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WEAKLY IRREDUCIBLE SUBGROUPS OF Sp(1,n+ 1)

NATALIA I. BEZVITNAYA

ABSTRACT. Connected weakly irreducible not irreducible subgroups of Sp(1, n+
1) C SO(4, 4n+4) that satisfy a certain additional condition are classified. This
will be used to classify connected holonomy groups of pseudo-hyper-Kéahlerian
manifolds of index 4.

1. INTRODUCTION

The classification of connected holonomy groups of Riemannian manifolds is
well known [4], [5] [6 [0]. A classification of holonomy groups of pseudo-Riemannian
manifolds is an actual problem of differential geometry. Very recently were obtained
classifications of connected holonomy groups of Lorentzian manifolds [3] 1T}, 9]
and of pseudo-Kéhlerian manifolds of index 2 [7]. These groups are contained
in SO(1,n+ 1) and U(1,n 4+ 1) C SO(2,2n + 2), respectively. As the next step,
we study connected holonomy groups contained in Sp(1,n + 1) C SO(4,4n + 4),
i.e. holonomy groups of pseudo-hyper-Kéhlerian manifolds of index 4. By the Wu
theorem [I2] and the results of Berger for connected irreducible holonomy groups of
pseudo-Riemannian manifolds [4], it is enough to consider only weakly irreducible
not irreducible holonomy groups (each such group does not preserve any proper
non-degenerate vector subspace of the tangent space, but preserves a degenerate
subspace).

In the present paper we classify connected weakly irreducible not irreducible
subgroups of Sp(1,n 4+ 1) C SO(4,4n +4) (n > 1) that satisfy a natural condition.
The case n = 0 will be considered separately. We generalize the method of [8, [7]. Let
G C Sp(1,n+1) be a weakly irreducible not irreducible subgroup and g C sp(1,n+1)
the corresponding subalgebra. The results of [7] allow us to expect that if g is
the holonomy algebra, then g containes a certain 3-dimensional ideal B. We will
prove this in another paper. Consider the action of G on the space H>"*! then G
acts on the boundary of the quaternionic hyperbolic space, which is diffeomorphic
to the 4n + 3-dimensional sphere S*"*3 and G preserves a point of this space.
We define a map s; : S 3\ {point} — H" similar to the usual stereographic
projection. Then any f € G defines the map F(f) = sy 0 fosy : H* — H",
where sy : H" — S4"+3\{point} is the inverse of the usual stereographic projection
restricted to H" C H" @ R? = R4**+3. We get that F(G) is contained in the group
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Sim H" of similarity transformations of H". We show that F'(G) preserves an affine
subspace L C R*" = H" such that the minimal affine subspace of H" containing L
is H". Moreover, F(G) does not preserve any proper affine subspace of L. Then
F(G) acts transitively on L [I]. We describe subspaces L with this property and
using results of [7] we find all connected Lie subgroups K C Sim H" preserving L
and acting transitively on L. Note that the kernel of the Lie algebra homomorphism
dF : g — LA(SimH") coincides with the ideal B. Consequently, g = (dF)~!(¥),
where ¢ C LA(SimH") is the Lie algebra of one of the obtained Lie subgroups
K C SimH".

Note that we classify weakly irreducible not irreducible subgroups of Sp(1,n+1)
up to conjugacy in SO(4, 4n + 4). It is also possible to classify these subgroups up
to conjugacy in Sp(1,n + 1), see Remark
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2. PRELIMINARIES

First we summarize some facts about quaternionic vector spaces. Let H™ be an
m-dimensional quaternionic vector space and ey, ..., e,, a basis of H™. We identify
an element X € H™ with the column (X;) of the left coordinates of X with respect
to this basis, X = Y " | Xe.

Let f: H™ — H™ be an H-linear map. Define the matrix Mat; of f by the
relation fe; = Y0 (Matys)ye,. Now if X € H™, then fX = (X'Mat})" and
because of the non-commutativity of the quaternions this is not the same as Mat  X.
Conversely, to an m X m matrix A of the quaternions we put in correspondence the
linear map Op A: H™ — H™ such that Op A- X = (X'A)!. If f,g: H™ — H™ are
two H-linear maps, then Mat ¢, = (Mattg Mattf)t. Note that the multiplications by
the imaginary quaternions are not H-linear maps. Also, for a,b € H holds ab = ba.
Consequently, for two square quaternionic matrices we have (AB)* = BtA!.

A pseudo-quaternionic-Hermitian metric g on H™ is a non-degenerate R-bilinear
map g: H™ x H™ — H such that g(aX,Y) = ag(X,Y) and g(Y¥, X) = g(X,Y),
where ¢ € H, X,Y € H™. Hence, g(X,aY) = ¢g(X,Y)a. There exists a basis
€1,...,em of H™ and integers (r, s) with r + s = m such that g(es, e;) = 0if ¢ # [,
gles,er) = —1if1 <t < sand g(e,e;) =1if s+1 < ¢ < m. The pair (r, s) is called
the signature of g. In this situation we denote H™ by H"™*. The realification of H™
gives us the vector space R*™ with the quaternionic structure (i, , k). Conversely,
a quaternionic structure on R*™ i.e. a triple (I,J, K) of endomorphisms of R*"
such that I? = J? = K? = —id and K = IJ = —JI, allows us to consider R*™ as
H™. A pseudo-quaternionic-Hermitian metric g on H™ of signature (r, s) defines on
R*™ the i, j, k-invariant pseudo-Euclidean metric 7 of signature (4r,4s), n(X,Y) =
Reg(X,Y), X,Y € R*. Conversely, a I, J, K-invariant pseudo-Euclidean metric
on R*™ defines a pseudo-quaternionic-Hermitian metric g on H™,

9g(X,)Y)=n(X,Y)+n(X,IY) 4+ jn(X,JY) + kn(X, KY).



WEAKLY IRREDUCIBLE SUBGROUPS OF Sp(1,n + 1) 343

The Lie group Sp(r, s) and its Lie algebra sp(r, s) are defined as follows
Sp(r,s) ={f € Aut(H"*) | g(fX, fY) =g(X,Y) forall X,Y € H"},
sp(r,s) ={f € End(H™) | g(fX,Y) + g(X, fY) =0 for all X,Y e H™*}.

3. THE MAIN THEOREM

Definition 1. A subgroup G C SO(r,s) (or a subalgebra g C so(r,s)) is called
weakly irreducible if it does not preserve any non-degenerate proper vector subspace
of R™*.

Let R¥47+4 be a (4n + 8)-dimensional real vector space endowed with a qua-
ternionic structure I, J, K € End(R**"*4) and an I, J, K-invariant metric 7 of
signature (4,4n + 4). We identify this space with the (n + 2)-dimensional quater-
nionic space H"*! endowed with the pseudo-quaternionic-Hermitian metric g of
signature (1,n 4 1) as above.

Obviously, if a Lie subgroup G C Sp(1,n + 1) acts weakly irreducibly not
irreducibly on R%4"*+4, then G acts weakly irreducibly not irreducibly on H'"+!,
The converse is not true, see Example [2] below. If G acts weakly irreducibly not
irreducibly on H""*!, then G preserves a proper degenerate subspace W C H'7+!,
Consequently, G preserves the intersection WNW+ c HY"*! which is an isotropic
quaternionic line.

Fix a Wit basis p, e1, ..., en, g of H""T1 i.e. the Gram matrix of the metric g with
0 0 1

respect to this basis has the form | 0 FE,, 0] , where FE, is the n-dimensional
1 0 O

identity matrix. Denote by Sp(1,n + 1)m, the Lie subgroup of Sp(1,n + 1) acting
on H'"*! and preserving the quaternionic isotropic line Hip. Note that any weakly
irreducible and not irreducible subgroup of Sp(1,n + 1) is conjugated to a weakly
irreducible subgroup of Sp(1, n+1)m,. The Lie subalgebra sp(1, n41)m, C sp(1, n+1)
corresponding to the Lie subgroup Sp(1,n + 1)m, C Sp(1,n + 1) has the following
form

a X' b\ m  xem
sp(1,n+ 1)mp = < Op 8 Mgth Xa hesp(n), belmH

Let (a, A, X,b) denote the above element of sp(1,n + 1)m,. Define the following
vector subspaces of sp(1,n + 1)y :

A1 ={(a,0,0,0) | a € R}, Ay ={(a,0,0,0) | « € ImH},

N ={(0,0,X,0) | X € H"}, B ={(0,0,0,b) | b € ImH}.

Obviously, sp(n) is a subalgebra of sp(1,n + 1)m, with the inclusion

0 0 0
hesp(n)—Op|0 Mat, 0] €sp(l,n+1)m,.
0 0 0
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We obtain that 4; is a one-dimensional commutative subalgebra that commutes
with Ay and sp(n), As is a subalgebra isomorphic to sp(1) and commuting with
sp(n), B is a commutative ideal, which commutes with sp(n) and N. Also,

[(a,0,0,0),(0,0,X,0)] =(0,0,aX,2Imab),
[(0,0,X,0),(0,0,Y,0)] =(0,0,0,2Img(X,Y)),
[(0,4,0,0), (0,0, X,0)] =(0,0, (X"A")",0),

where a € H, X,Y € H*, A = Maty, h € sp(n), b € ImnH. Thus we have the
decomposition

sp(L,n+ Dy = (A1 @ A2 @ 5p(n)) x (N + B) = (R@sp(1) @ sp(n)) x (H" +R?).
Now consider two examples.

Example 1. The subalgebra g = {(0,0,X,b) | X € R, b € ImH} C sp(1,n+1)m,
acts weakly irreducibly on R*4n+4,

Proof. Assume the converse. Let g preserve a non-degenerate proper vector sub-
space L C R*%4"*+4 Suppose the projection of L to Hqg c HY**! = R*4nt+d g
non-zero, then there is a vector v € L such that v = vop+v1 +v2q, where vy, vo € H,
vy # 0 and v; € H". Consider elements & = (0,0, X,0) € g with g(X,X) =1
and & = (0,0,0,b) € g. Then, & (&1v) = —vap € L and &v = vebp € L. Since
vy # 0, we have Hp C L. It follows that L7 C Hp @ H" and L' is a g-invariant
non-degenerate proper subspace. Now we can assume that g preserves a non-trivial
non-degenerate vector subspace L C Hp @ H". Let v = vop +v1 € L, v # 0. If
vy = 0, then L is degenerate. If v; # 0, then there is X € R™ with g(vy, X) # 0.
We get (0,0,X,0)v = —g(v1,X)p € L. Hence L is degenerate. Thus we have a
contradiction. (]

Example 2. The subalgebra g = {(0,0,X,0)| X € R"} C sp(1,n + 1)m, acts
weakly irreducibly on H»™*! and not weakly irreducibly on R*47+4,

Proof. The proof of the first statement is similar to the proof of Example[f} Clearly,
the subalgebra g preserves the non-degenerate vector subspace spang{p, ey, ...,
en,q} C R4, O

The classification of the holonomy algebras contained in u(1,n + 1) [7] gives us
the following hypothesis: If n > 1 and g C sp(1,n + 1)m, s a holonomy algebra,
then g containes the ideal B. We will prove this hypothesis in an other paper.

In the following theorem we denote the real vector subspace L C R*"* = H" of
the form

L = spang{er,...,em} @ spanggp{€mt1; -, emik} O spang{emir+1,. .., en}
by H™ @ Ck @ R"~™~*. Let u(k) be the subalgebra of sp(spang{emi1,---,Cmik})
that consists of the elements Op (81 81) , where A € u(spangg;p{€mi1,- .-\ €min})
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and we use the decomposition

SpanH{em+1u vy e’m+k}
= spanggr{€m+1;-- > €mtk} + JSPANRgRI{Cm 15+ - -5 Cmtk ) -

Similarly, let so(n — m — k) be the subalgebra of sp(spang{em+r+1,..-,€n}) that
consists of the elements

A 0 0 O
Op 8 81 21 8 , where A € so (spanR{em+k+17 ol en})
0O 0 0 A

and we use the decomposition H? ™~k = R~k g jR*—m—Fk g jR*-™m—F g
kR"~™~k_ For a Lie algebra h we denote by b’ the commutant [b, h] of b.

Theorem 1. Let n > 1. Any weakly irreducible subalgebra of sp(1,n + 1)m, that
contains the ideal B is conjugated by an element of SO(4,4n + 4) to one of the
following subalgebras:

Type I. g = {(al—l—ag,A,X,b) |a1 ER, az €ho, A€h, X eH", be ImH},
where ho C sp(1) s a subalgebra of dimension 2 or 3, h C sp(n) is a subalgebra.

Type IL. g = {(a1 + taz + ¢(A),A, X,b) | a1,t €R, A€ h, X e H", b €
ImH}, where az € sp(1), h C sp(n) is a subalgebra, ¢: b — sp(1) is a
homomorphism.

If ag #0, then k¢ < 1 and [Im ¢, as] C Ras.

Type III. g = {(cp(az,A) +ag, A, X,b) |az €y, Aeh, XeH", be ImH},
where ho C sp(1) s a subalgebra of dimension 2 or 3, h C sp(n) is a subalgebra,
¢ € Hom(ho ® b, R), ¢ly;@p = 0. In particular, if dimbo = 3, i.e. ho = sp(1),
then ¢|p, = 0.

Type IV. g = {(p(t, A) + taz + #(A), A, X,b) [t e R, A€ h, X e H", be
ImH}, where ay € sp(1), b C sp(n) is a subalgebra, ¢ € Hom(R & h,R),
lyy =0, ¢: h — sp(1) is a homomorphism. If as # 0, then rk¢ < 1 and
[Im ¢, as] C Ras. If ay # 0 and ¢ # 0, then p|r = 0.

Type V. g = {(al + a2, A, X, b) |aj,a0 R, Aeh, X e H"C"™, b€
ImH}, where 0 <m <n, h C sp(m) ®u(n—m) is a subalgebra.

Type VL. g = {(a1 + ¢(A)i, A, X,b) | a1 € R, A e h, X e H"pCr o
R* ™% beImH}, where 0 <m <n, 0<k<n-—m,hCsp(m)®u(k)®
so(n —m — k) is a subalgebra, ¢ € Hom(h,R), ¢|lp» =0. If n —m —k > 1,
then ¢ = 0.

Type VIL g = {(p(az,A) + a2i, A, X,b) | a2 € R, A € h, X € H" &
Cr™, b € ImH}, where 0 < m < n, h C sp(m) ® u(n —m) is a subal-
gebra, ¢ € Hom(R @ h,R), ¢|y = 0.

Type VIIL g= {(p(A)+¢(A)i, A, X,b) | Ach, X € H"aCFaR" ™ be
ImH}, where 0 <m <n, 0 <k <n-—m,bCsp(m)®u(k)®so(n—m—k)
is a subalgebra, ¢, ¢ € Hom(h,R), ¢ly = ¢lyy = 0. If n —m — k > 1, then
¢ =0.
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Type IX. g = {(0,4,¢(A)+X,b) | Ach, X €W, beImH}. Here 0 <m <
nand0<k<n-—m. For L=H"®CF@R* ™k c R = H" we have an
n-orthogonal decomposition L =W & U, h C sp(W NiW NjW NEkW) is a
subalgebra and ¥: h — W is a surjective linear map with |y = 0.

4. RELATION WITH THE GROUP OF SIMILARITY TRANSFORMATIONS OF H"

Let H” be the n-dimensional quaternionic vector space endowed with a quaternio-
nic-Hermitian metric g. For elements a; € Ry, a2 € Sp(1), f € Sp(n) and X € H"
consider the following transformations of H": d(a1): Y + a1Y (real dilation),
az: Y — a2Y (quaternionic dilation), f: Y +— fY (rotation), ¢(YV): Y —» Y + X
(translation), here Y € H". Note that the elements a; € Sp(1) act on H" as
R-linear (but not H-linear) isomorphism. These transformations generate the Lie
group SimH" of similarity transformations of H". We get the decomposition

SimH" = (R4 x Sp(1) - Sp(n)) <H".

The Lie group SimH" is a Lie subgroup of the connected Lie group Sim® R*" of
similarity transformations of R**, Sim’ R*" = (R, x SO(4n)) £ R*".

The corresponding Lie algebra L£A(SimH"™) to the Lie group SimH" has the
following decomposition

LASIMH") = (R @ sp(1) @ sp(n)) x H".

Let p,e1,...,en,q be the basis of H'""*! as above. Consider also the basis

€0, €1, -+, Cn,yEntl, Where ey = g(p —q) and e, 11 = 72(1) + q). With respect to

this basis the Gram matrix of g has the form -1 0 .
0 En+1

The subset of the (n+1)-dimensional quaternionic projective space PH"" ! that
consists of all quaternionic isotropic lines is called the boundary of the quaternionic
hyperbolic space and is denoted by GH%H.

Let ho,...,hpt1, where hy = x5 +iys + jzs + kws € H (0 < s <n+ 1) be the
coordinates on H'"*! with respect to the basis e, ..., e, 1. Denote by H" and
H"+! the subspaces of H!""*! spanned by the vectors e,...,e, and e1,...,€,q1,
respectively. Note that the intersection (e + H" 1) N {X € HM" | g(X, X) =0}
is given by the system of equations:

1'0:13 y0:0, ZOZOa U.)O:O,
B+l el tyaa g twh =1,

i.e. this set is the (4n + 3)-dimensional unite sphere S4**3. Moreover, each isotropic
line intersects this set at a unique point, e.g. Hp intersects it at the point v/2p.
Thus we identify the space 8Hﬁ+1 with the sphere S*"*3. Any f € Sp(1,n + 1)m,
takes quaternionic isotropic lines to quaternionic isotropic lines and preserves the
quaternionic isotropic line Hp. Hence it acts on OHp ™ \ {Hp} = S4"+3\ {\/2p}.

Consider the connected Lie subgroups Aq, A2, Sp(n) and P of Sp(1,n + 1)m,
corresponding to the subalgebras Aj, As,sp(n) and N + B of the Lie algebra
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sp(1,n + 1)mp. With respect to the basis p,e1,...,e,, ¢ these groups have the
following matrix form:

aq 0 0
A,={Opl0 E, 0O a1 €Ry 3,
0 0 a;t
e %2 0
Ay = Op 0 E, 0 ao € ImH , ,
0 0 e @
1 0 0
Sp(n) =qOp |0 Maty Of|f€Spn),,
0 0 1
1 —-Yt bp—1iyty
2 Y € H®
P={0pl0 E, Y ’
0 0 1 beImH

We have the decomposition
Sp(1,m 4+ 1), = (A1 x Ay x Sp(n)) X P =~ (Ry x Sp(1) x Sp(n)) £ (H" - R?).

Let s1: S43\ {V/2p} — ep + H" be the map defined as the usual stereographic
projection, but using quaternionic lines. More precisely, for s € §4+3\ {/2p} we
define s1(s) to be the point of the intersection of eg + H" with the quaternionic
line passing through the points v/2p and s. It is easy to see that this intersection
consists of a single point. Let so: eg + H" — S4+3\ {1/2p} be the restriction to
eo + H™ of the inverse to the usual stereographic projection from S4"+3\ {1/2p} to
eo + H" @ (ImH)e, 1. Note that s; 0 so = idey4mn, but unlike in the usual case,
s1 is not surjective. We have $9 0 $1|1m s, = idim s,- Also, let eg and —eq denote the
translations H® — ey + H™ and eg + H"™ — H", respectively.
For f € Sp(1,n + 1)m, define the map

F(f)=(—ep)osiofosyoeg: H" — H".

Now we will show that F is a surjective homomorphism from the Lie group
Sp(1, n+1)m, to the Lie group SimH"™ and ker F' = Zy x B, where Zy = {id, —id} €
Sp(1,n+1)mp and B is the connected Lie subgroup of Sp(1,n+ 1), corresponding
to the ideal B C sp(1,n + 1)m,. First of all, the computations show that for a; € R,
as € ImH, f € Sp(n) and Y € H" it holds

ap 0 0
F|Op|lO E, O =d(a1) € Ry C SimH",
0 0 a;t

0
F|{Op| 0 E, O =" € Sp(1) C SimH",
0
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1 0 0
F|lOp|0 Maty 0 = f €Sp(n) C SimH",
0 0 1
Ot 1y ty
1 -Vt b-1yty Y o
F|lOp|lO E, Y =t _TY € H" C SimH".
0 0 1

It follows that if fi, fo € P, then F(f1f2) = F(f1)F(f2), i.e. F|p is a homomor-
phism from P to SimH". It can easily be checked that any f € A; x Ay x Sp(n)
considered as a map from S47+3\ {/2p} to itself preserves Im sy C S4"+3\ {v/2p}.
Hence if f7 is from P or A; x As x Sp(n) and fo € A; X Ag x Sp(n), then

F(fif2) =(—eo)osiofiofaosyoeg

= (—eg)osi0 fiossoego(—eg)osyofaosyoey=F(f1)F(f2),

since $2 © $1|ims, = idims,. Therefore it is enough to prove that F(fif2) =
F(f1)F(f2), for f1 € A} x Ay x Sp(n) and fy € P. Let
aie 2 0 0
f1:Op 0 A 0 €A1><A2><Sp(n),
0 0 ajle @
IVt b vty
fo=0p|0 E, Y eP.
0 0 1

Then f,fof; ! = f3 € P, where
I —((A"HWaje )t afer(b— JYtY)e
f5=0p|0 E, aje®(YtAY)?
0 0 1
We have

F(flfg) = F(féfl) = F(fé)F(fl) =t (—?ale’“ (YtAt)t) a16“2 OpA

=t (?aw’” OpA- Y> a;e”> Op A

=a1eOpA-t (—?Y> = F(f1)F(f2),

since for any f € Ry x SO(4n) and X € R*™ it holds ft(X)f~! = t(fX) or
t(fX)f = ft(X). Thus F is the homomorphism from the Lie group Sp(1,n + 1)m,
to the Lie group Sim H". Obviously, F' is surjective. The claim is proved.

Let L C R*" be a vector (affine) subspace. We call the subset L C H" a real
vector (affine) subspace.

Theorem 2. Let G C Sp(1,n + 1)m, act weakly irreducibly on H“"*1. Then if
F(G) C SimH"™ preserves a proper real affine subspace L C H", then the minimal
affine subspace of H™ containing L is H™.
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Proof. First we prove that the subgroup F(G) C SimH" does not preserve any
proper affine subspace of H". Assume that F(G) preserves a vector subspace
L C H". Choosing the basis e, ..., e, of H” in a proper way, we can suppose that
L = H™ = spang{es,...,en}. Consequently, F(G) C (R4 x (Sp(1) - (Sp(m) x
Sp(n—m)))) <H™. Hence, G C (R xSp(1) x Sp(m) x Sp(n—m)) L(H™-R3) and G
preserves the non-degenerate vector subspace spang{emni1,...,e,} C HV" T Now
suppose that F(G) preserves an affine subspace L C H". Let L =Y + Ly, where
Y € L and Ly C H" is the vector subspace corresponding to L. We may assume

1 2yt —YY
that Ly = H™ = spang{ei,...,en}. Consider f=O0p |0 E, —V2Y|€eP
0 0 1
and the subgroup G = f~'Gf C Sp(1,n + 1)g,. For F(G) we get that F(G) =
—t(Y)F(G)t(Y). By the above G preserves the non-degenerate vector subspace

spang{em+i1,-..,en}t C HY"*!, Hence G preserves the non-degenerate vector
subspace f(spang{emi1,---,en}) C HV" L Since G is weakly irreducible, we get
m=n.

Let F(G) preserve a real affine subspace L € H™ and let Ly C H™ be the
corresponding real vector subspace. Consider the vector subspace (spang Lo)* C H™.
As above, it can be proved that G preserves the non-degenerate vector subspace
f((spany Lo)*) € HY" L. Since G is weakly irreducible, we have (spany Lg)* = 0
and spany Lo = H". The theorem is proved. ([l

5. PROOF OF THE MAIN THEOREM

First of all, from Example [I] it follows that the algebras of Types I-VIII act
weakly irreducibly on R*4"*4_ For the algebras of Type IX it can be proved in the
same way. Therefore we must only prove that any subalgebra g C sp(1,n + 1)m,
that acts weakly irreducibly on R**"*4 and contains the ideal B is conjugated (by
an element from SO(4,4n + 4)) to one of the algebras of Types I-IX. Suppose that
g C sp(1,n+ 1)g, acts weakly irreducibly on R*4" 4 and contains the ideal B. Let
G C Sp(1,n + 1)m, be the corresponding connected Lie subgroup. By Theorem
F(G) preserves a real affine subspace L C H" such that the minimal affine
subspace of H" containing L is H". We already know that G is conjugated to a
subgroup G C Sp(1,n + 1)m, such that F(é) preserves a real vector subspace
Lo C H" with spany Ly = H". Hence we can assume that F(G) preserves a real
vector subspace L C H" and spanyg L = H". Moreover, assume that F(G) does not
preserve any proper affine subspace of L. Then F(G) acts transitively on L [I]. The
connected transitively acting groups of similarity transformations of the Euclidean
spaces are well know. In [7] these groups were divided into three types. We describe
real subspaces L C H" with spany L = H™ and subalgebras ¢ C LA(SimH") such
that the corresponding connected Lie subgroups K C SimH" preserve L and
act transitively on L. Then the algebra g must be of the form (dF)~1(¢) for a
subalgebra &.

Now we describe real vector subspaces L C H™ with spany L = H". Let L be such
a subspace. Put Ly = LN+«LNjLNEL, i.e. Ly is the maximal quaternionic vector
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subspace in L. Let Lo be the orthogonal complement to Ly in L, then L = Ly ® Lo
and Lo NiLo N jLo NkLy = 0. Now let Ls = Lo Nilo, i.e. Ly is the maximal
i-invariant real vector subspace in Ls. Let Ly be its orthogonal complement in
Lo, then Ly = L3 @ Ly4. Similarly, define the spaces Ls, Lg, L7, Ls C L such that
L5 = L4 N jL4, L4 = L5 ©® L6, L7 = LG N kLG and L6 = L7 (S Lg. By construction,
we get the orthogonal decomposition L = L1 @ L3 & Ls & L7 & Lg and there exists
a g-orthogonal basis eq,..., e, of H" such that this decomposition has the form

L = spang{ey,...en} @ spanggp{€mt1, - - - €m, } © spangg ig{€m,+1,---€m,}
(1) ® spanggrr{Cmatis - - - €ms} O SPANR{Cm 1, €n ).

Obviously, there is an f € SO(n) such that

(2) fL = spang{er,...en} ®spanggr{m+1,-- - €mtk} OSPANR{€mikt1,---En},

where m + k = mg. Since we consider the subgroups of Sp(1,n + 1)m, up to
conjugacy in SO(4,4n + 4), we can assume that L has the form . We will write
for short

L=H"aCtoRrR"™*.

Suppose that a subgroup K C SimH" preserves L. Since K C SimH" C
Sim’ R*" = (Ry x SO(4n)) A R* we have K C (Ry x SO(L) x SO(L*)) < L.
But K C SimH", hence prgo(4n) £ C Sp(1) - Sp(n). Consequently, prgg,) K =
Prsp(1).sp(n) K C Sp(1) - Sp(n) N SO(L) x SO(L%). For the corresponding subal-
gebra £ C LA(SimH"), we have pry,(1ygsp(n) € C sp(1) ® sp(n) Nso(L) @ so(L1Y).
Considering the matrices of the elements of these algebras in the basis of R*", we
obtain

sp(1) ®sp(n), ifm=nmn;
sp(m)@u(n —m) iR, if0<m<mn,
n—m==%;

sp(1) @ sp(n) Nso(L) @s0(LT) = 0 ooy

@so(n—m—k), if0<m<n,
n—-m-—k>1.

The action of the Lie algebras u(n—m) and so(n—m—k) on C*~™ and R*~™m~k,
respectively, is described in Section
Let F be a Euclidean space. In [7] subalgebras ¢ C LA(Sim E) corresponding to
connected transitively acting subgroups of Sim E were divided into the following
three types:
Type R. t= (R$h) x E, where b C s0(FE) is a subalgebra.
Type . t = {©(A) + A|A € h} x E, where h C so(F) is a subalgebra, ¢ €
Hom(, R), ¢y = 0.
Type . ¢ = {A+¢(A)|A € h}xU, where we have an orthogonal decomposition
E=W@aU,bCso(W) is a subalgebra, ¥ : h — W is surjective linear map,
Plyr = 0.
Suppose that m = n, i.e. L = H". If ¢ is of Type R, then ¢t = (R® §) x L,
where h C sp(1) @ sp(n) is a subalgebra. If h C sp(n), then (dF)~1(€) is of Type
IT with as = 0 and ¢ = 0. Let h have the form by ® by, where ho C sp(1) and
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by C sp(n). If dim by = 1, then (dF)~1(¥) is of Type II with ¢ = 0 and b changed
to . If dim by = 2 or 3, then (dF)~1(€) is of Type I with b changed to b;. Suppose
that h # prey,1) ) @ Prayen) b I hNsp(1) = 0, then (dF)~'(€) is of Type IT with
az = 0. Now let dimh Nsp(1l) = 1 and let az € hNsp(1l) be a non-zero element.
Obviously, h = {A + #(A)[A € pryy(,) b} + Raz, where ¢: prg,,) b — sp(1)
is a homomorphism, ¢ # 0 and Im¢ N Ras = 0. For A + ¢(A4) € bh, we have
[A+ ¢(A),a2] = [¢p(A),az] € hNsp(l). Hence, [¢(A),az] C Rag. If rk¢ = 1, then
(dF)~'(e) is of Type I If rk ¢ = 2, then there exist A1, Ay € pryy(, b such that
#(A1), (A2) and ag span sp(1). But this is impossibly, since sp(1)’ = sp(1). In the
same way, if dimhNsp(l) =2 and h = {A+ ¢(A)} + (hNsp(l)), then ¢ = 0. If
t = {o(A)+ A|A € b} x L is of Type ¢, then all (dF)~1(€) can be obtained from
the above, since ¢ is obtained from (R&h) x L by twisting between § and R. We will
get that (dF)~1(&) is of Type Il or IV. Let € be of Type 1, i.e. ¢ = {A+9(A)} x U,
where L = W @ U is an orthogonal decomposition, h C so(W) is a subalgebra and
¢ 1 h — W is surjective linear map, 9|, = 0. Since h C sp(1) @ sp(n), we have
h C sp(l) @ sp(n) Nso(W) = sp(W NiW N jW N EW). We obtain Type IX for
m = n. The case m < n can be consider similarly. If £ is of Type R, then g is of
Type V or VI. If ¢ is of Type ¢, then g is of Type VII or VIII. If ¢ is of Type ¥,
then g is of Type IX. The theorem is proved. [

Remark 1. It is also possible to classify weakly irreducible subalgebras of sp(1,n+
1)mp containing the ideal B up to conjugacy by elements of Sp(1,n + 1). For this
we should consider in addition the real vector subspace L C H" of the form
such that at least two of the inequalities m < mj < mo < mg3 hold. Note that

sp(1) @ sp(n) Nso(L) @ so(L*) = sp(spangfes,...em})
D u(span]ReaiR{em-i-h <o Cmy }) S u(spanR®jR{em1+17 s emz})
@ u(spanggrr{€mat1, - - €my }) O so(spang{em,41,---€n}).
We should generalize Type IX assuming that L has the form and we should in
addition add two types of Lie algebras:
Type X. g = {(ahA,X, b) | apa e R, Aebh, X € L,b e ImH}, where
h Csp(1) ®sp(n) Nso(L) ®so(LL) is a subalgebra.
Type XL g={(¢(A),A,X,b) | Ach, X €L, beImH}, where h C sp(1) &
sp(n) Nso(L) ® so(L+) is a subalgebra, ¢ € Hom(h,R), o]y = 0.
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