```
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 43 (2007), 123-132
```


SYMMETRIES IN HEXAGONAL QUASIGROUPS

Vladimir Volenec, Mea Bombardelli

Abstract

Hexagonal quasigroup is idempotent, medial and semisymmetric quasigroup. In this article we define and study symmetries about a point, segment and ordered triple of points in hexagonal quasigroups. The main results are the theorems on composition of two and three symmetries.

1. Introduction

Hexagonal quasigroups are defined in [3].
Definition. A quasigroup (Q, \cdot) is said to be hexagonal if it is idempotent, medial and semisymmetric, i.e. if its elements a, b, c satisfy:

$$
\begin{equation*}
a \cdot a=a \tag{id}
\end{equation*}
$$

(med)
(ss)

$$
\begin{gathered}
(a \cdot b) \cdot(c \cdot d)=(a \cdot c) \cdot(b \cdot d) \\
a \cdot(b \cdot a)=(a \cdot b) \cdot a=b .
\end{gathered}
$$

From (id) and (med) easily follows distributivity

$$
\begin{equation*}
a \cdot(b \cdot c)=(a \cdot b) \cdot(a \cdot c), \quad(a \cdot b) \cdot c=(a \cdot c) \cdot(b \cdot c) \tag{ds}
\end{equation*}
$$

When it doesn't cause confusion, we can omit the sign ".", e.g. instead of $(a \cdot b) \cdot(c \cdot d)$ we may write $a b \cdot c d$.

In this article, Q will always be a hexagonal quasigroup.
The basic example of hexagonal quasigroup is formed by the points of Euclidean plane, with the operation such that the points a, b and $a \cdot b$ form a positively oriented regular triangle. This structure was used for all the illustrations in this article.

Motivated by this example, Volenec in [3] and [4] introduced some geometric terms to any hexagonal quasigroup. Some of these terms can be defined in any idempotent medial quasigroup (see [2]) or even medial quasigroup (see [1]).

The elements of hexagonal quasigroup are called points, and pairs of points are called segments.

[^0]Definition. We say that the points a, b, c and d form a parallelogram, and we write $\operatorname{Par}(a, b, c, d)$ if $b c \cdot a b=d$ holds. (Fig. 1)

Figure 1. Parallelogram (definition)

Accordingly to [3], the structure (Q, Par $)$ is a parallelogram space. In other words, Par is a quaternary relation on Q (instead of $(a, b, c, d) \in \operatorname{Par}$ we write $\operatorname{Par}(a, b, c, d))$ such that:

1. Any three of the four points a, b, c, d uniquely determine the fourth, such that $\operatorname{Par}(a, b, c, d)$.
2. If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or (d, c, b, a), then $\operatorname{Par}(a, b$, $c, d)$ implies $\operatorname{Par}(e, f, g, h)$.
3. From Par (a, b, c, d) and $\operatorname{Par}(c, d, e, f)$ it follows $\operatorname{Par}(a, b, f, e)$. (Fig. 2)

Figure 2. Property 3 of the relation Par
Accordingly to [3]:
Theorem 1. From $\operatorname{Par}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\operatorname{Par}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ it follows $\operatorname{Par}\left(a_{1} a_{2}\right.$, $\left.b_{1} b_{2}, c_{1} c_{2}, d_{1} d_{2}\right)$.

In the rest of this section we present some definitions and results from [5].
Definition. The point m is a midpoint of the segment $\{a, b\}$, if $\operatorname{Par}(a, m, b, m)$ holds. This is denoted by $\mathrm{M}(a, m, b)$.

Remark. For given a, b such m can exist or not; and it can be unique or not.
Theorem 2. Let $\mathrm{M}(a, m, c)$. Then $\mathrm{M}(b, m, d)$ and $\operatorname{Par}(a, b, c, d)$ are equivalent.
Definition. The point m is called a center of a parallelogram $\operatorname{Par}(a, b, c, d)$ if $\mathrm{M}(a, m, c)$ and $\mathrm{M}(b, m, d)$.

Definition. The function $T_{a, b}: Q \rightarrow Q$,

$$
T_{a, b}(x)=a b \cdot x a
$$

is called transfer by the vector $[a, b]$. (Fig. 3)

Figure 3. Transfer by the vector $[a, b]$
Lemma 1. For any $a, b, x \in Q$, $\operatorname{Par}\left(x, a, b, T_{a, b}(x)\right)$. The equality $T_{a, b}=T_{c, d}$ is equivalent to $\operatorname{Par}(a, b, d, c)$.
Theorem 3. The set of all transfers is a commutative group. Specially, the composition of two transfers is a transfer. The inverse of $T_{a, b}$ is $T_{b, a}$.

2. Symmetries in hexagonal quasigroup

Lemma 2. For any points $a, b, c, x \in Q$, the following equalities hold

$$
\left.\begin{array}{rl}
(x a \cdot a) a & =a(a \cdot a x) \\
(x a \cdot b) a & =a(b \cdot a x) \\
=x a \cdot a x \\
(x a \cdot b) c & =a(b \cdot c x)
\end{array}=(x \cdot a c) \cdot b x=x b \cdot a x=b(a \cdot b x)=(x b \cdot a) b\right)
$$

Proof. Since Q is semisymmetric quasigroup, $p q=r$ is equivalent to $q r=p$.
First, we prove the last set of equalities.
From $(b \cdot c x) \cdot(x a \cdot b) c \stackrel{(\text { med })}{=} b(x a \cdot b) \cdot(c x \cdot c) \stackrel{(\text { ss })}{=} x a \cdot x \stackrel{(\text { ss })}{=} a$, it follows $a(b \cdot c x)=(x a \cdot b) c$.

From $(a c \cdot x) \cdot(x(a c) \cdot b x) \stackrel{(\mathrm{med})}{=}(a c \cdot x(a c))(x \cdot b x) \stackrel{(\mathrm{ss})}{=} x b$, it follows $(x \cdot a c) \cdot b x=$ $x b \cdot(a c \cdot x)$.

From $((x \cdot a c) \cdot b x)(x a \cdot b) \stackrel{(\mathrm{med})}{=}((x \cdot a c) \cdot x a)(b x \cdot b) \stackrel{(\mathrm{med})}{=}((x x) \cdot(a c) a)(b x \cdot b) \stackrel{(\mathrm{id}, \text { ss })}{=}$ $(x c) x \stackrel{(\mathrm{ss})}{=} c$, it follows $(x a \cdot b) c=(x \cdot a c) \cdot b x$.

Now putting $a=b=c$ we obtain the first line of equalities, and putting $a=c$ the second line.

Definition. Symmetry with respect to the point a is the function $\sigma_{a}: Q \rightarrow Q$ defined by (see Fig. 4)

$$
\sigma_{a}(x)=a(a \cdot a x)=(x a \cdot a) a=x a \cdot a x .
$$

Figure 4. Symmetry with respect to the point a
From $\sigma_{a}(x)=x a \cdot a x$ it follows $\operatorname{Par}\left(a, x, a, \sigma_{a}(x)\right)$, so we have:
Corollary 1. The equality $\sigma_{m}(a)=b$ is equivalent to $\mathrm{M}(a, m, b)$.

Figure 5. Symmetry with respect to the line segment $\{a, b\}$
The function $\sigma_{a}(x)=x a \cdot a x$ can be generalised this way:
Definition. The function $\sigma_{a, b}: Q \rightarrow Q$ defined by

$$
\sigma_{a, b}(x)=x a \cdot b x
$$

is called symmetry with respect to the segment $\{a, b\}$. (Fig. 5)
It follows immediately:
Corollary 2. For any $a, b, x \in Q$

$$
\sigma_{a, a}=\sigma_{a}, \quad \sigma_{a, b}=\sigma_{b, a}, \quad \operatorname{Par}\left(a, x, b, \sigma_{a, b}(x)\right)
$$

Theorem 4. The equality $\sigma_{a, b}=\sigma_{m}$ is equivalent to $\mathrm{M}(a, m, b)$.

Proof. Let $\mathrm{M}(a, m, b)$ and let $x \in Q$. From Par $\left(a, x, b, \sigma_{a, b}(x)\right)$ and $\mathrm{M}(a, m, b)$ and Theorem 2 we obtain $\mathrm{M}\left(x, m, \sigma_{a, b}(x)\right)$, and now from Corollary $1 \sigma_{m}(x)=$ $\sigma_{a, b}(x)$.

Inversely, from $\sigma_{a, b}=\sigma_{m}$ it follows $\sigma_{m}(a)=\sigma_{a, b}(a)=a a \cdot b a=b$, and now Corollary 1 implies $\mathrm{M}(a, m, b)$.

The function $\sigma_{a}(x)=a(a \cdot a x)$ can be generalised in another way:
Definition. The function $\sigma_{a, b, c}(x)=(x a \cdot b) c$ is called symmetry with respect to the ordered triple of points (a, b, c). (Fig. 6)

Figure 6. Symmetry with respect to the ordered triple of points (a, b, c)

Lemma 2 implies

$$
\sigma_{a, b, c}(x)=(x a \cdot b) c=a(b \cdot c x)=(x \cdot a c) \cdot b x=x b \cdot(a c \cdot x) .
$$

It immediately follows:
Corollary 3. For any $a, b, c, x \in Q$

$$
\sigma_{a}=\sigma_{a, a, a}, \quad \sigma_{a, b}=\sigma_{a, b, a}=\sigma_{b, a, b}, \quad \sigma_{a, b, c}=\sigma_{a c, b}, \quad \operatorname{Par}\left(a c, x, b, \sigma_{a, b, c}(x)\right) .
$$

Note that different order of points (e.g. $(b, a, c))$ produces different symmetry.
Theorem 5. The symmetry $\sigma_{a, b, c}$ is an involutory automorphism of the hexagonal quasigroup (Q, \cdot).

Proof. We first show that $\sigma_{a, b, c} \circ \sigma_{a, b, c}$ is identity:
$\sigma_{a, b, c}\left(\sigma_{a, b, c}(x)\right)=\sigma_{a, b, c}((x a \cdot b) c)=a \cdot b(c \cdot(x a \cdot b) c) \stackrel{(\mathrm{ss})}{=} a \cdot b(x a \cdot b) \stackrel{(\mathrm{ss})}{=} a \cdot x a \stackrel{(\mathrm{ss})}{=} x$.

It follows that $\sigma_{a, b, c}$ is a bijection. Further:

$$
\begin{aligned}
\sigma_{a, b, c}(x y) & =(x y \cdot a) b \cdot c \stackrel{(\mathrm{ds})}{=}(x a \cdot y a) b \cdot c \\
& \stackrel{(\mathrm{ds})}{=}(x a \cdot b)(y a \cdot b) \cdot c \stackrel{(\mathrm{ds})}{=}(x a \cdot b) c \cdot(y a \cdot b) c=\sigma_{a, b, c}(x) \cdot \sigma_{a, b, c}(y),
\end{aligned}
$$

so $\sigma_{a, b, c}$ is an automorphism.
From Theorem 5 and Corollary 3, it follows:
Corollary 4. Symmetries σ_{a} and $\sigma_{a, b}$ are involutory automorphisms of the hexagonal quasigroup (Q, \cdot).

Figure 7. Theorem 6

Theorem 6. The equality $\sigma_{a, b, c}=\sigma_{m}$ is equivalent to $\mathrm{M}(a c, m, b)$. (Fig. 7)
Proof. The statement follows immediately from $\sigma_{a, b, c}=\sigma_{a c, b}$ (Corollary 3) and Theorem 4.

The following two theorems are about the compositions of two and three symmetries.
Theorem 7. The composition of two symmetries is a transfer (Fig. 8). More precisely, for any $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$

$$
\sigma_{b_{1}, b_{2}, b_{3}} \circ \sigma_{a_{1}, a_{2}, a_{3}}=T_{a_{1} a_{3}, b_{1} b_{3}} \circ T_{a_{2}, b_{2}} .
$$

Proof. Since composition of two transfers is a transfer (Theorem 3), it's enough to prove the above equality.

Let $x \in Q$ be any point, and let $y=\sigma_{a_{1}, a_{2}, a_{3}}(x), z=\sigma_{b_{1}, b_{2}, b_{3}}(y)$, and $w=$ $T_{a_{2}, b_{2}}(x)$. We need to prove that $T_{a_{1} a_{3}, b_{1} b_{3}}(w)=z$.

Lemma 1 implies Par $\left(x, a_{2}, b_{2}, w\right)$, and from Corollary 3 it follows Par $\left(a_{1} a_{3}, x, a_{2}, y\right)$ and $\operatorname{Par}\left(b_{1} b_{3}, y, b_{2}, z\right)$.

Figure 8. Theorem 7
Property 2 of Par implies $\operatorname{Par}\left(b_{2}, w, x, a_{2}\right)$ and $\operatorname{Par}\left(x, a_{2}, y, a_{1} a_{3}\right)$, and now from Property 3 it follows $\operatorname{Par}\left(b_{2}, w, a_{1} a_{3}, y\right)$.

Similarly, Property 2 implies $\operatorname{Par}\left(w, a_{1} a_{3}, y, b_{2}\right)$ and $\operatorname{Par}\left(y, b_{2}, z, b_{1} b_{3}\right)$, and because of Property 3 it follows $\operatorname{Par}\left(w, a_{1} a_{3}, b_{1} b_{3}, z\right)$.

From this relation and Lemma 1 it finally follows $z=T_{a_{1} a_{3}, b_{1} b_{3}}(w)$.

Figure 9. Corollary 5
Using Corollary 3 we obtain (see Fig. 9):
Corollary 5. For $a, b \in Q, \quad \sigma_{b} \circ \sigma_{a}=T_{a, b} \circ T_{a, b}$.
For $a_{1}, a_{2}, b_{1}, b_{2} \in Q, \quad \sigma_{b_{1}, b_{2}} \circ \sigma_{a_{1}, a_{2}}=T_{a_{1}, b_{1}} \circ T_{a_{2}, b_{2}}$.

Corollary 6. The equation $\sigma_{a_{1}, a_{2}, a_{3}}=\sigma_{b_{1}, b_{2}, b_{3}}$ is equivalent to $\operatorname{Par}\left(a_{1} a_{3}, b_{1} b_{3}\right.$, a_{2}, b_{2}).

Proof. By Theorem 5, $\sigma_{a_{1}, a_{2}, a_{3}}=\sigma_{b_{1}, b_{2}, b_{3}}$ is equivalent to $\sigma_{b_{1}, b_{2}, b_{3}} \circ \sigma_{a_{1}, a_{2}, a_{3}}=$ identity. From Theorem 7 we know $\sigma_{b_{1}, b_{2}, b_{3}} \circ \sigma_{a_{1}, a_{2}, a_{3}}=T_{a_{1} a_{3}, b_{1} b_{3}} \circ T_{a_{2}, b_{2}}$, so the initial equality is equivalent to $T_{a_{1} a_{3}, b_{1} b_{3}} \circ T_{a_{2}, b_{2}}=$ identity. Because of Theorem 3 this is equivalent to $T_{a_{1} a_{3}, b_{1} b_{3}}=T_{b_{2}, a_{2}}$, and further because of Lemma 1 to $\operatorname{Par}\left(a_{1} a_{3}, b_{1} b_{3}, a_{2}, b_{2}\right)$.

Theorem 8. The composition of three symmetries is a symmetry. More precisely, for any $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$, and for d_{1}, d_{2}, d_{3} such that $\operatorname{Par}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$, for $i=1,2,3$,

$$
\sigma_{c_{1}, c_{2}, c_{3}} \circ \sigma_{b_{1}, b_{2}, b_{3}} \circ \sigma_{a_{1}, a_{2}, a_{3}}=\sigma_{d_{1}, d_{2}, d_{3}}
$$

Figure 10. Corollary 7

Proof. Let $x \in Q$ be any point, and let $y, z, t \in Q$ be such that

$$
\begin{array}{ll}
y=\sigma_{a_{1}, a_{2}, a_{3}}(x) & \text { i.e. } \quad \operatorname{Par}\left(a_{1} a_{3}, x, a_{2}, y\right) \\
z=\sigma_{b_{1}, b_{2}, b_{3}}(y) & \text { i.e. } \operatorname{Par}\left(b_{1} b_{3}, y, b_{2}, z\right) \\
t=\sigma_{c_{1}, c_{2}, c_{3}}(z) & \text { i.e. } \operatorname{Par}\left(c_{1} c_{3}, z, c_{2}, t\right)
\end{array}
$$

and let $w \in Q$ be such that $\operatorname{Par}\left(d_{2}, a_{2}, y, w\right)$. We need to prove that $\sigma_{d_{1}, d_{2}, d_{3}}(x)=$ t, i.e. $\operatorname{Par}\left(d_{1} d_{3}, x, d_{2}, t\right)$.

From Par $\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\operatorname{Par}\left(a_{3}, b_{3}, c_{3}, d_{3}\right)$, because of Theorem 1 we get $\operatorname{Par}\left(a_{1} a_{3}, b_{1} b_{3}, c_{1} c_{3}, d_{1} d_{3}\right)$.

Now we use Property 3 of the relation Par to conclude:

$$
\begin{aligned}
\operatorname{Par}\left(b_{2}, c_{2}, d_{2}, a_{2}\right), \operatorname{Par}\left(d_{2}, a_{2}, y, w\right) & \Rightarrow \operatorname{Par}\left(b_{2}, c_{2}, w, y\right), \\
\operatorname{Par}\left(z, b_{1} b_{3}, y, b_{2}\right), \operatorname{Par}\left(y, b_{2}, c_{2}, w\right) & \Rightarrow \operatorname{Par}\left(z, b_{1} b_{3}, w, c_{2}\right), \\
\operatorname{Par}\left(b_{1} b_{3}, w, c_{2}, z\right), \operatorname{Par}\left(c_{2}, z, c_{1} c_{3}, t\right) & \Rightarrow \operatorname{Par}\left(b_{1} b_{3}, w, t, c_{1} c_{3}\right), \\
\operatorname{Par}\left(d_{1} d_{3}, a_{1} a_{3}, b_{1} b_{3}, c_{1} c_{3}\right), \operatorname{Par}\left(b_{1} b_{3}, c_{1} c_{3}, t, w\right) & \Rightarrow \operatorname{Par}\left(d_{1} d_{3}, a_{1} a_{3}, w, t\right), \\
\operatorname{Par}\left(a_{1} a_{3}, x, a_{2}, y\right), \operatorname{Par}\left(a_{2}, y, w, d_{2}\right) & \Rightarrow \operatorname{Par}\left(a_{1} a_{3}, x, d_{2}, w\right), \\
\operatorname{Par}\left(x, d_{2}, w, a_{1} a_{3}\right), \operatorname{Par}\left(w, a_{1} a_{3}, d_{1} d_{3}, t\right) & \Rightarrow \operatorname{Par}\left(x, d_{2}, t, d_{1} d_{3}\right) .
\end{aligned}
$$

The relations on the left hand side are valid because of the assumptions, previous conclusions and Property 2 of Par .

The last obtained relation is equivalent to $\operatorname{Par}\left(d_{1} d_{3}, x, d_{2}, t\right)$.
Corollary 7. For any $a_{i}, b_{i}, c_{i} \in Q, i=1,2,3$ (see Fig. 10)

$$
\sigma_{a_{1}, a_{2}, a_{3}} \circ \sigma_{b_{1}, b_{2}, b_{3}} \circ \sigma_{c_{1}, c_{2}, c_{3}}=\sigma_{c_{1}, c_{2}, c_{3}} \circ \sigma_{b_{1}, b_{2}, b_{3}} \circ \sigma_{a_{1}, a_{2}, a_{3}} .
$$

Corollary 8. For any $a, b, c \in Q, \sigma_{a} \circ \sigma_{b} \circ \sigma_{c}=\sigma_{c} \circ \sigma_{b} \circ \sigma_{a}$.

Figure 11. Corollary 9
Corollary 9. For $a, b, c, d \in Q$, if $\operatorname{Par}(a, b, c, d)$ then $\sigma_{c} \circ \sigma_{b} \circ \sigma_{a}=\sigma_{d}$. (Fig. 11)
It is known (in Euclidean geometry) that midpoints of sides of any quadrilateral form a parallelogram. We can state the same fact in terms of hexagonal quasigroup in the following way:

Theorem 9. From $\mathrm{M}(x, a, y), \mathrm{M}(y, b, z), \mathrm{M}(z, c, t)$ and $\operatorname{Par}(a, b, c, d)$ it follows $\mathrm{M}(x, d, t)$.

Proof. $\mathrm{M}(x, a, y), \mathrm{M}(y, b, z)$ and $\mathrm{M}(z, c, t)$ are equivalent to $\sigma_{a}(x)=y, \sigma_{b}(y)=$ z and $\sigma_{c}(z)=t$ respectively. Therefore, the three assumptions can be written as: $\sigma_{c}\left(\sigma_{b}\left(\sigma_{a}(x)\right)\right)=t$. From the preceding corollary it follows $\sigma_{d}(x)=t$, i.e. $\mathrm{M}(x, d, t)$.

Theorem 10. Let $a_{i}, b_{i}, c_{i}, d_{i}, i=1,2,3$ be points such that $\operatorname{Par}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$, for $i=1,2,3$, and a, b, c, d points satisfying $\operatorname{Par}(a, b, c, d)$. Then

$$
\operatorname{Par}\left(\sigma_{a_{1}, a_{2}, a_{3}}(a), \sigma_{b_{1}, b_{2}, b_{3}}(b), \sigma_{c_{1}, c_{2}, c_{3}}(c), \sigma_{d_{1}, d_{2}, d_{3}}(d)\right) .
$$

Proof. From Par $\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\operatorname{Par}\left(a_{3}, b_{3}, c_{3}, d_{3}\right)$ and Theorem 1 it follows $\operatorname{Par}\left(a_{1} a_{3}, b_{1} b_{3}, c_{1} c_{3}, d_{1} d_{3}\right)$, and from $\operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ it follows $\operatorname{Par}\left(a_{2} a, b_{2} b, c_{2} c, d_{2} d\right)$. Similarly we obtain $\operatorname{Par}\left(a \cdot a_{1} a_{3}, b \cdot b_{1} b_{3}, c \cdot c_{1} c_{3}, d \cdot d_{1} d_{3}\right)$, and finally $\operatorname{Par}\left(\left(a \cdot a_{1} a_{3}\right) \cdot a_{2} a,\left(b \cdot b_{1} b_{3}\right) \cdot b_{2} b,\left(c \cdot c_{1} c_{3}\right) \cdot c_{2} c,\left(d \cdot d_{1} d_{3}\right) \cdot d_{2} d\right)$, which proves the Theorem.

We immediately have:
Corollary 10. From $\operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}(p, q, r, s)$ it follows

$$
\operatorname{Par}\left(\sigma_{p}(a), \sigma_{q}(b), \sigma_{r}(c), \sigma_{s}(d)\right)
$$

Corollary 11. For $p, q, r \in Q$, from $\operatorname{Par}(a, b, c, d)$ it follows

$$
\operatorname{Par}\left(\sigma_{p, q, r}(a), \sigma_{p, q, r}(b), \sigma_{p, q, r}(c), \sigma_{p, q, r}(d)\right) .
$$

Corollary 12. For $p \in Q$, from $\operatorname{Par}(a, b, c, d)$ it follows

$$
\operatorname{Par}\left(\sigma_{p}(a), \sigma_{p}(b), \sigma_{p}(c), \sigma_{p}(d)\right)
$$

Corollary 13. For $p, q, r \in Q$, from $\mathrm{M}(a, b, c)$ it follows

$$
\mathrm{M}\left(\sigma_{p, q, r}(a), \sigma_{p, q, r}(b), \sigma_{p, q, r}(c)\right) .
$$

Corollary 14. For $p \in Q$, from $\mathrm{M}(a, b, c)$ it follows $\mathrm{M}\left(\sigma_{p}(a), \sigma_{p}(b), \sigma_{p}(c)\right)$.

References

[1] Volenec, V., Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. [421] 5 (1986), 79-91.
[2] Volenec, V., Geometry of IM quasigroups, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [456] 10 (1991), 139-146.
[3] Volenec, V., Hexagonal quasigroups, Arch. Math. (Brno), 27a (1991), 113-122.
[4] Volenec, V., Regular triangles in hexagonal quasigroups, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [467] 11 (1994), 85-93.
[5] Bombardelli, M., Volenec, V., Vectors and transfers in hexagonal quasigroups, to be published in Glas. Mat. Ser. III.

Department of Mathematics
Bijenička 30, Zagreb, Croatia
E-mail: volenec@math.hr
Mea.Bombardelli@math.hr

[^0]: 2000 Mathematics Subject Classification: 20N05
 Key words and phrases : quasigroup, hexagonal quasigroup, symmetry.
 Received June 12, 2006, revised November 2006.

