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ON UNICITY OF MEROMORPHIC FUNCTIONS

DUE TO A RESULT OF YANG - HUA

Xiao-Tian Bai and Qi Han

Abstract. This paper studies the unicity of meromorphic(resp. entire) func-
tions of the form fnf ′ and obtains the following main result: Let f and g be
two non-constant meromorphic (resp. entire) functions, and let a ∈ C\{0} be
a non-zero finite value. Then, the condition that E3)(a, fnf ′) = E3)(a, gng′)

implies that either f = dg for some (n+1)-th root of unity d, or f = c1ecz and
g = c2e−cz for three non-zero constants c, c1 and c2 with (c1c2)n+1c2 = −a2

provided that n ≥ 11 (resp. n ≥ 6). It improves a result of C. C. Yang and
X. H. Hua. Also, some other related problems are discussed.

1. Introduction and main results

In this paper, a meromorphic function will always mean meromorphic in the
open complex plane C. We adopt the standard notations in the Nevanlinna’s value

distribution theory of meromorphic functions such as the characteristic function

T (r, f), the proximity function m(r, f) and the counting function N(r, f) (reduced
form N̄(r, f)) of poles. For any non-constant meromorphic function f , we denote
by S(r, f) any quantity satisfying S(r, f) = o

(

T (r, f)
)

, possibly outside a set of
finite linear measure that is not necessarily the same at each occurrence. We refer
the reader to Hayman [3], Yang and Yi [8] for more details.

Let f be a non-constant meromorphic function, let a ∈ C be a finite value, and
let k ∈ N∪{+∞} be a positive integer or infinity. We denote by E(a, f) the set of
zeros of f−a and count multiplicities, while by Ē(a, f) the set of zeros of f −a but
ignore multiplicities. Further, we denote by Ek)(a, f) the set of zeros of f −a with
multiplicities less than or equal to k (counting multiplicities). Obviously, E(a, f) =
E+∞)(a, f). Define E(∞, f) := E(0, 1/f) for the value ∞, and define Ē(∞, f) and

Ek)(∞, f) correspondingly. For a ∈ C ∪ {∞}, we denote by Nk)

(

r, 1/(f − a)
)

the

counting function corresponding to the set Ek)(a, f), while by N(k+1

(

r, 1/(f − a)
)

the counting function corresponding to the set E(k+1(a, f) := E(a, f)−Ek)(a, f).
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Also, we denote by N̄k)

(

r, 1/(f − a)
)

and N̄(k+1

(

r, 1/(f − a)
)

the reduced forms

of Nk)

(

r, 1/(f − a)
)

and N(k+1

(

r, 1/(f − a)
)

, respectively.
All those foregoing definitions and notations hold well for any small meromor-

phic function, say, α (i.e., whose characteristic function satisfies T (r, α) = S(r, f)),
of f .

Let f and g be two non-constant meromorphic functions, and let α be a common
small meromorphic function of f and g. We say that f and g share α CM (resp.
IM) provided that E(α, f) = E(α, g) (resp. Ē(α, f) = Ē(α, g)).

W. K. Hayman proposed the following well-known conjecture in [4].

Hayman Conjecture. If an entire function f satisfies fnf ′ 6= 1 for all positive

integers n ∈ N, then f is a constant.

It has been verified by Hayman himself in [5] for the cases n > 1 and Clunie in
[1] for the cases n ≥ 1, respectively.

It is well-known that if two non-constant meromorphic functions f and g share
two values CM and other two values IM, then f is a Möbius transformation of g.
In 1997, C. C. Yang and X. H. Hua studied the unicity of differential monomials
of the form fnf ′ and obtained the following theorem in [7].

Theorem A. Let f and g be two non-constant meromorphic (resp. entire) func-

tions, let n ≥ 11 (resp. n ≥ 6 ) be an integer, and let a ∈ C\{0} be a non-zero

finite value. If fnf ′ and gng′ share the value a CM, then either f = dg for some

(n+1)-th root of unity d, or f = c1e
cz and g = c2e

−cz for three non-zero constants

c, c1 and c2 such that (c1c2)
n+1c2 = −a2.

Remark 1. In fact, combining their original argumentations with a more precise
calculation on equations (20) and (23) in [7, p.p. 403-404] could reduce the lower
bound of the integer n from 7 to 6 [7, Remark 2] if f and g are entire.

In 2000, by using argumentations similar to those in [7], M. L. Fang and H. L.
Qiu proved the following uniqueness theorem in [2].

Theorem B. Let f and g be two non-constant meromorphic (resp. entire) func-

tions, and let n ≥ 11 (resp. n ≥ 6) be an integer. If fnf ′ and gng′ share z

CM, then either f = dg for some (n + 1)-th root of unity d, or f = c1e
cz2

and

g = c2e
−cz2

for three non-zero constants c, c1 and c2 such that 4(c1c2)
n+1c2 = −1.

In this paper, we shall weaken the assumption of sharing the non-zero finite
value a CM (i.e., E(a, fnf ′) = E(a, gng′)) in Theorem A to E3)(a, fnf ′) =
E3)(a, gng′). In fact, we shall prove the following three uniqueness theorems.

Theorem 1. Let f and g be two non-constant meromorphic (resp. entire) func-

tions, let n ≥ 11 (resp. n ≥ 6) be an integer, and let a ∈ C\{0} be a non-zero

finite value. If E3)(a, fnf ′) = E3)(a, gng′), then fnf ′ and gng′ share the value a
CM.

Theorem 2. Let f and g be two non-constant meromorphic (resp. entire) func-

tions, let n ≥ 15 (resp. n ≥ 8 ) be an integer, and let a ∈ C\{0} be a non-zero
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finite value. If E2)(a, fnf ′) = E2)(a, gng′), then fnf ′ and gng′ share the value a
CM.

Theorem 3. Let f and g be two non-constant meromorphic (resp. entire) func-

tions, let n ≥ 19 (resp. n ≥ 10) be an integer, and let a ∈ C\{0} be a non-zero

finite value. If E1)(a, fnf ′) = E1)(a, gng′), then fnf ′ and gng′ share the value a
CM.

Remark 2. Obviously, Theorem 1 is an improvement of Theorem A.

2. Some lemmas

Lemma 1. Let f and g be two non-constant meromorphic functions satisfying

Ek)(1, f) = Ek)(1, g) for some positive integer k ∈ N. Define H as the following

(2.1) H :=
(f ′′

f ′
− 2

f ′

f − 1

)

−
(g′′

g′
− 2

g′

g − 1

)

.

If H 6≡ 0, then

N(r, H) ≤ N̄(2(r, f) + N̄(2

(

r,
1

f

)

+ N̄(2(r, g) + N̄(2

(

r,
1

g

)

+ N̄0

(

r,
1

f ′

)

+ N̄0

(

r,
1

g′

)

+ N̄(k+1

(

r,
1

f − 1

)

+ N̄(k+1

(

r,
1

g − 1

)

+ S(r, f) + S(r, g) ,(2.2)

where N0

(

r, 1/f ′
)

denotes the counting function of zeros of f ′ but not the zeros of

f(f − 1), and N0

(

r, 1/g′
)

is similarly defined.

Proof. It is not difficult to see that simple poles of f is not poles of f ′′

f ′
− 2f ′

f−1 and

simple poles of g is not poles of g′′

g′
− 2g′

g−1 . Then, the conclusion follows immediately

since we assume Ek)(1, f) = Ek)(1, g).

Lemma 2 (see [7, p.p. 397]). Under the condition of Lemma 1, we have

(2.3) N1)

(

r,
1

f − 1

)

= N1)

(

r,
1

g − 1

)

≤ N(r, H) + S(r, f) + S(r, g) .

Lemma 3 (see [7, p.p. 398] or [9]). Let f be some non-constant meromorphic

function on C. Then,

(2.4) N
(

r,
1

f ′

)

≤ N̄(r, f) + N
(

r,
1

f

)

+ S(r, f) .

Lemma 4 (see [8]). Let f be a non-constant meromorphic function on C, and let

k ∈ N be a positive integer. Then,

(2.5) N
(

r,
1

f (k)

)

≤ T (r, f (k)) − T (r, f) + N
(

r,
1

f

)

+ S(r, f) .
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3. Proof of Theorem 1

Define F := fnf ′

a
and F1 := fn+1

a(n+1) . Then, F ′

1 = F . Similarly, define G := gng′

a

and G1 := gn+1

a(n+1) . Now, by equations (19)–(20) in [7, p.p. 403-404], we have

N̄(r, F ) = N̄(2(r, F ) = N̄(r, f) ,(3.1)

N̄(r, G) = N̄(2(r, G) = N̄(r, g) ,(3.2)

and

N̄
(

r,
1

F

)

+ N̄(2

(

r,
1

F

)

≤ 2N̄
(

r,
1

f

)

+ N
(

r,
1

f ′

)

,(3.3)

N̄
(

r,
1

G

)

+ N̄(2

(

r,
1

G

)

≤ 2N̄
(

r,
1

g

)

+ N
(

r,
1

g′

)

.(3.4)

Then, by the conclusions of Lemma 4, we derive

(n + 1)T (r, f) = T (r, F1) + O(1)

≤ T (r, F ) + N
(

r,
1

F1

)

− N
(

r,
1

F

)

+ S(r, f)

≤ T (r, F ) + N
(

r,
1

f

)

− N
(

r,
1

f ′

)

+ S(r, f) .(3.5)

Similarly, we obtain

(n + 1)T (r, g) = T (r, G1) + O(1)

≤ T (r, G) + N
(

r,
1

g

)

− N
(

r,
1

g′

)

+ S(r, g) .(3.6)

Firstly, we suppose that equation (2.1) is not identically zero, that is, H 6≡ 0.
Here, we replace the functions f and g in the statement of Lemma 1 by F and G,
respectively. Combining the conclusions of Lemmas 1 and 2 with the assumption
that E3)(1, F ) = E3)(1, G) yields

N1)

(

r,
1

F − 1

)

≤ N̄(2(r, F ) + N̄(2(r, G) + N̄(2

(

r,
1

F

)

+ N̄(2

(

r,
1

G

)

+ N0

(

r,
1

F ′

)

+ N0

(

r,
1

G′

)

+ N̄(4

(

r,
1

F − 1

)

+ N̄(4

(

r,
1

G − 1

)

+ S(r, f) + S(r, g) .(3.7)

Applying the second fundamental theorem to the functions F and G with the
values 0, 1 and ∞, respectively, to conclude that
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T (r, F ) + T (r, G) ≤ N̄(r, F ) + N̄
(

r,
1

F

)

+ N̄
(

r,
1

F − 1

)

− N0

(

r,
1

F ′

)

+ S(r, f)

+ N̄(r, G) + N̄
(

r,
1

G

)

+ N̄
(

r,
1

G − 1

)

− N0

(

r,
1

G′

)

+ S(r, g)

≤ N̄(r, F ) + N̄
(

r,
1

F

)

+ N̄(r, G) + N̄
(

r,
1

G

)

+ N1)

(

r,
1

F − 1

)

+ N̄
(

r,
1

F − 1

)

+ N̄
(

r,
1

G − 1

)

− N1)

(

r,
1

F − 1

)

− N0

(

r,
1

F ′

)

− N0

(

r,
1

G′

)

+ S(r, f) + S(r, g) .(3.8)

Noting that

N̄
(

r,
1

F − 1

)

−
1

2
N1)

(

r,
1

F − 1

)

+ N̄(4

(

r,
1

F − 1

)

≤
1

2
N

(

r,
1

F − 1

)

,

N̄
(

r,
1

G − 1

)

−
1

2
N1)

(

r,
1

G − 1

)

+ N̄(4

(

r,
1

G − 1

)

≤
1

2
N

(

r,
1

G − 1

)

.

Then, combining the above two equations with E3)(1, F ) = E3)(1, G) yields

N̄
(

r,
1

F − 1

)

+ N̄
(

r,
1

G − 1

)

+ N̄(4

(

r,
1

G − 1

)

+ N̄(4

(

r,
1

F − 1

)

− N1)

(

r,
1

F − 1

)

≤
1

2

(

T (r, F ) + T (r, G)
)

+ S(r, f) + S(r, g) .(3.9)

Hence, equations (3.7) - (3.9) imply

T (r, F ) + T (r, G) ≤ 2

(

N2(r, F ) + N2(r, G) + N2

(

r,
1

F

)

+ N2

(

r,
1

G

)

)

+ S(r, f) + S(r, g) ,(3.10)

where N2(r, F ) := N̄(r, F )+N(2(r, F ) and N2

(

r, 1/F
)

:= N̄
(

r, 1/F
)

+N̄(2

(

r, 1/F
)

,

and N2(r, G) and N2

(

r, 1/G
)

are similarly defined.
From equations (3.1)–(3.6) and (3.10), and noting Lemma 3, we derive

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 2

(

N2(r, F ) + N2(r, G) + N2

(

r,
1

F

)

+ N2

(

r,
1

G

)

)

+ N
(

r,
1

f

)

− N
(

r,
1

f ′

)

+ N
(

r,
1

g

)

− N
(

r,
1

g′

)

+ S(r, f) + S(r, g)

≤ 4
(

N̄(r, f) + N̄(r, g)
)

+ 5

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ N
(

r,
1

f ′

)

+ N
(

r,
1

g′

)

+ S(r, f) + S(r, g)

(3.11)
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≤ 5
(

N̄(r, f) + N̄(r, g)
)

+ 6

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ S(r, f) + S(r, g) ,(3.12)

which implies (n−10)
(

T (r, f)+T (r, g)
)

≤ S(r, f)+S(r, g), a contradiction against
the assumption that n ≥ 11.

In particular, if f and g are entire, equation (3.11) turns out to be

(3.13) (n − 5)
(

T (r, f) + T (r, g)
)

≤ S(r, f) + S(r, g) ,

since both the terms N̄(r, f) and N̄(r, g) equal to O(1) now. Obviously, it contra-
dicts the assumption that n ≥ 6.

Hence, H ≡ 0. Integrating the equation H ≡ 0 twice results in

F ′

F − 1
= k1

G′

G − 1
+ k2 (k1 ∈ C\{0}, k2 ∈ C),

which implies that F and G share the value 1 CM.
This finishes the proof of Theorem 1.

4. Proof of Theorem 2

From the condition that E2)(1, F ) = E2)(1, G), if we furthermore suppose that
H 6≡ 0, then similar to equation (3.7), we have

N1)

(

r,
1

F − 1

)

≤ N̄(2(r, F ) + N̄(2(r, G) + N̄(2

(

r,
1

F

)

+ N̄(2

(

r,
1

G

)

+ N0

(

r,
1

F ′

)

+ N0

(

r,
1

G′

)

+ N̄(3

(

r,
1

F − 1

)

+ N̄(3

(

r,
1

G − 1

)

+ S(r, f) + S(r, g) .(4.1)

A routine calculation leads to

N̄
(

r,
1

F − 1

)

−
1

2
N1)

(

r,
1

F − 1

)

+
1

2
N̄(3

(

r,
1

F − 1

)

≤
1

2
N

(

r,
1

F − 1

)

,(4.2)

N̄
(

r,
1

G − 1

)

−
1

2
N1)

(

r,
1

G − 1

)

+
1

2
N̄(3

(

r,
1

G − 1

)

≤
1

2
N

(

r,
1

G − 1

)

.(4.3)

Applying the conclusions of Lemma 3 to F and taking reduced forms of the
counting functions on both sides of equation (2.4) to conclude

N̄(3

(

r,
1

F − 1

)

≤ N̄(2

(

r,
1

F ′

)

+ S(r, f) ≤ N̄
(

r,
1

F ′

)

+ S(r, f)

≤ N̄(r, F ) + N̄
(

r,
1

F

)

+ S(r, f)

≤ N̄(r, f) + N̄
(

r,
1

f

)

+ N̄
(

r,
1

f ′

)

+ S(r, f)

≤ 2N̄(r, f) + 2N̄
(

r,
1

f

)

+ S(r, f) ,(4.4)
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and similarly,

N̄(3

(

r,
1

G − 1

)

≤ 2N̄(r, g) + 2N̄
(

r,
1

g

)

+ S(r, g) .(4.5)

Hence, equations (4.2)–(4.5) yield

N̄
(

r,
1

F − 1

)

+ N̄
(

r,
1

G − 1

)

+ N̄(3

(

r,
1

F − 1

)

+ N̄(3

(

r,
1

G − 1

)

− N1)

(

r,
1

F − 1

)

≤
1

2

(

T (r, F ) + T (r, G)
)

+

(

N̄(r, f) + N̄(r, g) + N̄
(

r,
1

f

)

+ N̄
(

r,
1

g

)

)

+ S(r, f) + S(r, g) .

Analogous to equation (3.10), we have

T (r, F ) + T (r, G) ≤ 2

(

N2(r, F ) + N2(r, G) + N2

(

r,
1

F

)

+ N2

(

r,
1

G

)

)

+ 2

(

N̄(r, f) + N̄(r, g) + N̄
(

r,
1

f

)

+ N̄
(

r,
1

g

)

)

+ S(r, f) + S(r, g) .

Combining the above equation with equations (3.1)–(3.6) yields

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 7
(

N̄(r, f) + N̄(r, g)
)

+ 8

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ S(r, f) + S(r, g) ,(4.6)

which implies that (n − 14)
(

T (r, f) + T (r, g)
)

≤ S(r, f) + S(r, g), a contradiction
since we assume n ≥ 15. In particular, if f and g are entire, then equation (4.6)
turns into (n − 7)

(

T (r, f) + T (r, g)
)

≤ S(r, f) + S(r, g). Obviously, it contradicts
the assumption that n ≥ 8.

Hence H ≡ 0, and F and G share the value 1 CM.
This finishes the proof of Theorem 2.

5. Proof of Theorem 3

From the condition that E1)(1, F ) = E1)(1, G), if we furthermore assume that
H 6≡ 0, then similar to equation (3.7), we have

N1)

(

r,
1

F − 1

)

≤ N̄(2(r, F ) + N̄(2(r, G) + N̄(2

(

r,
1

F

)

+ N̄(2

(

r,
1

G

)

+ N0

(

r,
1

F ′

)

+ N0

(

r,
1

G′

)

+ N̄(2

(

r,
1

F − 1

)

+ N̄(2

(

r,
1

G − 1

)

+ S(r, f) + S(r, g) .(5.1)
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It is not difficult to see that

N̄
(

r,
1

F − 1

)

−
1

2
N1)

(

r,
1

F − 1

)

≤
1

2
N

(

r,
1

F − 1

)

,(5.2)

N̄
(

r,
1

G − 1

)

−
1

2
N1)

(

r,
1

G − 1

)

≤
1

2
N

(

r,
1

G − 1

)

.(5.3)

Also, as shown in inequality (4.4), we have

N̄(2

(

r,
1

F − 1

)

≤ N̄
(

r,
1

F ′

)

+ S(r, f)

≤ 2N̄(r, f) + 2N̄
(

r,
1

f

)

+ S(r, f) and(5.4)

N̄(2

(

r,
1

G − 1

)

≤ 2N̄(r, g) + 2N̄
(

r,
1

g

)

+ S(r, g) .(5.5)

Hence, equations (5.2)–(5.5) yield

N̄
(

r,
1

F − 1

)

+ N̄
(

r,
1

G − 1

)

+ N̄(2

(

r,
1

F − 1

)

+ N̄(2

(

r,
1

G − 1

)

− N1)

(

r,
1

F − 1

)

≤
1

2

(

T (r, F ) + T (r, G)
)

+ 2

(

N̄(r, f) + N̄(r, g) + N̄
(

r,
1

f

)

+ N̄
(

r,
1

g

)

)

+ S(r, f) + S(r, g) .

Analogically, we have

T (r, F ) + T (r, G) ≤ 2

(

N2(r, F ) + N2(r, G) + N2

(

r,
1

F

)

+ N2

(

r,
1

G

)

)

+ 4

(

N̄(r, f) + N̄(r, g) + N̄
(

r,
1

f

)

+ N̄
(

r,
1

g

)

)

+ S(r, f) + S(r, g) .

Hence,

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 9
(

N̄(r, f) + N̄(r, g)
)

+ 10

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ S(r, f) + S(r, g) ,(5.6)

which implies that (n − 18)
(

T (r, f) + T (r, g)
)

≤ S(r, f) + S(r, g), a contradiction
since we assume n ≥ 19. In particularly, if f and g are entire, then equation (5.6)
turns into (n − 9)

(

T (r, f) + T (r, g)
)

≤ S(r, f) + S(r, g). Obviously, it contradicts
the assumption that n ≥ 10.

Hence H ≡ 0, and F and G share the value 1 CM.
This finishes the proof of Theorem 3.
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6. Related results

Final Note 1. If we assume that f and g share the value ∞ CM (resp. IM) in
the statement of Lemma 1 besides the assumption that Ek)(1, f) = Ek)(1, g) for
some positive integer k ∈ N, then equation (2.2) becomes

N(r, H) ≤ N̄(2

(

r,
1

f

)

+ N̄(2

(

r,
1

g

)

+ N̄0

(

r,
1

f ′

)

+ N̄0

(

r,
1

g′

)

+ N̄(k+1

(

r, 1
1

f − 1

)

+ N̄(k+1

(

r,
1

g − 1

)

+ S(r, f) + S(r, g) ,(2.2a)

and respectively,

N(r, H) ≤
1

2
N̄(r, f)+

1

2
N̄(r, g)+ N̄(2

(

r,
1

f

)

+ N̄(2

(

r,
1

g

)

+ N̄0

(

r,
1

f ′

)

+ N̄0

(

r,
1

g′

)

+ N̄(k+1

(

r, 1
1

f − 1

)

+ N̄(k+1

(

r,
1

g − 1

)

+ S(r, f) + S(r, g) .(2.2b)

Applying the argumentations used in our proofs with equation (2.2a) (resp.
(2.2b)) could reduce the lower bounds of the integers n from n ≥ 11, 15 and 19 in
Theorems 1, 2 and 3 to n ≥ 9, 13 and 17 (resp. n ≥ 10, 14 and 18), respectively,
provided that we assume furthermore that f and g, and thus F and G, share the
value ∞ CM (resp. IM).

Final Note 2. Using similar argumentations as those in our proofs and replacing
the notations F , F1 (resp. G, G1) in Section 3 by new ones F = fnf ′/z, F1 =
fn+1/(n+1) (resp. G = gng′/z, G1 = gn+1/(n+1)) (then, F ′

1 = zF and G′

1 = zG),
we could weaken the assumption of sharing z CM (i.e., E(z, fnf ′) = E(z, gng′))
in the statement of Theorem C to Ek)(z, fnf ′) = Ek)(z, gng′) for k = 1, 2 and 3.

In fact, if f and g are transcendental, our original proofs go well, while if f
and g are rational functions (resp. polynomials), routine calculations on the term
“log r” would lead to analogous conclusions. However, in those cases we may have
to increase the lower bounds of the integers n from n ≥ 11, 15 and 19 (resp. n ≥ 6,
8 and 10) to n ≥ 14, 19 and 24 (resp. n ≥ 9, 12 and 15), since now f and g have
the same growth estimate as that of the function z, in other words, of O(log r).
Below, we give an outline of the proof for those special cases.

Proof. First of all, according to the conclusion of [2, Theorem C], we know that
f is rational whenever g is, and vice versa. Similarly, we have N̄(r, F ) = N̄(r, f)+
log r and N2(r, F ) ≤ 2N̄(r, f)+log r, and N̄(r, G) = N̄(r, g)+log r and N2(r, G) ≤
2N̄(r, g) + log r. Furthermore, we have

(n + 1)T (r, f) = T (r, F1) + O(1) ≤ T (r, zF ) + N
(

r,
1

F1

)

− N
(

r,
1

zF

)

+ O(1)

≤ T (r, F ) + N
(

r,
1

f

)

− N
(

r,
1

f ′

)

+ log r + O(1) ,
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(n + 1)T (r, g) = T (r, G1) + O(1) ≤ T (r, zG) + N
(

r,
1

G1

)

− N
(

r,
1

zG

)

+ O(1)

≤ T (r, G) + N
(

r,
1

g

)

− N
(

r,
1

g′

)

+ log r + O(1) .

If E3)(z, fnf ′) = E3)(z, gng′), then analogous to equation (3.11), we derive

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 5
(

N̄(r, f) + N̄(r, g)
)

+ 6

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ 6 log r + O(1) ,

which implies that (n − 10)
(

T (r, f) + T (r, g)
)

≤ 6 log r + O(1).

Noting the discussions in [2, p.p. 437-438] fail here, we may have to suppose
that (n−10)

(

T (r, f)+T (r, g)
)

≥ (2n−20) log r, and hence (2n−26) log r ≤ O(1),
a contradiction since we assume n ≥ 14.

If Ek)(z, fnf ′) = Ek)(z, gng′) for k = 1, 2, then parallel to equations (4.4)–(4.5)
and (5.4)–(5.5), we have

N̄(k

(

r,
1

F − 1

)

≤ 2N̄(r, f) + 2N̄
(

r,
1

f

)

+ log r + O(1) ,

N̄(k

(

r,
1

G − 1

)

≤ 2N̄(r, g) + 2N̄
(

r,
1

g

)

+ log r + O(1) .

If k = 2, we have

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 7
(

N̄(r, f) + N̄(r, g)
)

+ 8

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ 8 log r + O(1) ,

which means (2n − 36) log r ≤ O(1), a contradiction since we assume n ≥ 19.

If k = 1, we have

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 9
(

N̄(r, f) + N̄(r, g)
)

+ 10

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ 10 log r + O(1) ,

which shows (2n − 46) log r ≤ O(1), a contradiction since we assume n ≥ 24.

If f and g are polynomials, then N(r, F ) = N(r, G) = log r, and hence N̄(r, F ) =
N2(r, F ) = N̄(r, G) = N2(r, G) = log r. Similarly, we derive

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 6

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ 6 log r + O(1) (k = 3) ,

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 8

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ 8 log r + O(1) (k = 2) ,

(n + 1)
(

T (r, f) + T (r, g)
)

≤ 10

(

N
(

r,
1

f

)

+ N
(

r,
1

g

)

)

+ 10 log r + O(1) (k = 1) .
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All the above three equations contradict the assumptions that n ≥ 9 (k = 3),
n ≥ 12 (k = 2) and n ≥ 15 (k = 1), respectively.
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