ON THE OSCILLATORY INTEGRATION OF SOME ORDINARY DIFFERENTIAL EQUATIONS

Octavian G. Mustafa

Abstract

Conditions are given for a class of nonlinear ordinary differential equations $x^{\prime \prime}+a(t) w(x)=0, t \geq t_{0} \geq 1$, which includes the linear equation to possess solutions $x(t)$ with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x^{\prime}(t)-\frac{x(t)}{t}$.

1. Introduction

A certain interest has been shown recently in studying the existence of bounded and positive solutions to a large class of elliptic partial differential equations which can be displayed as

$$
\begin{equation*}
\Delta u+f(x, u)+g(|x|) x \cdot \nabla u=0, \quad x \in G_{R} \tag{1}
\end{equation*}
$$

where $G_{R}=\left\{x \in \mathbb{R}^{n}:|x|>R\right\}$ for any $R \geq 0$ and $n \geq 2$. We would like to mention the contributions [3], [1], [8] - [11], [13, 14], [18] and their references in this respect.

It has been established, see [8] [9, that it is sufficient for the functions f, g to be Hölder continuous, respectively continuously differentiable in order to analyze the asymptotic behavior of the solutions to (1) by the comparison method [15]. In fact, given $\zeta>0$, let us assume that there exist a continuous function $A:[R,+\infty) \rightarrow$ $[0,+\infty)$ and a nondecreasing, continuously differentiable function $W:[0, \zeta] \rightarrow$ $[0,+\infty)$ such that

$$
0 \leq f(x, u) \leq A(|x|) W(u) \quad \text { for all } \quad x \in G_{R}, u \in[0, \zeta]
$$

and $W(u)>0$ when $u>0$. Then we are interested in the positive solutions $U=U(|x|)$ of the elliptic partial differential equation

$$
\Delta U+A(|x|) W(U)=0, \quad x \in G_{R}
$$

for the role of super-solutions to (1).
M. Ehrnström [13] noticed that, by imposing the restriction

$$
x \cdot \nabla U(x) \leq 0, \quad x \in G_{R},
$$

[^0]upon the super-solutions U, an improvement of the conclusions from the literature is achieved for the special subclass of equations (1) where g takes only nonnegative values. Further developments of Ehrnström's idea are given in [3, 1, 11, 14].

Translated into the language of ordinary differential equations, the research about U reads as follows: given $c_{1}, c_{2} \geq 0$, find (if any) a positive solution $x(t)$ of the nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime}+a(t) w(x)=0, \quad t \geq t_{0} \geq 1 \tag{2}
\end{equation*}
$$

where the coefficient $a:\left[t_{0},+\infty\right) \rightarrow \mathbb{R}$ and the nonlinearity $w: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and given by means of A, W, such that

$$
\begin{equation*}
x(t)=c_{1} t+c_{2}+o(1) \quad \text { when } \quad t \rightarrow+\infty \tag{3}
\end{equation*}
$$

and

$$
\mathcal{W}(x, t)=\frac{1}{t}\left|\begin{array}{cc}
x^{\prime}(t) & 1 \tag{4}\\
x(t) & t
\end{array}\right|=x^{\prime}(t)-\frac{x(t)}{t}<0, \quad t>t_{0}
$$

The symbol $o(f)$ for a given functional quantity f has here its standard meaning. In particular, by $o(1)$ we refer to a function of t that decreases to 0 as t increases to $+\infty$.

The papers [2, 1, 22, 21, 20] present various properties of the functional quantity \mathcal{W}, which shall be called pseudo-wronskian in the sequel. Our aim in this note is to complete their conclusions by giving some sufficient conditions upon a and w which lead to the existence of a solution x to (2) that verifies (3) while having an oscillatory pseudo-wronskian (this means that there exist the unbounded from above sequences $\left(t_{n}^{ \pm}\right)_{n \geq 1}$ and $\left(t_{n}^{0}\right)_{n \geq 1}$ such that $t_{2 n-1}^{0}<t_{n}^{+}<t_{2 n}^{0}<t_{n}^{-}<t_{2 n+1}^{0}$ and $\mathcal{W}\left(t_{n}^{+}\right)>\mathcal{W}\left(t_{n}^{0}\right)=0>\mathcal{W}\left(t_{n}^{-}\right)$for all $\left.n \geq 1\right)$. We answer thus to a question raised in [1] p. 371], see also the comment in [2] pp. 46-47].

2. The sign of \mathcal{W}

Let us start the discussion with a simple condition to settle the sign issue of the pseudo-wronskian.
Lemma 1. Given $x \in C^{2}\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$, suppose that $x^{\prime \prime}(t) \leq 0$ for all $t \geq t_{0}$. Then $\mathcal{W}(x, \cdot)$ can change from being nonnegative-valued to being negative-valued at most once in $\left[t_{0},+\infty\right)$. In fact, its set of zeros is an interval (possibly degenerate).
Proof. Notice that

$$
\frac{d^{2}}{d t^{2}}[x(t)]=\frac{1}{t} \cdot \frac{d}{d t}[t \mathcal{W}(x, t)], \quad t \geq t_{0}
$$

The function $t \mapsto t \mathcal{W}(x, t)$ being nonincreasing, it is clear that, if it has zeros, it has either a unique zero or an interval of zeros.

The result has an obvious counterpart.
Lemma 2. Given $x \in C^{2}\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$, suppose that $x^{\prime \prime}(t) \geq 0$ for all $t \geq t_{0}$. Then, $\mathcal{W}(x, \cdot)$ can change from being nonpositive-valued to being positive-valued at most once in $\left[t_{0},+\infty\right)$. Again, its set of zeros is an interval (possibly reduced to one point).

Consider that x is a positive solution of equation (2) in the case where $a(t) \geq 0$ in $\left[t_{0},+\infty\right)$ and $w(u)>0$ for all $u>0$. Then, we have

$$
\frac{d \mathcal{W}}{d t}=-\frac{\mathcal{W}}{t}-a(t) w(x(t)), \quad t \geq t_{0}
$$

which leads to

$$
\begin{equation*}
\mathcal{W}(x, t)=\frac{1}{t}\left[t_{0} \mathcal{W}_{0}-\int_{t_{0}}^{t} s a(s) w(x(s)) d s\right], \quad \mathcal{W}_{0}=\mathcal{W}\left(x, t_{0}\right) \tag{5}
\end{equation*}
$$

throughout $\left[t_{0},+\infty\right)$ by means of Lagrange's variation of constants formula.
The integrand in (5) being nonnegative-valued, we regain the conclusion of Lemma 1 In fact, if $T \in\left[t_{0},+\infty\right)$ is a zero of $\mathcal{W}(x, \cdot)$ then it is a solution of the equation

$$
\begin{equation*}
t_{0} \mathcal{W}_{0}=\int_{t_{0}}^{T} s a(s) w(x(s)) d s \tag{6}
\end{equation*}
$$

On the other hand, if the pseudo-wronskian of x is positive-valued throughout $\left[t_{0},+\infty\right)$ then it is necessary to have

$$
\begin{equation*}
\left(t_{0} \mathcal{W}_{0} \geq\right) \quad \int_{t_{0}}^{+\infty} s a(s) w(x(s)) d s<+\infty \tag{7}
\end{equation*}
$$

It has become clear at this point that whenever the equation (22) has a positive solution x such that $\mathcal{W}_{0} \leq 0$, the functional coefficient a is nonnegative-valued and has at most isolated zeros and $w(u)>0$ for all $u>0$, the pseudo-wronskian \mathcal{W} satisfies the restriction (4). Now, returning to the problem stated in the Introduction, we can evaluate the main difficulty of the investigation: if the positive solution x has prescribed asymptotic behavior, see formula (3) or a similar development, then we cannot decide upfront whether or not $\mathcal{W}_{0} \leq 0$. The formula (6) shows that there are also certain difficulties to estimate the zeros of the pseudo-wronskian.

3. The behavior of \mathcal{W}

Let us survey in this section some of the recent results regarding the pseudo-wronskian.

It has been established that its presence in the structure of a nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime}+f\left(t, x, x^{\prime}\right)=0, \quad t \geq t_{0} \geq 1 \tag{8}
\end{equation*}
$$

where the nonlinearity $f:\left[t_{0},+\infty\right) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, allows for a remarkable flexibility of the hypotheses when searching for solutions with the asymptotic development (3) (or similar).

Theorem 1 ([22, p. 177]). Assume that there exist the nonnegative-valued, continuous functions $a(t)$ and $g(s)$ such that $g(s)>0$ for all $s>0$ and $x g(s) \leq g\left(x^{1-\alpha} s\right)$, where $x \geq t_{0}$ and $s \geq 0$, for a certain $\alpha \in(0,1)$. Suppose further that

$$
\left|f\left(t, x, x^{\prime}\right)\right| \leq a(t) g\left(\left|x^{\prime}-\frac{x}{t}\right|\right) \quad \text { and } \quad \int_{t_{0}}^{+\infty} \frac{a(s)}{s^{\alpha}} d s<\int_{c+\left|\mathcal{W}_{0}\right| t_{0}^{1-\alpha}}^{+\infty} \frac{d u}{g(u)}
$$

Then the solution of equation (8) given by (5) exists throughout $\left[t_{0},+\infty\right)$ and has the asymptotic behavior

$$
\begin{equation*}
x(t)=c \cdot t+o(t), \quad x^{\prime}(t)=c+o(1) \quad \text { when } \quad t \rightarrow+\infty \tag{9}
\end{equation*}
$$

for some $c=c(x) \in \mathbb{R}$.
To compare this result with the standard conditions in asymptotic integration theory regarding the development (9), see the papers [2, 1, 24] and the monograph [19.

Another result is concerned with the presence of the pseudo-wronskian in the function space $L^{1}\left(\left(t_{0},+\infty\right), \mathbb{R}\right)$.

Theorem 2 ([1, p. 371]). Assume that f does not depend explicitly of x^{\prime} and there exists the continuous function $F:\left[t_{0},+\infty\right) \times[0,+\infty) \rightarrow[0,+\infty)$, which is nondecreasing with respect to the second variable, such that

$$
|f(t, x)| \leq F\left(t, \frac{|x|}{t}\right) \quad \text { and } \quad \int_{t_{0}}^{+\infty} t\left[1+\ln \left(\frac{t}{t_{0}}\right)\right] F\left(t,|c|+\frac{\varepsilon}{t_{0}}\right) d t<\varepsilon
$$

for certain numbers $c \neq 0$ and $\varepsilon>0$. Then there exists a solution $x(t)$ of equation (8) defined in $\left[t_{0},+\infty\right)$ such that

$$
x(t)=c \cdot t+o(1) \quad \text { when } \quad t \rightarrow+\infty \quad \text { and } \quad \mathcal{W}(x, \cdot) \in L^{1} .
$$

The effect of perturbations upon the pseudo-wronskian is investigated in the papers [2, 22, 21].

Theorem 3 ([22, p. 183]). Consider the nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime}+f\left(t, x, x^{\prime}\right)=p(t), \quad t \geq t_{0} \geq 1 \tag{10}
\end{equation*}
$$

where the functions $f:\left[t_{0},+\infty\right) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $p:\left[t_{0},+\infty\right) \rightarrow \mathbb{R}$ are continuous and verify the hypotheses

$$
\left|f\left(t, x, x^{\prime}\right)\right| \leq a(t)\left|x^{\prime}-\frac{x}{t}\right|, \quad \int_{t_{0}}^{+\infty} t a(t) d t<+\infty
$$

and

$$
\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{t_{0}}^{t} s p(s) d s=C \in \mathbb{R}-\{0\}
$$

Then, given $x_{0} \in \mathbb{R}$, there exists a solution $x(t)$ of equation (10) defined in $\left[t_{0},+\infty\right)$ such that

$$
x\left(t_{0}\right)=x_{0} \quad \text { and } \quad \lim _{t \rightarrow+\infty} \mathcal{W}(x, t)=C .
$$

In particular,

$$
\lim _{t \rightarrow+\infty} \frac{x(t)}{t \ln t}=C
$$

A slight modification of the discussion in [21, Remark 3], see [2] p. 47], leads to the next result.

Theorem 4. Assume that f in does not depend explicitly of x^{\prime} and there exists the continuous function $F:\left[t_{0},+\infty\right) \times[0,+\infty) \rightarrow[0,+\infty)$, which is nondecreasing with respect to the second variable, such that

$$
|f(t, x)| \leq F(t,|x|) \quad \text { and } \quad \int_{t}^{+\infty} s F\left(s,|P(s)|+\sup _{\tau \geq s}\{q(\tau)\}\right) d s \leq q(t), \quad t \geq t_{0}
$$

for a certain positive-valued, continuous function $q(t)$ possibly decaying to 0 as $t \rightarrow+\infty$. Here, P is the twice continuously differentiable antiderivative of p, that is $P^{\prime \prime}(t)=p(t)$ for all $t \geq t_{0}$. Suppose further that

$$
\limsup _{t \rightarrow+\infty}\left[t \frac{\mathcal{W}(P, t)}{q(t)}\right]>1 \quad \text { and } \quad \liminf _{t \rightarrow+\infty}\left[t \frac{\mathcal{W}(P, t)}{q(t)}\right]<-1
$$

Then equation (10) has a solution $x(t)$ throughout $\left[t_{0},+\infty\right)$ such that

$$
x(t)=P(t)+o(1) \quad \text { when } \quad t \rightarrow+\infty
$$

and $\mathcal{W}(x, \cdot)$ oscillates.
Finally, the presence of the pseudo-wronskian in the structure of a nonlinear differential equation can lead to multiplicity when searching for solutions with the asymptotic development (3).

Theorem 5 ([20, Theorem 1]). Given the numbers $x_{0}, x_{1}, c \in \mathbb{R}$, with $c \neq 0$, and $t_{0} \geq 1$ such that $t_{0} x_{1}-x_{0}=c$, consider the Cauchy problem

$$
\begin{cases}x^{\prime \prime}=\frac{1}{t} g\left(t x^{\prime}-x\right), & t \geq t_{0} \geq 1 \tag{11}\\ x\left(t_{0}\right)=x_{0}, & x^{\prime}\left(t_{0}\right)=x_{1}\end{cases}
$$

where the function $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $g(c)=g(3 c)=0$ and $g(u)>0$ for all $u \neq c$. Assume further that

$$
\int_{c+}^{2 c} \frac{d u}{g(u)}<+\infty \quad \text { and } \quad \int_{2 c}^{(3 c)-} \frac{d u}{g(u)}=+\infty
$$

Then problem (11) has an infinity of solutions $x(t)$ defined in $\left[t_{0},+\infty\right)$ and developable as

$$
x(t)=c_{1} t+c_{2}+o(1) \quad \text { when } \quad t \rightarrow+\infty
$$

for some $c_{1}=c_{1}(x)$ and $c_{2}=c_{2}(x) \in \mathbb{R}$.
The asymptotic analysis of certain functional quantities attached to the solutions of equations (22), 8) and (10), as in our case the pseudo-wronskian, might lead to some surprising consequences. Among the functional quantities that gave the impetus to spectacular developments in the qualitative theory of linear/nonlinear ordinary differential equations we would like to refer to

$$
\mathcal{K}(x)(t)=x(t) x^{\prime}(t), \quad t \geq t_{0},
$$

employed in the theory of Kneser-solutions, see the papers [6, 7] for the linear and respectively the nonlinear case and the monograph [19], and

$$
\mathcal{H} \mathcal{W}(x)=\int_{t_{0}}^{+\infty} x(s) w(x(s)) d s
$$

The latter quantity is the core of the nonlinear version of Hermann Weyl's limit-point/limit-circle classification designed for equation (2), see the well-documented monograph [5] and the paper [23].

4. The negative values of \mathcal{W}

We shall assume in the sequel that the nonlinearity w of equation (2) verifies some of the hypotheses listed below:

$$
\begin{equation*}
|w(x)-w(y)| \leq k|x-y|, \quad \text { where } \quad k>0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
w(0)=0, \quad w(x)>0 \quad \text { when } \quad x>0, \quad|w(x y)| \leq w(|x|) w(|y|) \tag{13}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. We notice that restriction (13) implies the existence of a majorizing function F, as in Theorem 2 given by the estimates

$$
|f(t, x)|=|a(t) w(x)| \leq|a(t)| \cdot w(t) w\left(\frac{|x|}{t}\right)=F\left(t, \frac{|x|}{t}\right)
$$

We can now use the paper [24] to recall the main conclusions of an asymptotic integration of equation 22. It has been established that whenever $\int_{t_{0}}^{+\infty} t w(t)|a(t)| d t<$ $+\infty$, all the solutions of (2) have asymptotes (3) and their first derivatives are developable as

$$
\begin{equation*}
x^{\prime}(t)=c_{1}+o\left(t^{-1}\right) \quad \text { when } \quad t \rightarrow+\infty . \tag{14}
\end{equation*}
$$

Consequently, $\mathcal{W}(x, t)=-c_{2} t^{-1}+o\left(t^{-1}\right)$ for all large t 's. In this case (the functional coefficient a has varying sign), when dealing with the sign of the pseudo-wronskian, of interest would be the subcase where $c_{2}=0$. Here, the asymptotic development does not even ensure that \mathcal{W} is eventually negative. Enlarging the family of coefficients to the ones subjected to the restriction $\int_{t_{0}}^{+\infty} t^{\varepsilon} w(t)|a(t)| d t<+\infty$, where $\varepsilon \in[0,1)$, the developments (3), (14) become

$$
\begin{equation*}
x(t)=c t+o\left(t^{1-\varepsilon}\right), \quad x^{\prime}(t)=c+o\left(t^{-\varepsilon}\right), \quad c \in \mathbb{R} \tag{15}
\end{equation*}
$$

yielding the less precise estimate $\mathcal{W}(x, t)=o\left(t^{-\varepsilon}\right)$ when $t \rightarrow+\infty$. We have again a lack of precision in the asymptotic development of $\mathcal{W}(x, \cdot)$ with respect to the sign issue. We also deduce on the basis of (3), (15) that some of the coefficients a in these classes verify (7), a fact that complicates the discussion.

The next result establishes the existence of a positive solution to (2) subjected to (4), (15) for the largest class of functional coefficients: $\varepsilon=0$. By taking into account Lemmas 1, 2 and the non-oscillatory character of equation (2) when the nonlinearity w verifies (13), we conclude that for an investigation within this class of coefficients a of the solutions with oscillatory pseudo-wronskian it is necessary that a itself oscillates. Also, when a is non-negative valued we recall that the condition

$$
\int_{t_{0}}^{+\infty} a(t) d t<+\infty
$$

is necessary for the linear case of equation (2) to be non-oscillatory, see [16], while in the case given by $w(x)=x^{\lambda}, x \in \mathbb{R}$, with $\lambda>1$ (such an equation is usually called an Emden-Fowler equation, see the monograph [19]) the condition

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} t a(t) d t=+\infty \tag{16}
\end{equation*}
$$

is necessary and sufficient for oscillation, see [4]. In the case of Emden-Fowler equations with $\lambda \in(0,1)$ and a continuously differentiable coefficient a such that $a(t) \geq 0$ and $a^{\prime}(t) \leq 0$ throughout $\left[t_{0},+\infty\right)$, another result establishes that equation (2) has no oscillatory solutions provided that condition (16) fails, see [17].

Regardless of the oscillation of a, it is known [1, p. 360] that the linear case of equation 2 has bounded and positive solutions with eventually negative pseudo-wronskian.

Theorem 6. Assume that the nonlinearity w verifies hypothesis (13) and is nondecreasing. Given $c, d>0$, suppose that the functional coefficient a is nonnegative--valued, with eventual isolated zeros, and

$$
\int_{t_{0}}^{+\infty} w(t) a(t) d t \leq \frac{d}{w(c+d)}
$$

Then, the equation (2) has a solution x such that $\mathcal{W}_{0}=0$,

$$
\begin{equation*}
c-d \leq x^{\prime}(t)<\frac{x(t)}{t} \leq c+d \quad \text { for all } \quad t>t_{0} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} x^{\prime}(t)=\lim _{t \rightarrow+\infty} \frac{x(t)}{t}=c \tag{18}
\end{equation*}
$$

Proof. We introduce the set D given by

$$
D=\left\{u \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right): c t \leq u(t) \leq(c+d) t \text { for every } t \geq t_{0}\right\}
$$

A partial order on D is provided by the usual pointwise order " \leq ", that is, we say that $v_{1} \leq v_{2}$ if and only if $v_{1}(t) \leq v_{2}(t)$ for all $t \geq t_{1}$, where $v_{1}, v_{2} \in D$. It is not hard to see that (D, \leq) is a complete lattice.

For the operator $V: D \rightarrow C\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$ with the formula

$$
V(u)(t)=t\left\{c+\int_{t}^{+\infty} \frac{1}{s^{2}} \int_{t_{0}}^{s} \tau a(\tau) w(u(\tau)) d \tau d s\right\}, \quad u \in D, t \geq t_{0}
$$

the next estimates hold

$$
\begin{aligned}
c & \leq \frac{V(u)(t)}{t}=c+\int_{t}^{+\infty} \frac{1}{s^{2}} \int_{t_{0}}^{s} \tau a(\tau) \cdot w(\tau) w\left(\frac{u(\tau)}{\tau}\right) d \tau d s \\
& \leq c+\sup _{\xi \in[0, c+d]}\{w(\xi)\} \cdot \int_{t}^{+\infty} \frac{1}{s^{2}} \int_{t_{0}}^{s} \tau w(\tau) a(\tau) d \tau d s \\
& =c+w(c+d)\left[\frac{1}{t} \int_{t_{0}}^{t} \tau w(\tau) a(\tau) d \tau+\int_{t}^{+\infty} w(\tau) a(\tau) d \tau\right] \\
& \leq c+w(c+d) \int_{t_{0}}^{+\infty} w(\tau) a(\tau) d \tau \leq c+d
\end{aligned}
$$

by means of 13 . These imply that $V(D) \subseteq D$.
Since $c \cdot t \leq V(c \cdot t)$ for all $t \geq t_{0}$, by applying the Knaster-Tarski fixed point theorem [12] p. 14], we deduce that the operator V has a fixed point u_{0} in D. This is the pointwise limit of the sequence of functions $\left(V^{n}\left(c \cdot \operatorname{Id}_{I}\right)\right)_{n \geq 1}$, where $V^{1}=V$, $V^{n+1}=V^{n} \circ V$ and $I=\left[t_{0},+\infty\right)$.

We deduce that

$$
u_{0}^{\prime}(t)=\left[V\left(u_{0}\right)\right]^{\prime}(t)=\frac{u_{0}(t)}{t}-\frac{1}{t} \int_{t_{0}}^{t} \tau a(\tau) w\left(u_{0}(\tau)\right) d \tau<\frac{u_{0}(t)}{t}
$$

when $t>t_{0}$, and thus (17), hold true.
The proof is complete.

5. The oscillatory integration of equation (2)

Let the continuous functional coefficient a with varying sign satisfy the restriction

$$
\int_{t_{0}}^{+\infty} t^{2}|a(t)| d t<+\infty
$$

We call the problem studied in the sequel an oscillatory (asymptotic) integration of equation (2).

Theorem 7. Assume that w verifies $\sqrt{122}, w(0)=0$ and there exists $c>0$ such that

$$
\begin{equation*}
L_{+}^{c}>0>L_{-}^{c} \tag{19}
\end{equation*}
$$

where

$$
L_{+}^{c}=\limsup _{t \rightarrow+\infty} \frac{t \int_{t}^{+\infty} s w(c s) a(s) d s}{\int_{t}^{+\infty} s^{2}|a(s)| d s}, \quad L_{-}^{c}=\liminf _{t \rightarrow+\infty} \frac{t \int_{t}^{+\infty} s w(c s) a(s) d s}{\int_{t}^{+\infty} s^{2}|a(s)| d s} .
$$

Then the equation (2) has a solution $x(t)$ with oscillatory pseudo-wronskian such that

$$
\begin{equation*}
x(t)=c \cdot t+o(1) \quad \text { when } \quad t \rightarrow+\infty . \tag{20}
\end{equation*}
$$

Proof. There exist $\eta>0$ such that $L_{+}^{c}>\eta, L_{-}^{c}<-\eta$ and two increasing, unbounded from above sequences $\left(t_{n}\right)_{n \geq 1},\left(t^{n}\right)_{n \geq 1}$ of numbers from $\left(t_{0},+\infty\right)$ such that $t^{n} \in\left(t_{n}, t_{n+1}\right)$ and

$$
\begin{equation*}
t_{n} \int_{t_{n}}^{+\infty} s w(c s) a(s) d s+k \eta \int_{t_{n}}^{+\infty} s^{2}|a(s)| d s<0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{n} \int_{t^{n}}^{+\infty} s w(c s) a(s) d s-k \eta \int_{t^{n}}^{+\infty} s^{2}|a(s)| d s>0 \tag{22}
\end{equation*}
$$

for all $n \geq 1$.
Assume further that

$$
\int_{t_{0}}^{+\infty} \tau^{2}|a(\tau)| d \tau \leq \frac{\eta}{k(c+\eta)}
$$

and introduce the complete metric space $S=(D, \delta)$ given by

$$
D=\left\{y \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right): t|y(t)| \leq \eta \text { for every } t \geq t_{0}\right\}
$$

and

$$
\delta\left(y_{1}, y_{2}\right)=\sup _{t \geq t_{0}}\left\{t\left|y_{1}(t)-y_{2}(t)\right|\right\}, \quad y_{1}, y_{2} \in D
$$

For the operator $V: D \rightarrow C\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$ with the formula

$$
V(y)(t)=\frac{1}{t} \int_{t}^{+\infty} s a(s) w\left(s\left[c-\int_{s}^{+\infty} \frac{y(\tau)}{\tau} d \tau\right]\right) d s, \quad y \in D, t \geq t_{0}
$$

the next estimates hold (notice that $|w(x)| \leq k|x|$ for all $x \in \mathbb{R}$)

$$
\begin{equation*}
t|V(y)(t)| \leq k \int_{t}^{+\infty} s^{2}|a(s)|\left[c+\eta \int_{s}^{+\infty} \frac{d \tau}{\tau^{2}}\right] d s \leq \eta \tag{23}
\end{equation*}
$$

and

$$
\begin{aligned}
t\left|V\left(y_{2}\right)(t)-V\left(y_{1}\right)(t)\right| & \leq k \int_{t}^{+\infty} s^{2}|a(s)|\left(\int_{s}^{+\infty} \frac{d \tau}{\tau^{2}}\right) d s \cdot \delta\left(y_{1}, y_{2}\right) \\
& \leq \frac{k}{t_{0}} \int_{t}^{+\infty} s^{2}|a(s)| d s \leq \frac{\eta}{c+\eta} \cdot \delta\left(y_{1}, y_{2}\right)
\end{aligned}
$$

These imply that $V(D) \subseteq D$ and thus $V: S \rightarrow S$ is a contraction.
From the formula of operator V we notice also that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} t V(y)(t)=0 \quad \text { for all } \quad y \in D \tag{24}
\end{equation*}
$$

Given $y_{0} \in D$ the unique fixed point of V, one of the solutions to (22 has the formula $x_{0}(t)=t\left[c-\int_{t}^{+\infty} \frac{y_{0}(s)}{s} d s\right]$ for all $t \geq t_{0}$. Via 24 and L'Hospital's rule, we
provide also an asymptotic development for this solution, namely

$$
\begin{aligned}
\lim _{t \rightarrow+\infty}\left[x_{0}(t)-c \cdot t\right] & =-\lim _{t \rightarrow+\infty} t \int_{t}^{+\infty} \frac{y_{0}(s)}{s} d s=-\lim _{t \rightarrow+\infty} t y_{0}(t) \\
& =-\lim _{t \rightarrow+\infty} t V\left(y_{0}\right)(t)=0 .
\end{aligned}
$$

The estimate

$$
\begin{aligned}
\left|t y_{0}(t)-\int_{t}^{+\infty} s w(c s) a(s) d s\right| & \leq k \int_{t}^{+\infty} s^{2}|a(s)|\left[\int_{s}^{+\infty} \frac{\left|y_{0}(\tau)\right|}{\tau} d \tau\right] d s \\
& \leq k \eta \cdot \frac{1}{t} \int_{t}^{+\infty} s^{2}|a(s)| d s, \quad t \geq t_{0}
\end{aligned}
$$

accompanied by 21, 22, leads to

$$
\begin{equation*}
y_{0}\left(t_{n}\right)=\mathcal{W}\left(x_{0}, t_{n}\right)<0 \quad \text { and } \quad y_{0}\left(t^{n}\right)=\mathcal{W}\left(x_{0}, t^{n}\right)>0 \tag{25}
\end{equation*}
$$

The proof is complete.
Remark 1. When Equation (2) is linear, that is $w(x)=x$ for all $x \in \mathbb{R}$, the formula (19) can be recast as

$$
L_{+}=\limsup _{t \rightarrow+\infty} \frac{t \int_{t}^{+\infty} s^{2} a(s) d s}{\int_{t}^{+\infty} s^{2}|a(s)| d s}>0>\liminf _{t \rightarrow+\infty} \frac{t \int_{t}^{+\infty} s^{2} a(s) d s}{\int_{t}^{+\infty} s^{2}|a(s)| d s}=L_{-}
$$

We claim that for all $c \neq 0$ there exists a solution $x(t)$ with oscillatory pseudo-wronskian which verifies (20). In fact, replace c with c_{0} in the formulas 21), 22) for a certain c_{0} subjected to the inequality $\min \left\{L_{+},-L_{-}\right\}>\frac{\eta}{c_{0}}$. It is obvious that, when $L_{+}=-L_{-}=+\infty$, formulas (21), (22) hold for all $c_{0}, \eta>0$. Given $c \in \mathbb{R}-\{0\}$, there exists $\lambda \neq 0$ such that $c=\lambda c_{0}$. The solution of Equation (2) that we are looking for has the formula $x=\lambda \cdot x_{0}$, where $x_{0}(t)=t\left[c_{0}-\int_{t}^{+\infty} \frac{y_{0}(s)}{s} d s\right]$ for all $t \geq t_{0}$ and y_{0} is the fixed point of operator V in D. Its pseudo-wronskian oscillates as a consequence of the obvious identity

$$
\lambda \cdot \mathcal{W}\left(x_{0}, t\right)=\mathcal{W}(x, t), \quad t \geq t_{0}
$$

Example 1. An immediate example of functional coefficient a for the problem of linear oscillatory integration is given by $a(t)=t^{-2} e^{-t} \cos t$, where $t \geq 1$.

We have

$$
\int_{t}^{+\infty} s^{2} a(s) d s=\frac{1}{\sqrt{2}} \cos \left(t+\frac{\pi}{4}\right) e^{-t} \quad \text { and } \quad \int_{t}^{+\infty} s^{2}|a(s)| d s \leq e^{-t}
$$

throughout $[1,+\infty)$ which yields $L_{+}=+\infty, L_{-}=-\infty$.
Sufficient conditions are provided now for an oscillatory pseudo-wronskian to be in $L^{p}\left(\left(t_{0},+\infty\right), \mathbb{R}\right)$, where $p>0$. Since $\lim _{t \rightarrow+\infty} \mathcal{W}(x, t)=0$ for any solution $x(t)$ of equation (2) with the asymptotic development $\sqrt[20]{20},(14)$, we are interested in the case $p \in(0,1)$.

Theorem 8. Assume that, in the hypotheses of Theorem 7, the coefficient a verifies the condition

$$
\begin{equation*}
\int_{t_{0}}^{+\infty}\left[\frac{t}{\int_{t}^{+\infty} s^{2}|a(s)| d s}\right]^{1-p} t^{2}|a(t)| d t<+\infty \quad \text { for some } \quad p \in(0,1) \tag{26}
\end{equation*}
$$

Then the equation (2) has a solution $x(t)$ with an oscillatory pseudo-wronskian in L^{p} and the asymptotic expansion 20.
Proof. Recall that y_{0} is the fixed point of operator V. Then, formula (23) implies that

$$
\left|y_{0}(t)\right| \leq k(c+\eta) \cdot \frac{1}{t} \int_{t}^{+\infty} s^{2}|a(s)| d s, \quad t \geq t_{0}
$$

Via an integration by parts, we have

$$
\begin{aligned}
\frac{1}{[k(c+\eta)]^{p}} \int_{t}^{T}\left|y_{0}(s)\right|^{p} d s \leq & \frac{T^{1-p}}{1-p}\left[\int_{T}^{+\infty} s^{2}|a(s)| d s\right]^{p} \\
& +\frac{p}{1-p} \int_{t}^{T}\left[\frac{s}{\int_{s}^{+\infty} \tau^{2}|a(\tau)| d \tau}\right]^{1-p} s^{2}|a(s)| d s
\end{aligned}
$$

for all $T \geq t \geq t_{0}$.
The estimates

$$
\begin{aligned}
\frac{T^{1-p}}{1-p}\left[\int_{T}^{+\infty} s^{2}|a(s)| d s\right]^{p} & =\frac{T^{1-p}}{1-p} \int_{T}^{+\infty}\left[\frac{1}{\int_{T}^{+\infty} \tau^{2}|a(\tau)| d \tau}\right]^{1-p} s^{2}|a(s)| d s \\
& \leq \frac{1}{1-p} \int_{T}^{+\infty}\left[\frac{s}{\int_{s}^{+\infty} \tau^{2}|a(\tau)| d \tau}\right]^{1-p} s^{2}|a(s)| d s
\end{aligned}
$$

allow us to establish that

$$
\frac{1}{[k(c+\eta)]^{p}} \int_{t}^{T}\left|y_{0}(s)\right|^{p} d s \leq \frac{1+p}{1-p} \int_{t}^{+\infty}\left[\frac{s}{\int_{s}^{+\infty} \tau^{2}|a(\tau)| d \tau}\right]^{1-p} s^{2}|a(s)| d s
$$

The conclusion follows by letting $T \rightarrow+\infty$.
The proof is complete.
Example 2. An example of functional coefficient a in the linear case that verifies the hypotheses of Theorem 8 is given by the formula

$$
t^{2} a(t)=b(t)= \begin{cases}a_{k}(t-9 k), & t \in[9 k, 9 k+1], \\ a_{k}(9 k+2-t), & t \in[9 k+1,9 k+3], \\ a_{k}(t-9 k-4), & t \in[9 k+3,9 k+4], \\ a_{k}(9 k+4-t), & t \in[9 k+4,9 k+5], \\ a_{k}(t-9 k-6), & t \in[9 k+5,9 k+7], \\ a_{k}(9 k+8-t), & t \in[9 k+7,9 k+8], \\ 0, & t \in[9 k+8,9(k+1)]\end{cases}
$$

Here, we take $a_{k}=k^{-\alpha}-(k+1)^{-\alpha}$ for a certain integer $\alpha>\frac{2-p}{p}$.
To help the computations, the k-th "cell" of the function b can be visualized next.

It is easy to observe that

$$
\int_{9 k}^{9 k+4} b(t) d t=\int_{9 k+4}^{9 k+8} b(t) d t=0 \quad \text { for all } \quad k \geq 1
$$

We have

$$
\int_{9 k+2}^{+\infty} b(t) d t=\int_{9 k+2}^{9 k+4} b(t) d t=-a_{k}, \quad \int_{9 k+6}^{+\infty} b(t) d t=\int_{9 k+6}^{9 k+8} b(t) d t=a_{k}
$$

and respectively

$$
\int_{9 k+2}^{+\infty}|b(t)| d t=3 a_{k}+4 \sum_{m=k+1}^{+\infty} a_{m}, \quad \int_{9 k+6}^{+\infty}|b(t)| d t=a_{k}+4 \sum_{m=k+1}^{+\infty} a_{m}
$$

By noticing that

$$
L_{+}=\lim _{k \rightarrow+\infty} \frac{(9 k+6) \int_{9 k+6}^{+\infty} b(t) d t}{\int_{9 k+6}^{+\infty}|b(t)| d t}, \quad L_{-}=\lim _{k \rightarrow+\infty} \frac{(9 k+2) \int_{9 k+2}^{+\infty} b(t) d t}{\int_{9 k+2}^{+\infty}|b(t)| d t}
$$

we obtain $L_{+}=\frac{9 \alpha}{4}$ and $L_{-}=-\frac{9 \alpha}{4}$.
To verify the condition (26), notice first that

$$
\begin{aligned}
I_{k} & =\int_{9 k}^{9(k+1)}\left[\frac{t}{\int_{t}^{+\infty}|b(s)| d s}\right]^{1-p} t^{2}|a(t)| d t \\
& \leq \int_{9 k}^{9(k+1)}\left[\frac{9(k+1)}{\int_{9(k+1)}^{+\infty}|b(s)| d s}\right]^{1-p} a_{k} d t, \quad k \geq 1
\end{aligned}
$$

The elementary inequality $a_{k} \leq\left(2^{\alpha}-1\right)(k+1)^{-\alpha}$ implies that

$$
I_{k} \leq \frac{c_{\alpha}}{(k+1)^{(1+\alpha) p-1}}, \quad \text { where } \quad c_{\alpha}=9\left(\frac{9}{4}\right)^{1-p}\left(2^{\alpha}-1\right)
$$

and the conclusion follows from the convergence of the series $\sum_{k \geq 1}(k+1)^{1-(1+\alpha) p}$.

Acknowledgement. The author is indebted to Professor Ondřej Došlý and to a referee for valuable comments leading to an improvement of the initial version of the manuscript. The author was financed during this research by the Romanian AT Grant $97 \mathrm{GR} / 25.05 .2007$ with the CNCSIS code 100.

References

[1] Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., On the asymptotic integration of nonlinear differential equations, J. Comput. Appl. Math. 202 (2007), 352-376.
[2] Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., Rogovchenko, Yu. V., On the asymptotic behavior of solutions to nonlinear ordinary differential equations, Asymptot. Anal. 54 (2007), 1-50.
[3] Agarwal, R. P., Mustafa, O. G., A Riccatian approach to the decay of solutions of certain semi-linear PDE's, Appl. Math. Lett. 20 (2007), 1206-1210.
[4] Atkinson, F. V., On second order nonlinear oscillation, Pacific J. Math. 5 (1995), 643-647.
[5] Bartušek, M., Došlá, Z., Graef, J. R., The nonlinear limit-point/limit-circle problem, Birkhäuser, Boston, 2004.
[6] Cecchi, M., Marini, M., Villari, G., Integral criteria for a classification of solutions of linear differential equations, J. Differential Equations 99 (1992), 381-397.
[7] Cecchi, M., Marini, M., Villari, G., Comparison results for oscillation of nonlinear differential equations, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 173-190.
[8] Constantin, A., Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 54 (1996), 147-154.
[9] Constantin, A., Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl. 213 (1997), 334-339.
[10] Deng, J., Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl. 336 (2007), 1395-1405.
[11] Djebali, S., Moussaoui, T., Mustafa, O. G., Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl. 333 (2007), 863-870.
[12] Dugundji, J., Granas, A., Fixed point theory I, Polish Sci. Publ., Warszawa, 1982.
[13] Ehrnström, M., Positive solutions for second-order nonlinear differential equations, Nonlinear Anal. 64 (2006), 1608-1620.
[14] Ehrnström, M., Mustafa, O. G., On positive solutions of a class of nonlinear elliptic equations, Nonlinear Anal. 67 (2007), 1147-1154.
[15] Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 2001.
[16] Hartman, P., On non-oscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389-400.
[17] Heidel, J. W., A nonoscillation theorem for a nonlinear second order differential equation, Proc. Amer. Math. Soc. 22 (1969), 485-488.
[18] Hesaaraki, M., Moradifam, A., On the existence of bounded positive solutions of Schrödinger equations in two-dimensional exterior domains, Appl. Math. Lett. 20 (2007), 1227-1231.
[19] Kiguradze, I. T., Chanturia, T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht, 1993.
[20] Mustafa, O. G., Initial value problem with infinitely many linear-like solutions for a second order differential equation, Appl. Math. Lett. 18 (2005), 931-934.
[21] Mustafa, O. G., On the existence of solutions with prescribed asymptotic behaviour for perturbed nonlinear differential equations of second order, Glasgow Math. J. 47 (2005), 177-185.
[22] Mustafa, O. G., Rogovchenko, Yu. V., Global existence and asymptotic behavior of solutions of nonlinear differential equations, Funkcial. Ekvac. 47 (2004), 167-186.
[23] Mustafa, O. G., Rogovchenko, Yu. V., Limit-point type solutions of nonlinear differential equations, J. Math. Anal. Appl. 294 (2004), 548-559.
[24] Mustafa, O. G., Rogovchenko, Yu. V., Asymptotic integration of a class of nonlinear differential equations, Appl. Math. Lett. 19 (2006), 849-853.

Corresponding address: Str. Tudor Vladimirescu, Nr. 26
200534 Craiova, Dolj, Romania
Faculty of Mathematics, D.A.L.
University of Craiova, Romania
E-mail: octaviangenghiz@yahoo.com

[^0]: 2000 Mathematics Subject Classification: Primary: 34A30; Secondary: 34E05, 34K25.
 Key words and phrases: ordinary differential equation, asymptotic integration, prescribed asymptote, non-oscillation of solutions.

 Received May 15, 2007, revised November 2007. Editor O. Došlý.

