$
\begin{equation*}
\|F(u)-F(v)\| \leq \theta\|u-v\|, \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
\theta= & \left(1+\frac{1}{r-\rho m}\right) \sqrt[q]{1-q t+c_{q} \beta^{q}}+\frac{1}{r-\rho m} \sqrt[q]{\beta^{q}-q r t^{q}+c_{q} s^{q} \beta^{q}}  \tag{9}\\
& +\frac{1}{r-\rho m} \sqrt[q]{1-q r \rho+c_{q} \rho^{q} s^{q}}<1,
\end{align*}
$$

for $r-\rho m>1$.
Corollary 3.1. Let $X$ be a real $q$ - uniformly smooth Banach space, let $H: X \rightarrow X$ be $(r)$ - strongly accretive and (s)-Lipschitz continuous, and let $M: X \rightarrow 2^{X}$ be $H$-maximal accretive. Let $g: X \rightarrow X$ be $(t)$-strongly accretive and $(\beta)$-Lipschitz continuous. Then there exists a unique solution $x^{*} \in X$ to (1) for

$$
\begin{align*}
\theta= & \left(1+\frac{1}{r}\right) \sqrt[q]{1-q t+c_{q} \beta^{q}}+\frac{1}{r} \sqrt[q]{\beta^{q}-q r t^{q}+c_{q} s^{q} \beta^{q}}  \tag{10}\\
& +\frac{1}{r} \sqrt[q]{1-q r \rho+c_{q} \rho^{q} s^{q}}<1,
\end{align*}
$$

for $r>1$.

## References

[1] Dhage, B. C., Verma, R. U., Second order boundary value problems of discontinuous differential inclusions, Comm. Appl. Nonlinear Anal. 12 (3) (2005), 37-44.
[2] Fang, Y. P., Huang, N. J., H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647-653.
[3] Fang, Y. P., Huang, N. J., Thompson, H. B., A new system of variational inclusions with $(H, \eta)$-monotone operators, Comput. Math. Appl. 49 (2-3) (2005), 365-374.
[4] Huang, N. J., Fang, Y. P., Cho, Y. J., Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions, J. Nonlinear Convex Anal. 4 (2) (2003), 301-308.
[5] Lan, H. Y., Cho, Y. J., Verma, R. U., Nonlinear relaxed cocoercive variational inclusions involving $(A, \eta)$-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006), 1529-1538.
[6] Lan, H. Y., Kim, J. H., Cho, Y. J., On a new class of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl. 327 (1) (2007), 481-493.
[7] Peng, J. W., Set-valued variational inclusions with T-accretive operators in Banach spaces, Appl. Math. Lett. 19 (2006), 273-282.
[8] Verma, R. U., On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings, Math. Sci. Res. Hot-Line 4 (2) (2000), 55-63.
[9] Verma, R. U., A-monotonicity and its role in nonlinear variational inclusions, J. Optim. Theory Appl. 129 (3) (2006), 457-467.
[10] Verma, R. U., Averaging techniques and cocoercively monotone mappings, Math. Sci. Res. J. 10 (3) (2006), 79-82.
[11] Verma, R. U., General system of A-monotone nonlinear variational inclusion problems, J. Optim. Theory Appl. 131 (1) (2006), 151-157.
[12] Verma, R. U., Sensitivity analysis for generalized strongly monotone variational inclusions based on the ( $A, \eta$ )-resolvent operator technique, Appl. Math. Lett. 19 (2006), 1409-1413.
[13] Verma, R. U., A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math. 5 (2) (2007), 1-11.
[14] Verma, R. U., General system of $(A, \eta)$-monotone variational inclusion problems based on generalized hybrid algorithm, Nonlinear Anal. Hybrid Syst. 1 (3) (2007), 326-335.
[15] Verma, R. U., Aproximation solvability of a class of nonlinear set-valued inclusions involving ( $A, \eta$ )-monotone mappings, J. Math. Anal. Appl. 337 (2008), 969-975.
[16] Verma, R. U., Rockafellar's celebrated theorem based on A-maximal monotonicity design, Appl. Math. Lett. 21 (2008), 355-360.
[17] Xu, H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), 240-256.
[18] Zeidler, E., Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986.
[19] Zeidler, E., Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1990.
[20] Zeidler, E., Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990.

International Publications (USA)
12085 Lake Cypress Circle, Suite I109
Orlando, Florida 32828, USA
E-mail: rverma@internationalpubls.com


[^0]:    2000 Mathematics Subject Classification: primary 49J40; secondary 65B05.
    Key words and phrases: implicit variational inclusions, maximal relaxed accretive mapping, $A$-maximal accretive mapping, generalized resolvent operator.

    Received September 29, 2008. Editor A. Pultr.

