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ON S-NOETHERIAN RINGS

Liu Zhongkui

Abstract. Let R be a commutative ring and S ⊆ R a given multiplicative
set. Let (M,≤) be a strictly ordered monoid satisfying the condition that
0 ≤ m for every m ∈ M . Then it is shown, under some additional conditions,
that the generalized power series ring [[RM,≤]] is S-Noetherian if and only if
R is S-Noetherian and M is finitely generated.

1. Introduction

Let R be a commutative ring and S ⊆ R a given multiplicative set. According
to [2], an ideal I of R is called S-finite if sI ⊆ J ⊆ I for some s ∈ S and some
finitely generated ideal J . R is called S-Noetherian if each ideal of R is S-finite.
Clearly every Noetherian ring is S-Noetherian for any multiplicative set S.

Let X1, . . . , Xn be indeterminates. It was showed in [2], Proposition 10, that if
S ⊆ R is an anti-Archimedean multiplicative set of R consisting of nonzerodivisors
and R is S-Noetherian, then R[[X1, . . . , Xn]] is S-Noetherian. It was proved in [3],
Theorem 4.3, that if (M,≤) is a strictly ordered monoid satisfying the condition
that 0 ≤ m for every m ∈ M , then the generalized power series ring [[RM,≤]] is
left Noetherian if and only if R is left Noetherian and M is finitely generated. By
the technique developed in [3] we show that if (M,≤) satisfies the condition that
0 ≤ m for every m ∈ M and S ⊆ R is an anti-Archimedean multiplicative set of
R consisting of nonzerodivisors, then [[RM,≤]] is S-Noetherian if and only if R is
S-Noetherian and M is finitely generated.

Throughout this note all rings are commutative with identity and all monoids
are commutative. Any concept and notation not defined here can be found in [2],
[3] and [6].

2. Generalized power series rings

Let (M,≤) be an ordered set. Recall that (M,≤) is artinian if every strictly
decreasing sequence of elements of M is finite, and that (M,≤) is narrow if every
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subset of pairwise order-incomparable elements of M is finite. Let M be a com-
mutative monoid. Unless stated otherwise, the operation of M shall be denoted
additively, and the neutral element by 0.

Let (M,≤) be a strictly ordered monoid (that is, (M,≤) is an ordered monoid
satisfying the condition that, if m1, m2, m ∈ M and m1 < m2, then m1 + m <
m2 +m), and R a ring. Let [[RM,≤]] be the set of all maps f : M −→ R such that
supp (f) =

{

m ∈ M | f(m) 6= 0
}

is artinian and narrow. With pointwise addition,

[[RM,≤]] is an abelian additive group. For every m ∈ M and f, g ∈ [[RM,≤]], let
Xm(f, g) =

{

(u, v) ∈ M × M | m = u + v, f(u) 6= 0, g(v) 6= 0
}

. It follows from
[9], 1.16, that Xm(f, g) is finite. This fact allows us to define the operation of
convolution:

(fg)(m) =
∑

(u,v)∈Xm(f,g)

f(u) g(v) .

With this operation, and pointwise addition, [[RM,≤]] becomes a commutative
ring, which is called the ring of generalized power series. The elements of [[RM,≤]]
are called generalized power series with coefficients in R and exponents in M .

For example, if M = N∪{0} and ≤ is the usual order, then [[RN∪{0},≤]] ∼= R[[x]],
the usual ring of power series. If M is a commutative monoid and ≤ is the trivial
order, then [[RM,≤]] = R[M ], the monoid-ring of M over R. Further examples are
given in [5] and [6]. Results for rings of generalized power series appeared in [3],
[5]-[11].

Any monoid M has the algebraic or natural preorder defined by a � b if a+c = b
for some c ∈ M . In general, a � b � a does not imply a = b, so � is not always a
partial order on M. The symbol � will always be used for the algebraic preorder
of a monoid in this paper.

Recall from [3] that if (M,≤) and (N,≤) are ordered monoids, then a strict
monoid homomorphism σ : (M,≤) −→ (N,≤) is a monoid homomorphism σ :
M −→ N which is strictly increasing with respect to the partial orders ≤.

Lemma 2.1. Let (M,≤), where |M | > 1, be a strictly ordered monoid satisfying

the condition that 0 ≤ m for every m ∈ M . Then for some commutative free

monoid F , there exists a surjective strict monoid homomorphism σ : (F,�) −→
(M,�).

Proof. It follows from [3], Lemma 3.1 and Lemma 3.2.

Note from the proof of [3], Lemma 3.2, that if M is finitely generated, then the
free monoid F can be chosen finitely generated.

Lemma 2.2. Let α : R −→ R′ be a surjective ring homomorphism and S ⊆ R a

multiplicative set of R. If R is S-Noetherian, then R′ is α(S)-Noetherian.

Proof. It follows from the definition.

Let m ∈ M . We define a mapping em ∈ [[RM,≤]] as follows:

em(m) = 1 , em(x) = 0 , m 6= x ∈ M .
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Let r ∈ R. Define a mapping cr ∈ [[RM,≤]] as follows:

cr(0) = r , cr(m) = 0 , 0 6= m ∈ M .

Then R is isomorphic to the subring {cr|r ∈ R} of [[RS,≤]]. Thus if S is a multi-
plicative set of R then C(S) = {cr|r ∈ S} is a multiplicative set of [[RM,≤]]. In
the following we will say [[RM,≤]] is S-Noetherian if [[RM,≤]] is C(S)-Noetherian.

It was proved in [3], Theorem 4.3, that if (M,≤) satisfies the condition that
0 ≤ m for every m ∈ M , then [[RM,≤]] is left Noetherian if and only if R is
left Noetherian and M is finitely generated. For S-Noetherian rings we have the
following result. Recall from [1] that a multiplicative set S of a ring R is said
to be anti-Archimedean if (∩n≥1s

nR) ∩ S 6= ∅ for every s ∈ S. Clearly every
multiplicative set consisting of units is anti-archimedean.

Theorem 2.3. Let R be a ring and S ⊆ R an anti-Archimedean multiplicative set

of R consisting of nonzerodivisors. Let (M,≤) be a strictly ordered monoid satis-

fying the condition that 0 ≤ m for every m ∈ M . Then [[RM,≤]] is S-Noetherian

if and only if R is S-Noetherian and M is finitely generated.

Proof. We complete the proof by adapting the proof of [3], Theorem 4.3. Suppose
that [[RM,≤]] is S-Noetherian. Let {mn | n ∈ N} be an infinite sequence in M . We
will show that there exist i < j in N such that mi � mj . Consider the ascending
chain of ideals of [[RM,≤]]: [[RM,≤]]em1

⊆ [[RM,≤]]em1
+ [[RM,≤]]em2

⊆ · · · ⊆
[[RM,≤]]em1

+ · · · + [[RM,≤]]emi
⊆ . . . . Denote that I =

∑∞
i=1([[R

M,≤]]em1
+

· · ·+ [[RM,≤]]emi
). Then I is an ideal of [[RM,≤]]. Since [[RM,≤]] is S-Noetherian,

there exist s ∈ S and a finitely generated ideal J of [[RM,≤]] such that csI ⊆
J ⊆ I. Clearly there exists an integer k such that J ⊆ [[RM,≤]]em1

+ · · · +
[[RM,≤]]emk

. Thus csemk+1
= f1em1

+f2em2
+ · · ·+fkemk

for some f1, f2, . . . , fk ∈

[[RM,≤]]. Hence mk+1 ∈ ∪k
i=1 supp (fiemi

) ⊆ ∪k
i=1

(

supp (fi) + mi

)

. This implies
that mk+1 = t + mi for some i < k + 1 and t ∈ M . Thus mi � mk+1. Hence we
have shown that for any infinite sequence {mn | n ∈ N} in M there exist i < j in
N such that mi � mj. Thus, by ([3], Lemma 3.3), M is finitely generated.

Let

W =
{

f ∈ [[RM,≤]] | f(0) = 0
}

.

For any f ∈ W and any g ∈ [[RM,≤]],

(gf)(0) =
∑

(u,v)∈X0(g,f)

g(u) f(v) = g(0) f(0) = 0 ,

which implies that gf ∈ W . Similarly fg ∈ W . Now it is easy to see that W is an
ideal of [[RM,≤]]. Define a mapping α : R −→ [[RM,≤]]/W via

α(r) = cr + W , ∀ r ∈ R .

Clearly α is a homomorphism of rings. For any f ∈ [[RM,≤]], f +W = cf(0)+W =

α
(

f(0)
)

, which implies that α is an epimorphism. Clearly α is a monomorphism.

Thus there is an isomorphism of rings R ∼= [[RM,≤]]/W . Now it follows from
Lemma 2.2 that R is S-Noetherian.



58 LIU ZHONGKUI

Now suppose that R is S-Noetherian and M is finitely generated. If |M | = 1,
then [[RM,≤]] ∼= R. Thus the result is clear. Now suppose that M is nontrivial.
From Lemma 2.1 there exists a strict monoid surjection σ :

(

(N ∪ {0})n,�
)

−→
(M,�) for some n ∈ N. Since 0 ≤ m for each m ∈ M , we have a � b =⇒ a ≤ b for
all a, b ∈ M . In other words, the identity map from (M,�) to (M,≤) is a strict
monoid surjection. Composing these two maps gives a strict monoid surjection
θ :

(

(N ∪ {0})n,�
)

−→ (M,≤), and so [[RM,≤]] is a homomorphic image of the

ring [[R(N∪{0})n,�]]. From [2], Proposition 10, it follows that [[R(N∪{0})n,�]] is
S-Noetherian. Thus, by Lemma 2.2, [[RM,≤]] is S-Noetherian.

Remark 2.4. Note that the direct implication in Theorem 2.3 holds without
further assumptions on S. But the following example (see [2]) shows that the
assumptions on S is needed for the converse. Let (V, M) be a rank-one nondiscrete
valuation domain. Then V is S-Noetherian where S = V − {0}, but V [[x]] is not
S-Noetherian by [2]. In fact, V [[x]]S is not Noetherian by part (3) of [4], Theorem
3.13.

Any submonoid of the additive monoid N ∪ {0} is called a numerical monoid.
It is well-known that any numerical monoid is finitely generated (see 1.3 of [6]).
Thus we have the following result.

Corollary 2.5. Let R be a ring and S ⊆ R an anti-Archimedean multiplicative

set of R consisting of nonzerodivisors. Let M be a numerical monoid and ≤ the

usual natural order of N ∪ {0}. Then [[RM,≤]] is S-Noetherian if and only if R is

S-Noetherian.

Let p1, . . . , pn be prime numbers. Set

N(p1, . . . , pn) =
{

pm1

1 pm2

2 . . . pmn

n | m1, m2, . . . , mn ∈ N ∪ {0}
}

.

Then N(p1, . . . , pn) is a submonoid of (N, ·). Let ≤ be the usual natural order.

Corollary 2.6. Let R be a ring and S ⊆ R an anti-Archimedean multiplicative set

of R consisting of nonzerodivisors. Then the ring [[RN(p1,...,pn),≤]] is S-Noetherian

if and only if R is S-Noetherian.

Corollary 2.7. Let (M1,≤1), . . . , (Mn,≤n) be strictly ordered monoids satisfying

the condition that 0 ≤i mi for every mi ∈ Mi. Denote by (lex ≤) the lexico-

graphic order on the monoid M1 × · · · × Mn. Let R be a ring and S ⊆ R an

anti-Archimedean multiplicative set of R consisting of nonzerodivisors. Then the

following statements are equivalent.

(1) The ring [[RM1×···×Mn,(lex≤)]] is S-Noetherian.

(2) R is S-Noetherian and each Mi is finitely generated.

Proof. It is easy to see that (S1×· · ·×Sn, (lex ≤)) is a strictly ordered monoid and
(0, . . . , 0)(lex ≤)(m1, . . . , mn) for each (m1, . . . , mn) ∈ M1 × · · · × Mn. Thus, by
Theorem 2.3, [[RM1×···×Mn,(lex≤)]] is S-Noetherian if and only if R is S-Noetherian
and each Mi is finitely generated.
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3. Laurent series rings

Let X1, . . . , Xn be indeterminates. It was showed in [2], Proposition 10 that if
S ⊆ R is an anti-Archimedean multiplicative set of R consisting of nonzerodivisors
and R is S-Noetherian, then R[[X1, . . . , Xn]] is S-Noetherian. For Laurent series
rings we have a same result.

Theorem 3.1. Let R be a ring and S ⊆ R an anti-Archimedean multiplicative set

of R consisting of nonzerodivisors and X an indeterminate. If R is S-Noetherian,

then so is R[[X, X−1]].

Proof. Let A be an ideal of R[[X, X−1]]. We will show that A is S-finite. For any
0 6= f ∈ R[[X, X−1]], we denote by π(f) the smallest integer k such that f(k) 6= 0.
For every k ∈ Z, set

Ik = {f(k) | f ∈ A, π(f) = k} ,

and I = ∪k∈ZIk. Let J be the ideal of R generated by I. Since R is S-Noetherian,
there exist w ∈ S, f1, . . . , fm ∈ A such that wJ ⊆

∑m

i=1 fi(ki)R, where ki = π(fi),
i = 1, . . . , m.

Consider any 0 6= f ∈ A. Suppose that π(f) = k. Then there exist rik ∈ R
such that wf(k) =

∑m

i=1 fi(ki)rik. Set gk+1 = wf −
∑m

i=1 fiX
k−kirik. Then

π(gk+1) ≥ k+1. Clearly gk+1 ∈ A. Thus there exist ri,k+1 ∈ R, i = 1, . . . , m, such
that wgk+1(k+1) =

∑m

i=1 fi(ki)ri,k+1. Set gk+2 = wgk+1−
∑m

i=1 fiX
k+1−kiri,k+1.

Then π(gk+2) ≥ k+2. Continuing in this manner, for any n > 0, we get ri,k+n ∈ R
and gk+n ∈ A such that gk+n+1 = wgk+n −

∑m

i=1 fiX
k+n−kiri,k+n and π(gk+n) ≥

k + n. Thus

wnf = wn−1gk+1 + wn−1
m

∑

i=1

fiX
k−kirik

= · · · = gk+n +

n
∑

j=1

m
∑

i=1

fiX
k+j−1−kiwn−jri,k+j−1

= gk+n +
m

∑

i=1

fi

(

n
∑

j=1

Xk+j−1−kiwn−jri,k+j−1

)

.

Since S is anti-Archimedean, there exists t ∈ (∩wjR) ∩ S. Thus t = wjrj for
some rj ∈ R. Since w is a nonzerodivisor, we have rnwn−j = rj for j ≤ n. So

tf = rngk+n +
∑m

i=1 fi

(

∑n

j=1 Xk+j−1−kirjri,k+j−1

)

. Now it is easy to see that

tf =

m
∑

i=1

fi

(

∞
∑

j=1

Xk+j−1−kirjri,k+j−1

)

∈
m

∑

i=1

fiR[[X, X−1]] .

Hence tA ⊆
∑m

i=1 fiR[[X, X−1]]. Consequently, R[[X, X−1]] is S-Noetherian.
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