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THE GEOMETRY OF NEWTON’S LAW AND RIGID SYSTEMS

Marco Modugno1, Raffaele Vitolo2

Abstract. We start by formulating geometrically the Newton’s law for a
classical free particle in terms of Riemannian geometry, as pattern for subse-
quent developments. For constrained systems we have intrinsic and extrinsic
viewpoints, with respect to the environmental space. Multi–particle systems
are modelled on n-th products of the pattern model. We apply the above
scheme to discrete rigid systems. We study the splitting of the tangent and
cotangent environmental space into the three components of center of mass,
of relative velocities and of the orthogonal subspace. This splitting yields the
classical components of linear and angular momentum (which here arise from
a purely geometric construction) and, moreover, a third non standard com-
ponent. The third projection yields a new explicit formula for the reaction
force in the nodes of the rigid constraint.

Introduction

The original approach to classical mechanics is based on the Newton’s law.
This is still used and popular mainly in the literature devoted to applied sciences
and engineering, even if it is not very sophisticated from the mathematical and
geometrical viewpoint (see, for instance, [9, 12, 13, 26]).

On the other hand, an approach to mechanics based on modern differential ge-
ometry has been developed and became more and more popular in the last decades.
This viewpoint is achieved in terms of Riemannian, Lagrangian, Hamiltonian, sym-
plectic, variational and jet geometry. A very huge literature exists in this respect
(see, for instance, [1, 2, 3, 4, 6, 8, 10, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24]). These
methods have been very successful for understanding several theoretical aspects
and for the solution of several concrete problems, and have stimulated a large
number of further classical and quantum theories.
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In this paper, our aims are more specific and foundational. Namely, we refor-
mulate classical mechanics of a system with a finite number of particles and rigid
systems, in terms of the Newton’s law, in a way which, on one hand, is closer to the
classical treatment of the subjects and, on the other hand, is expressed through
the modern language of differential geometry.

Our approach is addressed both to differential geometers, who could easily get
mechanical concepts written in their language, and to mathematical physicists,
who are interested in a mathematically rigourous foundation of mechanics.

In fact, several ideas have been achieved independently by differential geometers
and mathematical physicists in different contexts and with different purposes and
languages. Sometimes, facts which appear in one of the two disciplines as easy and
elementary may correspond to more difficult and fundamental facts in the other
discipline. We believe that linking those facts provides a new insight on classical
matters and yields new results as well. For the above reasons, from time to time,
we recall some classical facts of one of the two areas which are possibly not very
familiar to experts of the other area.

Thus, this paper, in spite of the sophisticated mathematical language, in com-
parison to the standard literatures of mechanics, analyses concrete mechanical
contents.

On the other hand, this paper provides the classical background for a covariant
approach to the quantisation of a rigid body, which is the subject of a subsequent
paper [20].

The guideline of our approach is the description of mechanics of a system of n
free and constrained particles, including a rigid system, in terms of the Riemannian
formulation of mechanics of one particle.

We start by recalling the mechanics of one free particle moving in an affine
Euclidean configuration space. We express the Newton’s law in terms of covariant
derivative. In several respects, it is convenient to introduce forces as forms (instead
as vector fields) from the very beginning.

Then, we can naturally apply this Riemannian approach to the mechanics of
a constrained particle. We have an intrinsic and an extrinsic viewpoint related
to the embedding of the constrained configuration space into the environmental
space. In particular, we use the Gauss’ Theorem concerning the splitting of the
Riemannian connection in order to get an explicit expression of the reaction force
via the 2nd fundamental form of the constrained configuration space.

Next, we describe the mechanics of a system of n free particles, as one free parti-
cle moving in a higher dimensional product configuration space. For this purpose,
it is necessary to introduce a weighted metric (besides the standard product met-
ric). Of course, in the case on n free particles, we have the additional projection on
the single particle spaces. Furthermore, we have the splitting of the configuration
space into the affine component of the center of mass and the vector component
of relative distances. The 1st splitting can be used to achieve information on the
single particles and is orthogonal with respect to both metrics. The 2nd splitting
has a fundamental role and is orthogonal only with respect to the weighted metric.
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The systematic use of the weighted metric and of the above orthogonal splitting
as a fundamental scheme seems to be original. In particular, we show that the
classical concepts of total kinetic energy, total kinetic momentum, total force, etc.
can be regarded as a direct consequence of the above geometric scheme.

Then, the formulation of a a constrained system of n particles can be easily ob-
tained from the above scheme, by repeating the scheme of one free and constrained
particle.

Eventually, a particular care is devoted to the analysis of a system of n particles
with a rigid constraint.

First we study the geometry of the rigid configuration space, distinguishing
the non degenerate and degenerate cases. Then, we formulate the kinematics and
mechanics of a rigid system according to the above scheme. In particular, we show
(Section 4.2) that the classical formula of the velocity of a rigid system (well–known
in mechanics) can be regarded as the parallelisation of a Lie group (well–known
in differential geometry). This fact yields an interpretation of the inertia tensor
as a representative of the weighted metric induced by the parallelisation. In this
context, we exhibit a new explicit intrinsic expression of the angular velocity via
the inertia tensor (Corollary 4.8).

By combining the splitting of center of the mass and the splitting of the con-
strained configuration space, we obtain a splitting of the tangent and cotangent
environmental configuration spaces into three components: the component of cen-
ter of mass, the rotational component and a further orthogonal component to the
configuration space (Theorem 4.10 and Theorem 4.11). This splitting is reflected
on all objects of the rigid system mechanics, providing a clear geometric interpre-
tation of some classical constructions of mechanics and new results as well. For
instance, the total momentum of forms arises from our geometric scheme via the
projection on the rotational component (Corollary 4.12). Moreover, a special ap-
plication of the above splitting is the explicit expression of the reaction force on
every node (Corollary 4.21). This formula seems to be new and possibly useful in
engineering applications.

We assume all manifolds and maps to be C∞. If M and N are manifolds, then
the sheaf of local smooth maps M → N is denoted by map (M , N).

1. Preliminaries

In this paper we use a few non-standard mathematical constructions. In order
to make the paper self-contained, we start with some introductory notions.

Scale spaces and units of measurement. In order to describe in a rigorous mathe-
matical way the units of measurements and the coupling scales, we introduce the
notion of “scale space” [11].

We define a scale space U as “positive 1-dimensional semi-vector space” over
IR+. Roughly speaking, this has the same algebraic structure as IR+, but no
distinguished generator over IR+. We can naturally define the tensor product
between scale spaces and ordinary vector spaces. Moreover, we can naturally
define the rational powers U

p/q of a scale space U. Rules analogous to those of
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real numbers hold for scale spaces; accordingly, we adopt analogous notation. In
particular, we shall write U

0 := IR, U
−1 := U

∗, U
p := ⊗p

U.
In our theory, these spaces will appear tensorialised with spacetime tensors. The

scale spaces appearing in tensor products are not effected by differential operators,
hence their elements can be treated as constants.

A coupling scale is defined to be a scale factor needed for allowing the equality
of two scaled objects and a unit of measurements is defined to be a basis of a scale
space.

We introduce the scale spaces T of time intervals, L of lengths and M of masses.
We will consider time units of measurement u0 ∈ T, or their duals u0 ∈ T

∗.

Generalised affine spaces. In this paper, we need a more general definition
of the standard notion. Namely, we introduce generalised affine spaces associ-
ated with (possibly non Abelian) groups. This generalisation is suitable for the
description of the configuration space of rigid systems.

A (left) generalised affine space is defined to be a triple (A, DA, l), where A is
a set, DA is a group and l : DA × A → A is a free and transitive left action. For
the sake of simplicity, we often denote the generalised affine space (A, DA, l) just
by A.

For each o ∈ A, the left translation lo : DA → A : g 7→ go is invertible.
A generalised affine map is defined to be a map f : A → A′ between generalised

affine spaces, such that, for a certain o ∈ A, we have f(a) = Df(ao−1)f(o), for
all a ∈ A, where Df : DA → DA′ is a group morphism. We can easily prove that,
if such a Df exists, then it is unique and independent of the choice of o. We say
Df to be the generalised derivative of f . For example, if o ∈ A, then the left

translation lo : DA → A is a generalised affine map and its derivative is just the
identity.

Now, let us consider a generalised affine space A associated with a Lie group
G. Then, there is a unique smooth structure of A, such that the left translation
l : G × A → A be smooth. Let g be the Lie algebra of G. It is easily proved that
the affine space A is parallelisable through a natural isomorphism TA ≃ A × g.

We recall that any manifold M which is endowed with a parallelisation TM ≃
M × F , has a natural linear connection ∇ : TTM → V TM , where V TM is
the space of vectors which are tangent to the fibres of the natural projection
TM → M . More precisely, we have TTM ≃ M ×F × F × F , and ∇ is just the
natural projection on the subspace V TM ≃ M × F × {0} × F .

2. Mechanics of one particle

First, we review the one free and constrained particle mechanics as an intro-
duction to our formalism and a pattern for next generalisations.

2.1. Free particle.

Configuration space. We define the time to be a 1-dimensional affine space T

associated with the vector space T̄ := T ⊗ IR. We shall always refer to an affine
chart (x0) induced by an origin t0 ∈ T and a time unit of measurement u0 ∈ T.
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We define the pattern configuration space to be a 3-dimensional affine space P

associated with an oriented vector space S. We shall refer to a (local) chart (xi)
on P . Latin indices i , j , h , k will run from 1 to 3.

We shall also be involved with the tangent space TP = P ×S and the cotangent
space T ∗P = P ×S∗. We shall refer to the local charts (xi, ẋi) of TP and (xi, ẋi)
of T ∗P and to the corresponding local bases of vector fields ∂i and forms di. We

also denote by (xi, ẋi,
p

xi, ẍi) the induced chart of TTP , with (∂i, ∂̇i) and (di, ḋi)
the corresponding bases of vector fields and 1-forms; we have the chart (xi, ẋi, ẍi)
of V TP .

The parallelisation of P induced by the affine structure yields a flat linear
connection ∇ (see the Preliminaries).

We equip S with a scaled Euclidean metric g ∈ L
2 ⊗ (S∗ ⊗ S∗), called pattern

metric, which can be regarded as a scaled Riemannian metric of P

g : P → L
2 ⊗ (T ∗P ⊗ T ∗P ) .

We denote by ḡ the corresponding contravariant metric. We have the coordinate
expressions g = gij di ⊗ dj and ḡ = gij ∂i ⊗ ∂j , with gij ∈ map(P , L

2 ⊗ IR) and
gij ∈ map(P , L

−2⊗IR). The associated flat isomorphism and its inverse, the sharp

isomorphism, are denoted by g♭ : TP → L
2 ⊗ T ∗P and g♯ : T ∗P → L

−2 ⊗ TP .
The metric g and an orientation of S yield the scaled volume form η ∈ L

3 ⊗Λ3S∗

and its inverse η̄ ∈ L
∗3 ⊗ Λ3S.

The Riemannian connection associated with g coincides with ∇. We denote
the vertical projection associated with ∇ by ν : TTP → TP and the Christoffel
symbols by Γi

hk.

Kinematics. We define the phase space as the 1st jet space of maps T → P

J1P := T × (T−1 ⊗ TP ) = T × P × (T−1 ⊗ S) .

The induced chart of J1P is (x0, xi, xi
0).

A motion is defined to be a map s : T → P .
The 1st differential, the 2nd differential, the velocity and the acceleration of

a motion s are defined to be, respectively, the maps

ds : T → T
−1 ⊗ TP , d2s : T → T

−1 ⊗ T (T−1 ⊗ TP ) , j1s : T → J1P ,

∇ds : T → T
−2 ⊗ TP .

By definition, we have j1s(t) = (t, ds(t)) and ∇ds = ν ◦ d2s.
Moreover, by taking into account the splittings

T
−1 ⊗ TP ≃ P × (T−1 ⊗ S) ,

T
−1 ⊗ T (T−1 ⊗ TP ) ≃

(

P × (T−1 ⊗ S)
)

×
(

(T−1 ⊗ S) × (T−2 ⊗ S)
)

,

we can write ds = (s, Ds), d2s = (s, Ds, Ds, D2s), ∇ds = (s, D2s), where Ds : T →
T
−1 ⊗ S is the standard derivative of s.
We have the coordinate expressions

(xi, ẋi
0) ◦ ds=(si, ∂0s

i) , (xi, ẋi
0,

p

xi
0, ẍ

i
00) ◦ d2s=(si, ∂0s

i, ∂0s
i, ∂2

00s
i) ,

(x0, xi, xi
0) ◦ j1s=(x0, si, ∂0s

i) , (xi, ẍi
00) ◦ ∇ds=(si, ∂2

0si + (Γi
hk ◦ s) ∂0s

h ∂0s
k).
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With reference to a mass m ∈ M, we define the kinetic energy and the kinetic

momentum, respectively, to be the maps

K : T
−1 ⊗ TP → (T−2 ⊗ L

2 ⊗ M) ⊗ IR : v 7→ 1
2 m g(v, v)

P := DK : T
−1 ⊗ TP → (T−1 ⊗ L

2 ⊗ M) ⊗ T ∗P : v 7→ m g♭(v) .

We have the coordinate expressions K = 1
2 m gij ẋi

0 ẋj
0 and P = m gij ẋi

0 dj .

Dynamics. In our context, the force acting on a particle is given a priori on the
the phase space. Moreover, it is convenient to introduce the force as a co–vector.

Thus, a force is defined to be a map

F : J1P → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P .

The force F is said to be conservative if it factorises through J1P → P and can
be derived from a potential U : P → T

−2⊗L
2⊗M⊗IR by the equality F = dU . If

the force is conservative, then we define the associated Lagrangian to be the map
L := K + U .

We say that a motion s fulfills the Newton’s law of motion if

(2.1) m g♭ (∇ds) = F ◦ j1s .

It is remarkable that we can link the formulation of dynamics in terms of the
connection ∇ with the Lagrangian approach, directly without any reference to
variational or Lagrangian calculus. In fact, the following Lagrange’s formula holds

m g♭ (∇ds) =
(

D(∂̇iK ◦ ds) − ∂iK ◦ ds
)

(di ◦ s) .

By the way, the above formula provides quickly the Christoffel’s symbols of ∇.
Hence, the coordinate expression of the Newton’s law is

m gij

(

∂2
0sj + (Γj

hk ◦ s) ∂0s
h ∂0s

k
)

≡ D(∂̇iK ◦ ds) − ∂iK ◦ ds = Fi ◦ j1s .

In the particular case when the force is conservative, the Newton’s law of motion
is expressed by the Lagrange equations

D(∂̇iL ◦ ds) − ∂iL ◦ ds = 0 .

2.2. Constrained particle.

We assume an embedded submanifold of the pattern Euclidean affine space as
configuration space of a constrained particle.

The mechanics of a constrained particle has two features: an intrinsic and an
extrinsic one. According to the intrinsic viewpoint, the particle behaves as a ‘free’
particle moving in an l-dimensional Riemannian manifold; hence, according to the
intrinsic viewpoint, we can repeat the scheme of the previous section. On the
other hand, the environment space adds an exterior geometric structure: the 2nd
fundamental form, which measures the deviation of the submanifold from being
an affine subspace of the environmental space. Then, according to the extrinsic
viewpoint, we interpret the reaction force in terms of the 2nd fundamental form
of the constrained space.
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Configuration space. We define the configuration space for a constrained parti-
cle to be an embedded submanifold of dimension 1 ≤ l ≤ 3

icon : P con →֒ P .

Thus, by definition of embedded submanifold, for each p ∈ P con, there exists a
chart (xi) of P in a neighbourhood of p, such that P con is locally characterised by
the constraint {xl+1 = 0, . . . , x3 = 0}. Then, (y1, . . . , yl) := (x1|P con

, . . . , xl|P con
)

turns out to be a local chart of P con. The functions y1, . . . , yl are said to be local
Lagrangian coordinates and the functions xl+1, . . . , x3 to be local constraints. From
now on, we shall refer to such adapted charts.

For practical reasons, we shall adopt the following convention:
– indices i, j, h, k will run from 1 to 3 ;
– indices a, b, c, d will run from 1 to l ;
– indices r, s, t will run from l to 3.
We have TP |P con

= P con × S and T ∗P |P con
= P con × S∗.

We have the natural injection T icon : TP con →֒ TP |P con
⊂ TP and its dual

projection π := T ∗icon : T ∗P |P con
→ T ∗P con, with coordinate expressions

T icon(X
a ∂a) = Xa ∂a and π(ωi di) = ωa da.

We consider the orthogonal subspaces

T⊥P con := {X ∈ TP |P con
| g(X, TP con) = 0} ⊂ TP |P con

,

T⊥P con := {α ∈ T ∗P |P con
| α(TP con) = 0} ⊂ T ∗P |P con

.

The vector fields ∂a are tangent to P con, while the vector fields ∂r are transver-
sal. If ∂r ∈ T⊥P con, then the adapted chart (xi) is said to be orthogonal to the
submanifold.

The subspace T⊥P con consists of the forms of the type ω =
∑

l+1≤r≤n ωr dr,
i.e. of forms whose “tangent” components vanish.

The restriction

gcon := i∗cong : P con → L
2 ⊗ (T ∗P con ⊗ T ∗P con)

of the pattern metric g to P con is a scaled Riemannian metric, which will be called
the intrinsic metric. Its coordinate expression is gcon = (gcon)ab da ⊗ db, where we
have set (gcon)ab := gab|P con

. The contravariant form of gcon will be denoted by
ḡcon. We stress that, in general, the l × l “tangent” submatrix of (gij) is different
from the inverse of the matrix (gab); they are equal if and only if the adapted chart
(xi) is orthogonal.

The intrinsic metric gcon yields the Riemannian connection ∇con.
With reference to a mass m ∈ M, we define the intrinsic kinetic energy and the

intrinsic kinetic momentum

Kcon := i∗K : T
−1 ⊗ TP con → (T−2 ⊗ L

2 ⊗ M) ⊗ IR : v 7→ 1
2 m gcon(v, v) ,

Pcon := i∗P : T
−1 ⊗ TP con → (T−1 ⊗ L

2 ⊗ M) ⊗ T ∗P : v 7→ m g♭
con(v) ,

with coordinate expressions Kcon = 1
2 m gcon ab ẏa ẏb and Pcon = m gcon ab ẏa db.

Let us analyse the orthogonal splittings of the tangent and cotangent spaces
induced by the metric.
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The metric yields the injective map  : T ∗P con →֒ T ∗P |P con
through the iden-

tity j = g♭ ◦ π ◦ g♯
con.

We have the mutually dual orthogonal splittings

TP |P con
= TP con ⊕

P con

T⊥P con , T ∗P |P con
= T ∗P con ⊕

P con

T⊥P con ,

with projections

π‖ : TP |P con
→ TP con , π⊥ : TP |P con

→ T⊥P con

π : T ∗P |P con
→ T ∗P con , π⊥ : T ∗P |P con

→ T⊥P con .

As the projection π has a very simple expression, it is convenient to compute
the other projections π‖, π⊥, π⊥ via the following identities: π‖ = g♯

con ◦ π ◦ g♭

and π⊥ = g⊥♭ ◦ π⊥ ◦ g♯. Then, for each X ∈ TP |P con
and ω ∈ T ∗P |P con

, we
obtain the equalities

(ω) = gcb gab ωa dc , π‖(X) = X i gib gba
con ∂a = (Xa + Xr grb gba

con) ∂a ,

π⊥(X) = Xr(∂r − grb gba
con ∂a) , π⊥(ω) = (ωr − ωa gab

con gbr) dr .

Of course, the above formulas simplify considerably if the adapted chart is
orthogonal, i.e. if grb|P con

= 0.

Kinematics. We define the intrinsic phase space as the 1st jet space of maps
T → P con

J1P con := T × (T−1 ⊗ TP con) .

The induced chart of J1P con is (x0, ya, ya
0).

A constrained motion is defined to be a map scon : T → P con ⊂ P . Clearly, a
constrained motion can be naturally regarded as a motion of the pattern space,
via the inclusion icon. Indeed, a motion s : T → P is constrained if and only if
sr = 0.

The 1st differential, the 2nd differential and the velocity of a constrained motion
scon, computed in the environment space, turn out to be valued in the correspond-
ing constrained subspaces

dscon : T → T
−1 ⊗ TP con , d2scon : T → T

−1 ⊗ T (T−1 ⊗ TP con) ,

j1scon : T → J1P con .

We have the coordinate expressions

(ya, ẏa
0 ) ◦ dscon = (sa, ∂0s

a) , (ya, ẏa
0 ,

p

ya
0 , ÿ

a
00) ◦ d2scon = (sa, ∂0s

a, ∂0s
a, ∂2

0sa)

(x0, ya, ya
0 ) ◦ j1scon = (x0, sa, ∂0s

a) .

Hence, as far as the above objects are considered, the intrinsic and the extrinsic
approaches coincide, up to the natural inclusion of the constrained spaces into the
corresponding environmental spaces.

Conversely, the intrinsic and extrinsic approaches of the acceleration of the
constrained motion scon do not coincide. The intrinsic viewpoint is suitable for
the intrinsic expression of the law of motion and the extrinsic viewpoint provides
the constraint reaction force.



THE GEOMETRY OF NEWTON’S LAW AND RIGID SYSTEMS 205

We define the intrinsic acceleration of a constrained motion scon as the map

∇condscon : T → T
−2 ⊗ TP con ,

with coordinate expression ∇condscon =
(

∂2
0sa+(Γcon

a
bc)◦scon ∂0s

b ∂0s
c
)

(∂a◦scon).
Analogously to the free case, the intrinsic co-acceleration is given by the La-

grange’s formula m gcon
♭(∇conds) =

(

D(∂̇aKcon◦dscon)− ∂̇aKcon◦dscon

)

(da◦scon).
On the other hand, by regarding the constrained motion scon as a motion of

the environmental space, we define the extrinsic acceleration as the map

∇dscon : T → T
−2 ⊗ TP ,

with coordinate expression ∇dscon =
(

∂2
0si + (Γi

bc) ◦ scon ∂0s
b ∂0s

c
)

(∂i ◦ scon).
Then, according to the Gauss’ Theorem [7], we have the splitting

∇dscon = π‖(∇dscon) + π⊥(∇dscon) ,

with π‖(∇dscon) = ∇condscon and π⊥ ◦ ∇dscon = N ◦ dscon, where

N : TP |P con
→ T⊥P con

is a quadratic map, called 2nd fundamental form, whose coordinate expression
is N = Γr

bc ẏb ẏc (∂r − grb gba
con∂a). The map N measures how the submanifold

P con deviates, at 1st order, from being an affine subspace of P . The quickest
way to compute the 2nd fundamental form is the following: compute the covariant
expressions of the extrinsic and intrinsic accelerations via the Lagrange’s formulas;
then pass to the contravariant expressions and take the difference.

Dynamics. Let us consider a force F̃ : J1P → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P in the

environment space P . As we are dealing with constrained mechanics, we are
involved only with its restriction

F := F̃ |J1P con
: J1P con → (T−2 ⊗ L

2 ⊗ M) ⊗ T ∗P |P con
.

According to the splitting of T ∗P |P con
, we can write F = Fcon + Fcon ⊥, where

Fcon = i∗F : J1P con → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P con .

We call Fcon the intrinsic force.
Let us assume that constraint confines the motion on the configuration space

P con, via Newton’s law of motion, by means of a suitable additional ‘reaction
force’ defined on the constrained space

R : J1P con → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P |P con

.

According to the splitting of T ∗P |P con
, we can write R = Rcon + Rcon ⊥, where

Rcon = i∗R : J1P con → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P con .

We call Rcon the intrinsic reaction force.
A constrained motion scon : T → P con is said to fulfill the constrained Newton’s

law of motion if the following equation holds

m g♭ ◦ (∇dscon) = (F + R) ◦ j1scon .
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2.1. Theorem. A constrained motion s : T → P con fulfills the constrained New-
ton’s law of motion if and only if

m g♭
con ◦ (∇condscon) = (Fcon + Rcon) ◦ j1scon

m g♭ ◦ (N ◦ dscon) = (Fcon ⊥ + Rcon ⊥) ◦ j1scon .

Actually, for each choice of initial data in J1P con, the 1st equation has (locally)
a unique solution and the 2nd equation is fulfilled if and only if

(2.2) Rcon ⊥ = m g♭ ◦ N − Fcon ⊥ .

According with the above result, we make the “minimal assumption” (virtual

works principle, i.e., smooth constraint) Rcon = 0. Then, the explicit coordinate
expression of R is

R =

l+1≤r≤3
∑

1≤a,b,c≤l

(

m (Γarb − grc gcd
con Γcon adb) ẏa ẏb

− Fr + gba
con Fa gbr

)

◦ icon (dr ◦ icon) .(2.3)

In classical literature (see, for instance, [13]) the computation of reaction force
is presented implicitly as the solution of a linear system associated with Lagrange
multipliers. Instead, the above formula (which involves an adapted chart) provides
an explicit expression of the reaction force in terms of the Christoffel symbols, or
of the metric. In the particular case when the adapted chart is orthogonal, this
formula becomes very easy.

Thus, the dynamics of a constrained particle can be interpreted as the dynamics
of a ‘free’ particle moving on the Riemannian configuration space P con. Then,
all main notions and results holding in the free case by using the Riemannian
structure of P can be easily rephrased in the constrained case. This is a remarkable
conceptual and practical advantage of the present approach.

3. Mechanics of a system of n particles

In this section we generalise the previous concepts and results to systems of
many particles. Our guideline will be the interpretation of the multi–particle
system as a one–particle moving in a higher dimensional space. In this way, all
we have learned for one-particle can be applied directly to multi–particle systems.
On the other hand, we have additional concepts, e.g. the center of mass splitting,
which follow from the projections on the factor spaces of the different particles.

3.1. Free particles.

We shall systematically use the prefix “multi” to indicate objects of the n–system
analogous to objects of one-particle.

We assume n ≥ 1, and consider n masses m1 , . . . , mn ∈ M. We define the
total mass as m0 :=

∑

i mi ∈ M and the i-th weight as µi = mi/m0. Clearly,
we have

∑

i µi = 1. For each i = 1, . . . , n. with reference to the i-th particle, it
is convenient to consider a copy of the following pattern objects: P i ≡ P and
Si ≡ S.
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3.1.1. Geometry of the multi–configuration space.

The multi–configuration space is defined to be the product space

P mul := P 1 × · · · × P n .

Clearly, P mul is an affine space associated with the vector space Smul := S1 ×
· · · × Sn.

A product chart (xi
mul) of P mul induced by charts (xi

1) , . . . , (xi
n) of the single

components is said to be without interference of the particles. Conversely, a chart
(xi

mul) of P mul which cannot be written as a product as above is said to be with

interference of the particles. A typical notation for the elements of P mul will be
pmul = (p1, . . . , pn) ∈ P mul, and analogously for Smul and S∗

mul.
We define the multi–geometrical metric and the multi–weighted metric as

gmul : P mul → L
2 ⊗ (T ∗P mul ⊗ T ∗P mul) : (umul, vmul) 7→

∑

i

g(ui, vi) ;(3.4)

Gmul : P mul → L
2 ⊗ (T ∗P mul ⊗ T ∗P mul) : (umul, vmul) 7→

∑

i

µi g(ui, vi) .(3.5)

The contravariant tensors of gmul and Gmul are denoted, respectively, by ḡmul

and Ḡmul. Of course, if n ≥ 2, then the two metrics are distinct.
For a system of n particles, we will rephrase the dynamics of a system of one

particle, by replacing the pattern metric g with the weighted metric Gmul and the
mass m with the total mass m0. This procedure yields the correct Newton’s law
of motion, in full analogy with the one particle case.

According to this scheme, we define the multi–kinetic energy and the multi–

kinetic momentum by

Kmul : T
−1 ⊗ TP mul → (T−2 ⊗ L

2 ⊗ M) ⊗ IR : v 7→ 1
2 m0 Gmul(v, v) ,

Pmul : T
−1 ⊗ TP mul → (T−1 ⊗ L

2 ⊗ M) ⊗ T ∗P mul : v 7→ m0 G♭
mul(v) ,

and recover the standard formulas Kmul(v) =
∑

i
1
2 mi g(vi, vi) and Pmul(v) =

(

mi g(vi)
)

.
The linear connection ∇mul induced on the multi–configuration space P mul by

the affine structure (see the Preliminaries) coincides with the Riemannian connec-
tion induced by both metrics gmul and Gmul. This is true although the two metrics
need not to be proportional.

The multi–configuration space has two distinguished splittings.

Multi–splitting. We have the obvious affine multi–splitting P mul = P 1×. . .×P n.
The corresponding affine projections πi : P mul → P i and the further induced
projections can be used to extract information on the single particles from the
kinematical and dynamical multi–objects of the multi–system.

The subspaces S1, . . . , Sn ⊂ Smul are mutually orthogonal with respect to both
metrics gmul and Gmul.

Diagonal splitting. We have the following further diagonal splitting of P mul,
which has no analogous in the one-particle scheme.
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We define the diagonal affine subspace, the diagonal vector subspace and the
relative vector subspace, respectively, as

P dia := {pmul ∈ P mul | p1 = · · · = pn} ⊂ P mul ,

Sdia := {vmul ∈ Smul | v1 = · · · = vn} ⊂ Smul ,

Srel := {vmul ∈ Smul |
∑

i

µi vi = 0} ⊂ Smul .

In the following, the subscripts “dia” and “rel” will denote the objects associated
with the above spaces.

3.1. Theorem. We have the affine splitting of the multi–configuration space and

the linear splittings of the associated vector and covector multi–spaces

P mul = P dia ⊕ Srel : pmul = (p0, . . . , p0) + (p1 − p0, . . . , pn − p0) ,(3.6)

Smul = Sdia ⊕ Srel : vmul = (v0, . . . , v0) + (v1 − v0, . . . , vn − v0) ,(3.7)

S∗
mul = S∗

dia ⊕ S∗
rel : αmul = (µ1 α0, . . . , µn α0)

+ (α1 − µ1 α0, . . . , αn − µn α0) ,(3.8)

where, for each pmul ∈ P mul, p0 ∈ P is the unique point such that

∑

i

µi (pi − p0) = 0 ,

and where, for each vmul ∈ Smul and αmul ∈ S∗
mul, v0 :=

∑

i µi vi and α0 :=
∑

i αi.

The above splittings are orthogonal with respect to the weighted metric Gmul.

Proof. Let us prove the splitting Smul = Sdia ⊕ Srel. For each v0 ∈ S, we have
∑

i µiv0 = 0 if and only if v0 = 0. Hence, Sdia ∩ Srel = 0. Moreover, for each
vmul ∈ Smul, we have (v1, . . . , vn) = (v0, . . . , v0) + (v1 − v0, . . . , vn − v0), with any
v0 ∈ S. Clearly, (v0, . . . , v0) ∈ Sdia and (v1 − v0 . . . , vn − v0) ∈ Srel, if and only
if v0 =

∑

i µivi. Hence, Sdia + Srel = Smul and the expression of the splitting is
expressed by the 2nd formula of the statement.

The splitting P mul = P dia ⊕ Srel may be proved in a similar way.
The splitting Smul = Sdia⊕Srel implies the splitting S∗

mul = S∗
dia⊕S∗

rel. More-
over, for each αmul ∈ S∗

mul. we have (α1, . . . , αn) = (β1, . . . , βn)+(α1−β1, . . . , αn−
βn). with any βi ∈ S∗

i . On the other hand, for each vmul ∈ Smul, we ob-
tain (β1, . . . , βn)(v1, . . . , vn) = (α1, . . . , αn)(v0, . . . , v0) if and only if

∑

i βi (vi) =
∑

i µi (
∑

j αj)(vi), i.e., if and only if βi = µi (
∑

j αj). In virtue of the equality
∑

i

(

αi − µi (
∑

j αj)
)

(vi) =
∑

i αi(vi − v0), we obtain

(

α1 − µ1 (
∑

j

αj), . . . , αn − µn (
∑

j

αj)
)

(v1, . . . , vn)

= (α1, . . . , αn)(v1 − v0, . . . , vn − v0) .
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We denote the projection associated with the above splittings by

πdia : P mul → P dia , πrel : P mul → Srel ,

π̄dia : Smul → Sdia , π̄rel : Smul → Srel ,

π̄∗
dia : S∗

mul → S∗
dia , π̄∗

rel : S∗
mul → S∗

rel .

Clearly, the above splittings depend on the choice of the multi–mass and are not
orthogonal with respect to the geometrical metric (unless all masses are equal).

We stress that, while we have the natural inclusion P dia →֒ P mul, we do not
have a natural inclusion Srel →֒ P mul.

We have a natural splitting of the weighted multi–metric of the type Gmul =
Gdia ⊕Grel. Moreover, the affine structures of P dia and Srel yield the flat connec-
tions ∇dia and ∇rel, which turn out to be the Riemannian connections induced by
Gdia and Grel, respectively.

Center of mass splitting. We can describe the diagonal splitting in another way,
via the center of mass. According to the above Theorem, we define the center of

mass of pmul ∈ P mul to be the unique point p0 ∈ P , such that
∑

i µi (pi −p0) = 0.
By considering any o ∈ P , we can write p0 = o +

∑

i µi (pi − o). With reference
to the center of mass, it is convenient to consider a copy of the following pattern
objects: P cen ≡ P , Scen ≡ S and S∗

cen ≡ S∗. Thus, we have the center of mass

affine projection

πcen : P mul → P cen : pmul 7→ p0 := o +
∑

i

µi (pi − o) , for any o ∈ P .

The linear projections associated with the affine projection πcen : P mul → P cen

turn out to be, respectively, the weighted sum and the sum

π̄cen : Smul → Scen : vmul 7→ v0 :=
∑

i

µi vi ,

Scen : S∗
mul → S∗

cen : αmul 7→ α0 :=
∑

i

αi .

Clearly, we have the natural affine isomorphism and linear isomorphisms

P cen → P dia : p0 7→ (p0, . . . , p0) ,

Scen → Sdia : v0 7→ (v0, . . . , v0) ,

S∗
cen → S∗

dia : β0 7→ (µ1 β0 , . . . , µn β0) .

3.2. Corollary. We have the center of mass splittings

P mul ≃ P cen × Srel : pmul ≃
(

p0 , (p1 − p0, . . . , pn − p0)
)

,

Smul ≃ Scen × Srel : vmul ≃
(

v0 , (v1 − v0, . . . , vn − v0)
)

,

S∗
mul ≃ S∗

cen × S∗
rel : αmul ≃

(

α0 , (α1 − µ1 α0, . . . , αn − µn α0)
)

.
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According to our scheme, we define the center of mass kinetic energy and the
center of mass kinetic momentum as

Kcen : T
−1 ⊗ TP cen → (T−2 ⊗ L

2 ⊗ M) ⊗ IR : vcen 7→ 1
2 m0 gcen(vcen, vcen) ,

Pcen : T
−1 ⊗ TP cen → (T−1 ⊗ L

2 ⊗ M) ⊗ T ∗P cen : vcen 7→ m0 gcen(vcen) .

Moreover, we obtain the equality

Kmul(vmul) = Kcen(v0) + Kmul(vrel) ,

3.1.2. Kinematics.

We define the multi–phase space as J1P mul := T × (T−1 ⊗ TPmul).
A multi–motion is defined to be a map smul : T → P mul. Of course, the

multi–motion can be regarded as the family of motions of the system: smul =
(s1, . . . , sn). This holds also for the derived quantities, like the multi–velocity

dsmul : T → T
−1 ⊗ TPmul and the multi–acceleration ∇muldsmul : T → T

−2 ⊗
TPmul. We can relate the multi–motion to the splitting of center of mass (Corol-
lary 3.2) by the equalities

smul = sdia + srel ≃ (scen , srel) , dsmul = dsdia + dsrel ≃ (dscen , dsrel) .

∇muldsmul = ∇dia dsdia + ∇rel dsrel ≃ (∇cen dscen ,∇rel dsrel) .

3.1.3. Dynamics.

In analogy with the case of one–particle, we define a multi–force to be a map

Fmul : J1P mul → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P mul .

Again, the multi–force can be regarded as the family of forces acting on each
particle Fmul = (F1, . . . , Fn). In general, each of the components is defined on the
whole phase space. In the particular case when each component Fi of the multi–
force depends only the i-th phase space, the multi–force is said to be without

interaction.
We say that a multi–force Fmul fulfills the Newton’s 3rd principle if, for each

1 ≤ i ≤ n,

Fi =
∑

1≤i6=j≤n

Fij , Fij(pi, pj) = λij(‖pj − pi‖g) g♭(pj − pi) , λij = λji ,

where Fij : P i × P j → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P i and λij : L

2 ⊗ IR → T
2 ⊗ M, for

each 1 ≤ i 6= j ≤ n.
The total force of the system is defined to be the component of the multi–force

with respect to the center of mass

Fcen := Scen ◦ Fmul =
∑

i

Fi : J1P mul → (T−2 ⊗ L
2 ⊗ M) ⊗ T ∗P cen .

The multi–force is said to be conservative if it can be derived from a multi–

potential Umul : P mul → (T−2 ⊗ L
2 ⊗ M) ⊗ IR as Fmul = dUmul. In this case, we

define the multi–Lagrangian to be the map

Lmul := Kmul + Umul : TP mul → (T−2 ⊗ L
2 ⊗ M) ⊗ IR .
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We say that a multi–motion smul fulfills the Newton’s law of motion if

(3.9) m0 G♭
mul ◦ (∇mul dsmul) = Fmul ◦ j1smul .

We can split the Newton’s law with respect to the multi–splitting and to the
splitting of the center of mass. In the former case, we simply obtain the system of
coupled equations mi g♭ ◦ dsi = Fi ◦ j1s. In the latter case, we have the following
Theorem.

3.3. Theorem. The Newton’s equation is equivalent to the system

(3.10)
m0 g♭

cen ◦ (∇cen dscen) = Fcen ◦ j1smul ,

m0 G♭
rel ◦ (∇rel dsrel) = Frel ◦ j1smul .

If Fcen factors through J1P cen, then the 1st equation can be integrated inde-
pendently of the 2nd one and can be interpreted as the equation of motion of
the center of mass. As in the one-particle case, the coordinate expression of the
Newton’s law is, with reference to any chart (xi

mul) of P mul,

D(∂̇iKmul ◦ dsmul) − ∂iKmul ◦ dsmul = Fi ◦ j1smul ,

which, if Fmul is conservative, is equivalent to the system of Lagrange’s equations

D(∂̇iLmul ◦ dsmul) − ∂iLmul ◦ dsmul = 0 ,

3.2. Constrained particles.

According to our programme, the analysis of the geometry of the constrained
space for a system of n particles can be carried out by analogy with the case of
one-particle.

We assume the multi–configuration space of a constrained system of n particles
to be an embedded submanifold P mul con ⊂ P mul.

In general, it is not possible to write P mul con = P con 1 × . . . × P con n, with
P con i ⊂ P i. for each i = 1, . . . , n. In the particular case when this holds, we say
that the constraint is without interference between particles .

Moreover, in general, it is not possible to write P mul con = P cen con × Srel con,
with P cen con ⊂ P cen and Srel con ⊂ Srel. In the particular case when this holds, we
say that the constraint is without interference between center of mass and relative

positions . In this case, the intrinsic metric Gcon splits into the sum of the metrics
Gcen con and Grel con (according to Corollary 3.2), with interesting consequences in
dynamics.

We leave to the reader the task to formulate the kinematics and dynamics of a
constrained system of n particles according to our scheme.

4. Rigid systems

Now, we specialise the theory of constrained systems of n particles to the case
of a rigid constraint.

We devote emphasis to the geometric structure of the rigid configuration space.
In particular, we show that this is the true source of the classical formulas of the
velocity of rigid systems.

Throughout the section, we suppose that n ≥ 2.
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4.1. Geometry of the configuration space.

Let us define the scaled functions, for 1 ≤ i, j ≤ n ,

rij : P mul → L ⊗ IR : pmul ≡ (p1, . . . , pn) 7→ ‖pi − pj‖g .

A rigid configuration space is defined to be a subset of the type

irig : P rig := {pmul ∈ P mul | rij(pmul) = lij , 1 ≤ i < j ≤ n} ⊂ P mul ,

where lij ∈ L fulfill

lij = lji , 1 ≤ i, j ≤ n , i 6= j ,

lik ≤ lij + ljk , 1 ≤ i, j, k ≤ n , i 6= j, j 6= k, k 6= i .

Note that we have excluded the case in which the positions of different particles
coincide.

From now on, let us consider a given rigid configuration space P rig.
We define the rotational space to be the subset

irot : Srot :=
{

vrel ∈ Srel | ‖vi − vj‖ = lij , 1 ≤ i < j ≤ n
}

⊂ Srel .

A typical notation for the elements of Srot will be rrot = (r1, . . . , rn) ∈ Srot ⊂ Srel.
Due to the equality ‖pi − pj‖ = ‖πrel(pmul)i − πrel(pmul)j‖ = lij , the rigid

constraint does not involve the center of mass but only relative positions. Then,
the restrictions of the projections πcen : P mul → P cen and πrel : P mul → Srel to
the subset P rig ⊂ P mul yield the bijection

(πcen , πrot) : P rig → P cen × Srot .

Next, we classify the rigid constraints.
For each vrel ∈ Srel, we define the vector subspace

〈vrel〉 := span{vi − vj | 1 ≤ i, j ≤ n} ⊂ S .

If rrot ∈ Srot, then we call 〈rrot〉 the characteristic space of 〈rrot〉. It can be
proved [5, p. 257] that the dimension of the characteristic spaces does not depend
on elements in Srot, but only on Srot. More precisely, for each rrot, r′rot ∈ Srot

there exists an isometry φ : S → S sigh that φ(ri) = r′i for i = 1, . . . , n.
We define the characteristic of P rig to be the integer number CP rig

:= dim 〈rrot〉,
where rrot ∈ Srot. Obviously, we have 1 ≤ CP rig

≤ 3, and we can classify the rigid
configuration space in terms of CP rig

. We say P rig to be
– strongly non degenerate if CP rig

= 3,
– weakly non degenerate if CP rig

= 2,
– degenerate if CP rig

= 1.
Of course, if n = 2, then P rig is degenerate; if n = 3, then P rig can be degenerate

or weakly non degenerate.
Thus, by considering all particles as assuming positions in the same space P , the

above cases correspond respectively to the case when the minimal affine subspace
containing all particles is a line, or a plane, or the whole P . As a consequence
of the above result, the case occurring for a given rigid system does not change
during the motion.
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Let us denote by O(S, g) the group of orthogonal transformations of S with
respect to g. We want to study the topological subspace Srot ⊂ Srel through the
natural action of the Lie group O(S, g) on Srot. More precisely, we can easily
prove that the map

O(S, g) × Srot → Srot : (φ, rrot) 7→
(

φ(r1), . . . , φ(rn)
)

is well–defined and yields a continuous action of O(S, g) on Srot. Such an action
of O(S, g) on Srot is transitive because of the above discussion. Let us denote the
isotropy group at rrot by H(rrot) ⊂ O(S, g). Then:

– in the strongly non degenerate case the isotropy subgroup H [rrot] is the trivial
subgroup {1} ;

– in the weakly non degenerate case the isotropy subgroup H [rrot] is the discrete
subgroup of reflections with respect to 〈rrot〉 ;

– in the degenerate case the isotropy subgroup H [rrot] is the 1 dimensional
subgroup of rotations whose axis is 〈rrot〉 ; we stress that this subgroup is not
normal.

4.1. Proposition. The following facts hold:
– Srot is strongly non degenerate if and only if the action of O(S, g) on Srot is

free; in this case Srot is an affine space associated with the group O(S, g) ;
– Srot is weakly non degenerate if and only if the action of O(S, g) on Srot is

not free, but the action of the subgroup SO(S, g) ⊂ O(S, g) on Srot is free; in this
case Srot is an affine space associated with the group SO(S, g) ;

– Srot is degenerate if and only if the action of SO(S, g) on Srot is not free; in
this case Srot is a homogeneous space (i.e. the quotient of a Lie group with respect
to a closed subgroup) with two possible distinguished diffeomorphisms (depending
on a chosen orientation on the straight line of the rigid system) with the unit
sphere S2 ⊂ L

∗ ⊗ S, with respect to the metric g.

In particular, in all cases Srot turns out to be a manifold.
In the non degenerate case, the choice of a configuration rrot ∈ Srot and of a

scaled orthonormal basis in L
∗ ⊗ S yield the diffeomorphisms (via the action of

O(S, g) on Srot)

Srot ≃ O(S, g) ≃ O(3) , in the strongly non degenerate case;

Srot ≃ SO(S, g) ≃ SO(3) , in the weakly non degenerate case.

In the degenerate case, the continuous choice of an orientation on the straight
lines 〈rrot〉 ⊂ S generated by each configuration rrot ∈ Srot and of a scaled or-
thonormal basis in L

∗ ⊗ S yields the diffeomorphisms

Srot ≃ S
2(L∗ ⊗ S, g) ≃ S

2(3) .

From now on, in the non degenerate case, we shall refer only to one of the two
connected components of Srot, for the sake of simplicity and for physical reasons
of continuity. Accordingly, we shall just refer to the non degenerate case (without
specification of strongly or weakly non degenerate), or to the degenerate case.
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4.2. Tangent space of rotational space.

The rotational space Srot is embedded into the environmental relative vector space
Srel. Hence, the tangent vectors of Srot can be regarded as multi–vectors of Srel,
which respect the rigid constraint. Here, we describe in a geometric way the
tangent vectors of Srot, and obtain a geometric interpretation of classical formulas
of the mechanics of rigid systems.

4.2.1. Non degenerate case.

We recall that the Lie algebra so(S, g) of O(S, g) can be identified with the sub-
space so(S, g) ⊂ S∗ ⊗ S, consisting of the tensors which are antisymmetric with
respect to g.

4.2. Proposition. We have the natural parallelising linear isomorphism

(4.11) τrot : TSrot → Srot × so(S, g)

and the associated projection ρrot : TSrot ⊂ Srot × Srel → so(S, g) : (rrot , vrot)
7→ ω.

The expression of the inverse isomorphism τ−1
rot is

τ−1
rot : Srot × so(S, g) → TSrot ⊂ Srot × Srel : (rrot, ω)

7→
(

rrot,
(

ω(r1), . . . , ω(rn)
))

.

Thus, for each (rrot, vrot) ∈ TSrot ⊂ Srot ×Srel, there is a unique ω ∈ so(S, g),
such that vi = ω(ri), for 1 ≤ i ≤ n.

Proof. The first statement comes from the fact that Srot is an affine space asso-
ciated with the Lie group O(S, g). Next, in order to compute τ−1

rot , let us consider
an element ω ∈ so(S, g). Then, there exists a map ω̃ : IR → SO(S, g) such that
ω̃(0) = id ∈ SO(S, g) and (Dω̃)(0) = ω. Hence, for each rrot ∈ Srot ⊂ Srel, the
curve c : IR → Srel : λ 7→

(

ω̃(λ)(r1), . . . , ω̃(λ)(rn)
)

is valued in Srot because

‖ω̃(λ)(ri) − ω̃(λ)(rj)‖ = ‖ω̃(λ)(ri − rj)‖ = ‖ri − rj‖ , ∀λ ∈ IR , ∀1 ≤ i, j ≤ n .

Hence, the tangent map Dc(0) ∈ Srel is valued in Trrot
Srot ∈ Srel. On the other

hand, we have

Dc(0) =
(

ω(r1), . . . , ω(rn)
)

.

Later, we shall give an explicit expression of the parallelisation τrot, via the
“inertia isomorphism” (Corollary 4.8). We can read the parallelisation τrot in a
further interesting way, by means of an algebraic re–interpretation of so(S, g). For
this purpose, we recall the cross products × of S and of S∗, defined by

u × v := ∗(v ∧ w) := g♯(i(u ∧ v) η) = i
(

g♭(u) ∧ g♭(v)
)

η̄ , ∀u, v ∈ S ,

α × β := ∗(α ∧ β) := g♭(i(α ∧ β) η̄) = i
(

g♯(α) ∧ g♯(β)
)

η , ∀α, β ∈ S∗ .

The cross product commutes with the metric isomorphisms, i.e. we have

g♭(u × v) = g♭(u) × g♭(v) and g♯(α × β) = g♯(α) × g♯(β) .
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For short, we set

u ×mul vmul := (u × v1, . . . , u × vn) , ∀u ∈ S , ∀ vmul ∈ Smul ,

α ×mul βmul := (α × β1, . . . , α × βn) , ∀α ∈ S∗ , ∀βmul ∈ S∗
mul .

Moreover, we introduce the scaled vector space

(4.12) V ang := L
−1 ⊗ S .

The metric isomorphism g♭ : S∗ ⊗ S → L
2 ⊗ S∗ ⊗ S∗ : α ⊗ v 7→ α ⊗ g(v, ·) and

the Hodge isomorphism ∗ : L
2 ⊗ Λ2S∗ → L

−1 ⊗ S : ω 7→ i(ω) η̄ yield the linear
isomorphism

(4.13) ∗ ◦ g♭ : so(S, g) → V ang : ω 7→ i
(

g♭(ω)
)

η̄ .

The following corollary is a straightforward analogue of Proposition 4.2.

4.3. Corollary. We have the natural parallelising isomorphism

(4.14) τang := ∗ ◦ g♭ ◦ τrot : TSrot → Srot × V ang

and the associated projection ρang : TSrot ⊂ Srot×Srel → V ang : (rrot, vrot) 7→ Ω.
The expression of the inverse isomorphism τ−1

ang is

τ−1
ang : Srot × V ang → TSrot ⊂ Srot × Srel : (rrot , Ω)

7→
(

rrot , (Ω × r1, . . . , Ω × rn)
)

.

Thus, for each (rrot, vrot) ∈ TSrot ⊂ Srot × Srel, there is a unique Ω ∈ V ang,
such that vi = Ω × ri, for 1 ≤ i ≤ n.

Later, we shall give an explicit expression of the parallelisation τang, via the
“inertia isomorphism” (Theorem 4.6). The above Corollary 4.3 is just a geomet-
ric formulation of the well–known formula expressing the relative velocity of the
particles of a rigid system through the angular velocity.

4.4. Corollary. The transpose (τ−1
ang)

∗ of the isomorphism τ−1
ang has the expression

(4.15) (τ−1
ang)

∗ : T ∗Srot → Srot × V ∗
ang : (rrot, α) 7→

(

rrot,
∑

i

g♭(ri) × αi

)

.

Proof. The expression of τ−1
ang and cyclic permutations yield

(τ−1
ang)

∗(rrot, α) (Ω) := α
(

τang(rrot, Ω)
)

= α (Ω ×mul rrot) =
∑

i

αi (Ω × ri)

=
∑

i

g
(

g♯(αi) , (Ω × ri)
)

=
∑

i

g
(

ri , (g♯
i(αi) × Ω)

)

=
∑

i

g
(

Ω , (ri × g♯
i(αi))

)

=
∑

i

(

(g♭
i(ri) × αi

)

(Ω) .

The cross product × is equivariant with respect to the action of SO(S, g).
Hence, the isomorphism τang turns out to be equivariant with respect to this
group.
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4.2.2. Degenerate case.

Let us consider the quotient vector bundle [Srot × so(S, g)] over Srot of the trivial
vector bundle Srot × so(S, g), with respect to the vector subbundle h[Srot] con-
sisting, for each rrot ∈ Srot, of the isotropy Lie subalgebra h[rrot] ⊂ so(S, g) of
〈rrot〉 ⊂ S (see, for instance, [25]).

We can rephrase in the degenerate case the results concerning the non degen-
erate case by a quotient procedure.

For each rrot ∈ Srot, the isotropy Lie subalgebra associated with rrot consists
of antisymmetric endomorphisms φ ∈ S∗ ⊗ S which preserve the 1–dimensional
vector subspace 〈rrot〉 ⊂ S generated by rrot. We have the natural linear fibred
isomorphism [τrot] : TSrot → [Srot × so(S, g)].

Let us consider the quotient vector bundle [Srot ×V ang] over Srot of the vector
bundle Srot × V ang with respect to the vector subbundle a[Srot] consisting, for
each rrot ∈ Srot, by the 1–dimensional vector subspace 〈rrot〉 ⊂ V ang generated
by rrot.

4.5. Proposition. We have the linear fibred isomorphism

[τang] : TSrot → [Srot × V ang] .

The expression of the inverse isomorphism [τ−1
ang] is

[τang]
−1 : [Srot × V ang] → TSrot ⊂ Srot × Smul : (rrot , [rrot, Ω])

7→
(

rrot , (Ω × r1, . . . , Ω × rn)
)

,

where the cross products Ω × ri turn out to be independent of the choice of
representative for the class [rrot, Ω]. Thus, for each (rrot, vrot) ∈ TSrot ⊂ Srot ×
Srel, there is a unique [rrot, Ω] ∈ [Srot × V ang]rrot

, such that vi = Ω × ri, for
1 ≤ i ≤ n.

It follows that a continuous choice of an orientation of the straight lines 〈rrot〉
⊂ S generated by the configurations rrot ∈ Srot yields the linear isomorphism

TSrot ≃ TS
2(L∗ ⊗ S, g) .

4.3. Rigid system metrics.

The multi–dynamical metric of Smul induces a metric on Srot, which can be re-
garded also in another useful way through the isomorphism τang, and will be
interpreted as the inertia tensor. Moreover, the standard pattern metric of V ang

induces a further metric on Srot.
We will consider only the non degenerate case. We leave to the reader the task

to consider the degenerate case.
The inclusion irig : P rig →֒ P mul yields the geometrical and weighted scaled

Riemannian metrics

grig := i∗rig gmul , Grig := i∗rig Gmul .

The splitting P rig = P dia ⊕ Srot is orthogonal with respect to the metric Grig.
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The inclusion irot : Srot →֒ Srel yields the geometrical and weighted scaled
Riemannian metrics

grot := i∗rot grel , Grot := i∗rot Grel .

For each (Ω ×mul rrot) , (Ω′
×mul rrot) ∈ Trrot

Srot ⊂ Srel, in virtue of standard
properties of the cross product, we obtain

grot(rrot) (Ω ×mul rrot , Ω′
×mul rrot)=

∑

i

(

g(ri, ri) g(Ω, Ω′)− g(ri, Ω) g(ri, Ω
′)
)

,

Grot(rrot) (Ω ×mul rrot , Ω′
×mul rrot)=

∑

i

µi

(

g(ri, ri) g(Ω, Ω′)− g(ri, Ω) g(ri, Ω
′)
)

.

We can regard the metrics grot and Grot in another interesting way, via τang ;
we have the two scaled metrics

σ := (τ−1
ang)

∗ grot : Srot → L
2 ⊗ (V ∗

ang ⊗ V ∗
ang) ,(4.16)

Σ := (τ−1
ang)

∗ Grot : Srot → L
2 ⊗ (V ∗

ang ⊗ V ∗
ang) ,(4.17)

with expressions

σ(rrot)(Ω, Ω′) =
∑

i

(

g(ri, ri) g(Ω, Ω′) − g(ri, Ω) g(ri, Ω
′)
)

,

Σ(rrot)(Ω, Ω′) =
∑

i

µi

(

g(ri, ri) g(Ω, Ω′) − g(ri, Ω) g(ri, Ω
′)
)

.

We have a further natural metric of Srot. For this purpose, let us consider the
metric g ∈ V ∗

ang ⊗ V ∗
ang of V ang naturally induced by the pattern metric g of

S. We can make the natural identification O(V ang, g) ≃ O(S, g). We obtain the
unscaled Riemannian metric

gang := τ∗
ang g : Srot → T ∗Srot ⊗ T ∗Srot .

For each (rrot , Ω ×mul rrot) , (rrot , Ω′
×mul rrot) ∈ TSrot ⊂ Srot × Srel, we have

the expression gang(rrot) (Ω ×mul rrot , Ω′
×mul rrot) = g(Ω, Ω′).

All metrics of Srot considered above are invariant with respect to the left action
of O(S, g).

The choice of a configuration rrot ∈ Srot and of an orthonormal basis in V ang,
respectively, yields the following diffeomorphisms (via the action of SO(V ang, g)
on Srot)

Srot ≃ SO(V ang, g) ≃ SO(3) ,

which turn out to be isometries with respect to the Riemannian metrics gang,
− 1

2 kang and − 1
2 k3, of Srot , V ang and SO(3), where kang and k3 are the Killing

forms. In fact, the above diffeomorphisms yield the linear fibred isomorphisms
Trrot

Srot ≃ so(V ang, g) ≃ so(3). The first isomorphism is metric because it

comes from the natural isomorphism so(V ang, g) → V ang, induced by g♭ and ∗,
which is metric. Moreover, the metric g of V ang turns out to coincide with the
metric − 1

2 kang of so(V ang, g). In fact, we have g(ω, ω′) = − 1
2 tr

(

(Ω×) ◦ (Ω′
×)

)

.
It is easy to realise that the isomorphism so(V ang, g) ≃ so(3) is metric.
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The unscaled metric g of V ang allows us to regard the metrics σ and Σ as scaled
symmetric fibred automorphisms

σ̂ := g♯ ◦ σ♭ : Srot → L
2 ⊗ (V ∗

ang ⊗ V ang) ,

Σ̂ := g♯ ◦ Σ♭ : Srot → L
2 ⊗ (V ∗

ang ⊗ V ang) .

We have the expressions

σ̂(rrot)(Ω) =
∑

i

ri × (Ω × ri) =
∑

i

(

g(ri, ri)Ω − g(ri, Ω) ri

)

Σ̂(rrot)(Ω) =
∑

i

µi ri × (Ω × ri) =
∑

i

µi

(

g(ri, ri)Ω − g(ri, Ω) ri

)

.

We have

σ̂−1 = σ♯ ◦ g♭ and Σ̂−1 = Σ♯ ◦ g♭ ,

(σ̂−1)∗ = g♭ ◦ σ♯ and (Σ̂−1)∗ = g♭ ◦ Σ♯ .

The automorphisms σ̂ and Σ̂ yield the following explicit expressions of the map
τang.

4.6. Theorem. The isomorphism τang has the expression

τang : TSrot ⊂ Srot × Srel → Srot × V ang : (rrot , vrot) 7→ (rrot , Ω) ,

where

(4.18) Ω = σ̂−1(rrot)
(

∑

i

ri × vi

)

= Σ̂−1(rrot)
(

∑

i

µi ri × vi

)

.

Proof. Let rrot ∈ Srot , vrot ≡ (v1, . . . , vn) ∈ Trrot
Srot ⊂ Srel and set Ω :=

ρang(rrot, vrot) ∈ V ang.
The definitions of σ and of grot yield, respectively, the following equalities, for

each Ω′ ∈ V ang,

grot(rrot) (vrot , Ω′
×mul rrot) := σ(rrot) (Ω , Ω′)

grot(rrot) (vrot , Ω′
×mul rrot) :=

∑

i

g(vi , Ω′
× ri) = g

(

Ω′ ,
∑

i

ri × vi

)

= g
(

∑

i

ri × vi , Ω′
)

.

Then, by comparison of the above equalities, we obtain σ♭
rot(rrot)(Ω) = g♭

(
∑

i ri

× vi

)

, hence σ̂(rrot)(Ω) := (g♯ ◦ σ♭
rot)(rrot)(Ω) =

∑

i ri × vi, which yields Ω =

σ̂−1(rrot)
(
∑

i ri × vi

)

.
We can prove the 2nd expression of Ω in analogous way, by replacing grot with

Grot.

In the classical literature, Ω is computed by means of the Poisson’s formulas, in
terms of a basis. The above Theorem provides an intrinsic expression of Ω, which
plays an essential role in next sections.
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4.7. Note. The map τang is a geometric object, which has nothing to do with
masses and weights, because the rigid constraint does not involve the masses.
Accordingly, the 1st formula in the above Theorem is natural, while the 2nd one
sounds quite strange. Indeed, the 2nd formula is true for any arbitrary choice
of the weights. We have added the 2nd formula for the sake of completeness.
Actually, in the 2nd formula, the weights appear both in the expressions of the
sum and of Σ̂ ; eventually, the contribution of the weights disappear. To realize
that, we remark that it is possible to prove directly that the 1st formula implies
the 2nd one.

4.8. Corollary. In the non degenerate case, the isomorphism τrot has the equiv-
alent expression

τrot : TSrot ⊂ Srot × Srel → Srot × (S∗ ⊗ S) : (rrot , vrot) 7→
(

rrot , g♯
(

i(Ω)η
))

,

where

Ω = σ̂−1(rrot)
(

∑

i

ri × vi

)

= Σ̂−1(rrot)
(

∑

i

µi ri × vi

)

.

The eigenvalues of Σ̂ turn out to be constant with respect to Srot, in virtue of
the invariance of Σ with respect to SO(S, g).

In the non degenerate case, we have three eigenvalues. Then, three cases may
occur:

λ := λ1 = λ2 = λ3 , spherical case ,

λ := λ1 = λ2 6= λ3 , symmetric case ,

λ1 6= λ2 6= λ3 6= λ1 , asymmetric case.

In the degenerate case, we have two coinciding eigenvalues

λ := λ1 = λ2 =
∑

i

µi g(ri, ri) .

Analogous results hold for σ̂.
We have studied the diagonalisation of Σ with respect to g. In an analogous

way, we can diagonalise Grot with respect to Gang. Indeed, in this way we obtain
the same eigenvalues and the same classification, because the two diagonalisations
are related by the isomorphism τang.

The scaled metric m0 Σ, or the scaled automorphism m0 Σ̂, are called the inertia

tensor and the scaled eigenvalues Ii = m0 λi : Srot → (L2 ⊗M)⊗ IR of the inertia
tensor are called principal inertia momenta.

4.3.1. Continuous interpretation.

We can interpret the above results concerning the parallelisation of Srot also in
terms of continuous transformations. Here, in order to keep the thread of our
reasoning, we adopt a purely geometric approach which does not involve time, but
this section can be easily rephrased in a true kinematical way, by replacing IR with
T , or T ⊗ IR, as appropriate.

We define a continuous transformation as a map

C : IR × (IR × P ) → P ,
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such that, for each τ, τ ′, t ∈ IR , p ∈ P ,

C(0, t, p) = p and C
(

τ ′, t + τ, C(τ, t, p)
)

= C(τ + τ ′, t, p) .

A continuous transformation is said to be rigid if, for each τ, t ∈ IR , p, q ∈ P ,

‖C(τ, t, q) − C(τ, t, p)‖ = ‖q − p‖ .

We can prove that a continuous transformation C is rigid if and only if its
expression is of the type

C(τ, t, p) = c(t) + Φ(τ,t) (p − o) , ∀ τ, t ∈ IR , p ∈ P ,

where o ∈ P , c : IR → P and Φ: IR × IR → SO(S, g).
Let us suppose that C be rigid. The partial derivative of Φ with respect to time,

at τ = 0, turns out to be an antisymmetric endomorphism δΦ: IR → so(S, g) ⊂
S∗ ⊗ S. Hence, the velocity of the continuous transformation v : T × P → S is
given by v(t, p) = Dc(t) + δΦ(t) (p − o), for all t ∈ T , p ∈ P . On the other hand,
we obtain the map Ω := (∗ ◦ g♭)(δΦ) : IR → L

∗ ⊗S, Therefore, we can express the
velocity of the continuous transformation by the classical formula

v(t, p) = Dc(t) + Ω(t) × (p − o) , ∀ t ∈ IR , p ∈ P .

4.9. Note. Let P rig ⊂ P 1 × . . . P n be a non degenerate rigid configuration
space and srig : IR → P rig be a map. Then, there is a unique continuous rigid
transformation such that the particles of the continuous transformation, which
coincide with the particles of the discrete rigid system at a certain time, move
as the particles of the discrete rigid system. In other words, there is a unique
rigid continuous transformation C : IR × (IR × P ) → P such that, for each p =
(p1, . . . , pn) ∈ P rig, C(τ, t, pi) = si(t + τ) for all τ, t ∈ IR. Then, for each p =
(p1, . . . , pn) ∈ P rig and t ∈ IR, we have

v(t, pi) = dsi(t) = dscen(t) + Ω(t) × ri .

Indeed, the rotational components of the velocity of the continuous and discrete
rigid maps coincide.

4.4. Splitting of the tangent and cotangent multi–space.

We exhibit a natural orthogonal splitting of the environmental tangent and cotan-
gent spaces into three components: the component of the center of mass, the an-
gular component and the component orthogonal to the rigid configuration space.
This splitting will have a fundamental role in mechanics of rigid systems.

4.4.1. Splitting of the tangent multi–space.

Let us consider the space TP mul|P rig
= P rig × Srel.

4.10. Theorem. We have the orthogonal splitting, with respect to Gmul

TPmul|P rig
= TP rig ⊕

P rig

T⊥P rig = (TP cen × TSrot) ⊕
P rig

T⊥P rig ,

where T⊥P rig is the orthogonal complement of TP rig in TPmul|P rig
.
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The subspace T⊥P rig is characterised by the following equality

T⊥P rig =
{

(prig , vmul) ∈ P rig × Smul |
∑

i

µi vi = 0 ,
∑

i

µi ri × vi = 0
}

⊂ TP mul|P rig
.

Moreover, the expressions of the projections associated with the splitting are

Tπcen : TPmul|P rig
→ TP cen : (prig , vmul) 7→ (pcen , vcen) ,(4.19)

Tπrot : TPmul|P rig
→ TSrot : (prig , vmul) 7→ (rrot , Ω ×mul rrot) ,(4.20)

π⊥
rig : TPmul|P rig

→ T⊥P rig : (prig , vmul)(4.21)

7→ (prig , vmul − vdia − Ω ×mul rrot) ,

where

pcen = o +
∑

i

µi (pi − o) , pdia := (pcen, . . . , pcen) , rrot = prig − pdia ,

vcen =
∑

i

µi vi , vdia := (vcen, . . . , vcen) , vrot = vmul − vdia ,

Ω := Σ̂−1(rrot)
(

∑

i

µi ri × vi

)

.

Proof. The expression of the 1st projection is obvious.
Let us prove the expression of the 2nd projection. For each rrot ∈ Srot , vrel ∈

Srel and Ω′ ∈ V ang, in virtue of the definitions of Σ and of Grel, and by a cyclic
permutation, we obtain the equalities

Grel (vrel , Ω′
×mul rrot) = Grel

(

Tπrot(rrot, vrel) , Ω′
×mul rrot

)

= Grel

(

Ω ×mul rrot , Ω′
×mul rrot

)

= Σ(rrot)
(

Ω, Ω′
)

,

Grel (vrel , Ω
′
×mul rrot) =

∑

i

µi g(vi , Ω′
× ri)

= g
(

Ω′ ,
∑

i

µi ri × vi

)

= g
(

∑

i

µi ri × vi , Ω′
)

.

A comparison of the above equalities yields Σ♭(rrot) (Ω) = g♭
(
∑

i µi ri × vi

)

,
hence

Ω = (Σ♯(rrot) ◦ g♭)
(

∑

i

µi ri × vi

)

= Σ̂−1(rrot)
(

∑

i

µi ri × vi

)

.

Then, the characterization of T⊥P rig is easily obtained by considering the mul-

tivectors whose previous projections vanish and by recalling that τang and Σ̂ are
isomorphisms.

Eventually, the 3rd projection is obtained by subtracting the previous projec-
tions.

We observe that the expression of Tπrot is similar to the 2nd formula of Propo-
sition 4.6. However, we stress that the multivector vmul in the above Theorem
needs not to be tangent to Srot and its projection on Srot involves the weights. In
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the particular case when the multivector vmul is tangent to Srot, the expression of
Tπrot reduces to the 2nd formula of Proposition 4.6.

4.4.2. Splitting of the cotangent space.

Let us consider the space T ∗P mul|P rig
:= P rig × S∗

rel.

4.11. Theorem. We have the orthogonal splitting, with respect to Ḡmul

T ∗P mul|P rig
= T ∗Srig ⊕

P rig

T ∗
⊥P rig = (T ∗P cen × T ∗Srot) ⊕

P rig

T ∗
⊥P rig ,

where T ∗
⊥P rig is the orthogonal complement of T ∗P rig in T ∗P mul|P rig

(i.e., the

space of annihilators of TP rig).
The subspace T ∗

⊥P rig is characterised by the following equality

T ∗
⊥P rig =

{

(prig , αmul) ∈ P rig × S∗
mul

∣

∣

∑

i

αi = 0 ,
∑

i

g♭(vi) × αi = 0
}

⊂ T ∗P mul|P rig
.

Moreover, the expressions of the projections associated with the splitting are

T ∗πcen : T ∗P mul|P rig
→ T ∗P cen : (prig , αmul) 7→ (pcen , αcen)(4.22)

T ∗πrot : T ∗P mul|P rig
→ T ∗Srot : (prig , αmul) 7→ (rrot , αrot)(4.23)

π⊥ : T ∗P mul|P rig
→ T ∗

⊥P rig : (prig , αmul)(4.24)

7→ (rrot , αmul − αdia − αrot) ,

where

pcen = o +
∑

i

µi (pi − o) , pdia := (pcen, . . . , pcen) , rrot = prig − pdia ,

αcen =
∑

i

αi , αdia = (µ1 αcen, . . . , µn αcen) ,

αrot =
(

(Σ̂−1)∗(rrot)
(

∑

i

g♭(ri) × αi

)

)

×mul G♭
mul(rrot) .(4.25)

Proof. The commutative diagram

L
2 ⊗ TPmul|P rig

Tπrot
//

G♭
mul

��

L
2 ⊗ TSrot

G♭
rot

��

T ∗P mul|P rig

T∗πrot
// T ∗Srot
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Theorem 4.10 and the definition of Σ̂ give

T ∗πrot(prig , αmul) = (G♭
rot ◦ Tπrot ◦ G♯

mul)(prig , αmul)

= (G♭
rot ◦ Tπrot)

(

prig , 1
µ1

g♯(α1), . . . ,
1

µn
g♯(αn)

)

= G♭
rot

(

rrot , Σ̂−1(rrot)
(

∑

i

ri × g♯(αi)
)

×mul rrot

)

=
(

rrot ,
(

(Σ̂−1)∗(rrot)(
∑

i

g♭(ri) × αi)
)

×mul G♭
mul(rrot)

)

.

The projection T ∗πrot can be expressed in terms of V ang. In this way, we
recover the classical formula of the “total momentum” of a multi–form. Here, this
formula arises naturally from our geometric interpretation of T ∗Srot.

4.12. Corollary. We have the projection

(4.26)

Sang := (τ−1
ang)

∗ ◦ T ∗πrot : T ∗P mul|P rig

→ Srot × V ∗
ang : (prig, αmul) 7→

(

rrot,
∑

i

g♭(ri) × αi

)

,

where rrot := πrot(prig).

Proof. By recalling the expressions of T ∗πrot , (Σ̂−1)∗ , (τ−1
ang)

∗ and Σ̂, we obtain

Sang(prig, αmul) =
(

(τ−1
ang)

∗ ◦ T ∗πrot

)

(prig, αmul)

= (τ−1
ang)

∗
(

rrot,
(

(Σ̂−1)∗(rrot)(
∑

j

g♭(rj) × αj)
)

×mul G♭
mul(rrot)

)

=
(

rrot,
∑

i

g♭(ri) ×

((

(Σ̂−1)∗(rrot)(
∑

j

g♭(rj) × αj)
)

× µi g♭(ri)
)

)

=
(

rrot,
∑

i

(

g♭(ri) × G♭
mul

(

Σ̂−1(rrot)(
∑

j

rj × g♯(αj)) × rrot

)

i

))

=
(

rrot, g♭
(

∑

i

µi ri ×

(

Σ̂−1(rrot)(
∑

j

rj × g♯(αi)) × ri

))

)

=
(

rrot,
∑

i

g♭(ri) × αi

)

.

4.5. Kinetic energy and momentum of the rigid system.

According to our scheme, we define the rigid kinetic energy, the rigid kinetic

momentum, the rotational kinetic energy and the rotational kinetic momentum as

Krig := i∗rigKmul : T
−1⊗ TP rig → (T−2⊗ L

2⊗ M)⊗ IR: vrig 7→
1
2 m0 Grig(vrig, vrig) ,

Prig := i∗rigPmul : T
−1⊗ TP rig → (T−1⊗ L

2⊗ M) ⊗ T ∗P rig : vrig 7→ m0 G♭
rig(vrig) ,

Krot := i∗rotKmul : T
−1⊗ TSrot → (T−2⊗ L

2⊗ M) ⊗ IR : vrot 7→
1
2 m0 Grot(vrot, vrot) ,

Prot := i∗rotPmul : T
−1⊗ TSrot → (T−1⊗ L

2⊗ M) ⊗ T ∗Srot : vrot 7→ m0 G♭
rot(vrot) .
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Then, by taking into account the angular parallelisation τang : TSrot → Srot ×
V ang, we obtain the angular kinetic energy and the angular kinetic momentum

Kang := τ∗
ang Krot : T

−1 ⊗ TSrot → (T−2 ⊗ L
2 ⊗ M) ⊗ IR : (rrot, vrot)

7→ 1
2 m0 Σ(rrot)(Ω, Ω) = 1

2 m0

∑

i

µi

(

g(ri, ri) g(Ω, Ω) − g(ri, Ω) g(ri, Ω)
)

,

Pang := τ∗
ang Prot : T

−1 ⊗ TSrot → (T−1 ⊗ L
2 ⊗ M) ⊗ V ∗

ang : (rrot, vrot)

7→ m0 Σ♭(rrot)(Ω) = m0

∑

i

µi

(

g(ri, ri) g♭(Ω) − g(ri, Ω) g♭(ri)
)

,

where Ω := ρang(vrot).
According to the splittings TP rig = TP cen × TSrot and TP rig = TP cen ×

(Srot × V ang), we have, respectively, the splittings

Krig = Kcen + Krot , Prig = (Pcen, Prot) ,

Krig = Kcen + Kang , Prig = (Pcen, Pang) .

4.6. Connections induced on the rigid system.

First of all, in the non degenerate case, the generalised affine structure of P rig

induces a flat connection ∇aff (see the Preliminaries).
Moreover, according to the Gauss’ Theorem (see, for instance, [7]), the geo-

metric metric grig and the weighted metric Grig induce two distinct connections
∇rig and ∇Rig, respectively, on P rig. Actually, we shall be mainly concerned with
∇Rig, which is the most important of the two, because of its role in dynamics.

4.13. Proposition. The connection ∇Rig splits into the cartesian product of the
connections ∇cen and ∇rot of P cen and Srot.

4.7. Kinematics of rigid systems.

In this section, we apply the splitting of TP mul|P rig
to the velocity and the acceler-

ation of a rigid system. Namely, the velocity splits into the two components of the
center of mass and the velocity relative to the center of mass. On the other hand,
the acceleration splits into the three components of the center of mass, relative to
the center of mass and the term given by the 2nd fundamental form of the rigid
configuration space.

Let us consider a rigid motion srig : T → P rig.

4.14. Proposition. According to Corollary 4.3 and Theorem 4.6, we obtain the
splittings

srig = (scen, srot) : T → P cen × Srot

dsrig =
(

dscen, (srot, Ω)
)

: T → (T−1 ⊗ TP cen) ×
(

Srot × (T−1 ⊗ V ang)
)

,

where

scen := πcen ◦ srig , srot := πrot ◦ srig , Ω := Σ̂−1
(

∑

i

µi (srot)i × d(srot)i

)

.
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The map Ω := ρang ◦Tτang ◦dsrig : T → T
∗⊗V ang is called the angular velocity

of the rigid motion.

4.15. Theorem. The acceleration splits into the three components as

∇muldsrig = ∇cendscen + ∇rotdsrot + N ◦ dsrot ,

where N : TP rig → T⊥P rig is the 2nd fundamental form of the connection ∇mul,

with respect to the metric Gmul. We have the expressions

ρang(∇rotdsrot) = dΩ + Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

,(4.27)

N(srig)(Ω) = Ω ×mul (Ω ×mul srot)

− Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

×mul srot .(4.28)

Proof. The proof is analogous to that for the case of one constrained particle.
In virtue of Theorem 4.6, Corollary 4.3 and the Leibnitz identity for the cross

product, we obtain

ρang(∇rotdsrot) = (ρang ◦ Tπrot)(∇muldsrot)

= Σ̂−1(srot)
(

∑

i

µi(srot)i × ∇d(srot)i

)

= Σ̂−1(srot)
(

∑

i

µi(srot)i × ∇
(

Ω × (srot)i

)

)

= Σ̂−1(srot)
(

∑

i

µi(srot)i ×

(

dΩ × (srot)i

)

)

+ Σ̂−1(srot)
(

∑

i

µi(srot)i ×

(

Ω × (Ω × (srot)i)
)

)

= Σ̂−1(srot)
(

∑

i

µi(srot)i ×

(

dΩ × (srot)i

)

)

+ Σ̂−1(srot)
(

∑

i

µiΩ ×

(

(srot)i × (Ω × (srot)i

)

)

= dΩ + Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

.

Moreover, we have

N(dsrot) = ∇muldsrot −∇rotdsrot

= dΩ ×mul srot + Ω ×mul (Ω ×mul srot) − dΩ ×mul srot

− Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

×mul srot

= Ω × (Ω ×mul srot) − Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

×mul srot .

4.16. Note. The map dΩ is the covariant derivative of Ω with respect to the
natural connection ∇aff of Srot induced by τang. Hence, the map Σ̂−1(srot)

(

Ω ×

Σ̂(srot)(Ω)
)

expresses the Christoffel symbol of the connection ∇rot with respect
to the parallelisation τang.
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4.8. Dynamics of rigid systems.

In this section we study the equation of motion for a rigid system.
According to the results of the previous section, we show that the equation of

motion in the environmental space splits into three components: the equation of
motion for the center of mass (related to the linear momentum), the equation of
motion for the relative motion (related to the angular momentum) and equation for
the reaction force (related to the 2nd fundamental form of the rigid configuration
space).

4.8.1. Splitting of multi–forces.

According to the scheme discussed for a constrained system, we assume a multi–
force Fmul and consider its restriction to the phase space of the rigid system

F := F̃mul|J1P rig
: J1P rig → (T−2 ⊗ L

2 ⊗ M) ⊗ T ∗P mul .

4.17. Proposition. According to the splitting of T ∗P mul|P rig, we can write

F = Frig + Frig ⊥ ,

where Frig = i∗rigF : J1P rig → (T−2 ⊗L
2 ⊗M)⊗T ∗P . Moreover, according to the

splitting of T ∗P rig (see Theorem 4.11), we can write

Frig = (Fcen, Frot) = (Fcen, Fang) ,

where Fcen and Fang turn out to be, respectively, the total force and the total

momentum of the force. We have the following expressions

Fcen = T ∗πcen ◦ Frig =
∑

i

Fi , Fang = Sang ◦ Frig =
∑

i

r
¯

i × Fi ,

Frot = ((Σ−1)∗(Fang)) ×mul r
¯
rig , Fdia = (µ1 Fcen, . . . , µn Fcen) ,

F⊥ = Fmul − Fdia − Frot ,

where we have set r
¯
rig : Srot ⊂ Srel → L

2 ⊗ S∗
rel : rrot 7→ G♭

mul(rrot).

4.18. Note. If the multi–force Fmul fulfills the 3rd Newton’s principle then its
component tangent to the constraint Frig vanishes.

Moreover, we assume a reaction force

R : J1P rig → T
−2 ⊗ L

2 ⊗ M ⊗ T ∗P mul ,

which splits analogously to the force. The above Note holds also for the reaction.
So, we assume Rrig = 0, i.e. R = R⊥.

4.8.2. Splitting of the equation of motion.

Eventually, we are ready to split the equation of motion into three components.
We follow the scheme developed for one constrained particle with the additional
results arising from the present framework.

The following statement is a consequence of Theorem 4.15.
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4.19. Corollary. The rigid motion srig : T → P rig and the reaction force R fulfill
the Newton’s law of motion

m0 G♭
mul(∇muldsrig) = (Frig + R) ◦ j1srig

if and only if

(4.29)
m0 G♭

cen(∇cendscen) = Fcen ◦ j1srig ,

m0 Σ̂
(

τang(∇rotdsrot)
)

= Fang ◦ j1srig ,
(4.30) m0 G♭

mul(N ◦ dsrot) = (F⊥ + R⊥) ◦ j1srig ,

where ρang(∇rotdsrot) = dΩ + Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

.

The angular component of the above equation of motion is referred to as Euler’s

equation.

4.20. Note. Contrary to the general constrained case, here the equation on the
constrained space can be split into the center of mass and rotational components,
due to the fact that the rigid constraint is without interference between particles
and the center of mass.

On the other hand, as in the case of a system of free particles, we cannot solve
the first two equations independently, unless the total force factors through the
projection πcen on P cen.

4.21. Corollary. The reaction R⊥ is given by

(4.31) R⊥ = Ω
¯

×

(

Ω
¯

× r
¯
rig

)

− Σ−1∗(srot)
((

Ω
¯

× Σ♭(srot)(Ω)
)

×mul r
¯
rig

)

− Fmul + (µ1 Fcen, . . . , µn Fcen) +
(

(Σ−1)∗(Fang)
)

×mul r
¯
rig .

where we set Ω
¯

:= g♭(Ω).

Proof. The reaction R⊥ is determined by on solutions of the equations of motion
by the following equalities

R⊥ = G♭
mul(N ◦ dsrot) − F⊥ ◦ j1srig

= G♭
mul(N ◦ dsrot) − (Fmul − Fdia − Frot) ◦ j1srig

= G♭
mul

(

srig, Ω ×mul (Ω ×mul srot) − Σ̂−1(srot)
(

Ω × Σ̂(srot)(Ω)
)

×mul srot

)

− Fmul ◦ j1srig + (µ1 Fcen, . . . , µn Fcen) ◦ j1srig

+
(

g♭
(

Σ♯(Fang)
)

)

◦ j1srig ×mul s
¯
rig

=
(

srig, Ω × (Ω
¯

×mul s
¯
rig) − g♭ ◦ Σ♯(srot)(Ω

¯
× Σ♭(srot)(Ω)) ×mul s

¯
rig

)

− Fmul ◦ j1srig + (µ1 Fcen, . . . , µn Fcen) ◦ j1srig

+
(

g♭
(

Σ♯(Fang)
)

)

◦ j1srig ×mul s
¯
rig .

Now, we express the Newton’s law in Lagrangian form, in our special case of
rigid systems. To this aim, we introduce an appropriate chart on P rig. We refer
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to a chart (xi) on P cen and to a chart (for instance, the Euler’s angles) (αj) on
Srot. Then, the induced chart on TQ is (xi, αj , ẋi, α̇j).

Suppose that Frig : P rig → (T−2⊗L
2⊗M)⊗T ∗P rig be a conservative positional

force, with potential Urig : P rig → (T−2 ⊗L
2 ⊗ M)⊗ IR, and that Rrig = 0. Then,

the induced Lagrangian function turns out to be the map

Lrig := Krig − Urig : TP rig → (T−2 ⊗ L
2 ⊗ M) ⊗ IR .

4.22. Corollary. Let srig : T → P rig be a motion. Then, srig and the reaction
force R fulfill the Newton’s law of motion if and only if the following equations
hold

D

(

∂Lrig

∂ẋi
◦ dsrig

)

−
∂Lrig

∂xi
◦ dsrig = 0 , D

(

∂Lrig

∂α̇i
◦ dsrig

)

−
∂Lrig

∂αi
◦ dsrig = 0 ,

G♭
mul(N ◦ dsrig) = (F⊥ + R⊥) ◦ j1srig .
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