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Dedicated to Jiř́ı Rosický on the occasion of his sixtieth birthday.

Abstract. In this note we determine explicit formulas for the relative com-
mutator of groups with respect to the subvarieties of n-nilpotent groups and
of n-solvable groups. In particular these formulas give a characterization of
the extensions of groups that are central relatively to these subvarieties.

1. Introduction

A new notion of commutator was defined in any variety of Ω-groups A, relative
to any fixed subvariety B of A [1]. This notion gives back the usual commutator of
normal subgroups when A is the variety of groups and B the subvariety of abelian
groups (see Section 2), but also the Peiffer commutator of normal precrossed sub-
modules, when A is the variety of precrossed modules and B the subvariety of
crossed modules.

It is the aim of this paper to investigate this new notion of relative commutator
in the variety of groups with respect to the classical subvarieties of n-nilpotent and
of n-solvable groups. Although the characterization of the relative commutator is
not trivial in these specific examples, it is fortunate that it can be expressed by
a simple formula in terms of the usual commutator of normal subgroups. For
instance, when A = Gp, the variety of groups, and B = Nil2, the subvariety of
nilpotent groups of class at most 2, the relative commutator [M, N ]Nil2 of normal
subgroups M and N of a group A is given by

[M, N ]Nil2 =
[

[M, N ], M · N
]

,

where the commutator in the right hand side is the classical one and M ·N is the
product of normal subgroups. On the other hand, when B = Sol2, the subvariety
of solvable groups of class at most 2, the relative commutator [M, N ]Sol2 equals

[

[M, N ], [M, N ]
]

·
[

[M, M ], [N, N ]
]

·
[

[M, N ], [N, N ]
]

·
[

[M, N ], [M, M ]
]

.
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As shown in [1], the relative commutator describes in particular the central ex-
tensions in the sense of Fröhlich [2] [6], a notion which was later generalized by
Janelidze and Kelly [5]. More precisely, if B is a subvariety of a variety of Ω-groups
A, then an extension

{1} // N // A // B // {1}

in A is central with respect to B if and only if the relative commutator [N, A]B is
the trivial Ω-group {1}. Accordingly, the formulas above imply that an extension
of groups is central with respect to Nil2 if and only if

[

[N, A], A]
]

= {1}, while it

is central with respect to Sol2 if and only if
[

[N, A], [A, A]
]

= {1}. This last result
is also a special case of Proposition 20 in [3].

It would be interesting to know for which varieties of Ω-groups these same
formulas are true.

2. The relative commutator

Let us first recall the definition of the relative commutator, and a few of its
basic properties.
Suppose A is a variety of Ω-groups [4]: this means that the theory has among its
operations and identities those of the variety of groups and for any n-ary operation
ω ∈ Ω, one has the identity ω(1, . . . , 1) = 1, where 1 denotes the unit of the group
operation. The varieties of groups, abelian groups, (non unital) rings, associative
algebras, Lie algebras and precrossed modules are all examples of varieties of Ω-
groups.

When B is a subvariety of the variety A, then B is completely determined by a
set of identities of terms and all these identities are of the form v(x1, . . . , xn) = 1.
These terms v(x1, . . . , xn) constitute an Ω-group

W = WB = {v(x1, . . . , xn) | v(b1, . . . , bn) = 1, ∀B ∈ B, ∀bi ∈ B} ,

an Ω-subgroup of the Ω-group of terms F (N), the free Ω-group of A on a countable
set. An Ω-group B belongs to B if and only if v(b1, . . . , bn) = 1 for all v ∈ W and
bi ∈ B.

Let M and N be normal Ω-subgroups (=kernels) of an Ω-group A ∈ A. The
relative commutator [M, N ]B is defined as the normal Ω-subgroup of M · N (the
smallest normal Ω-subgroup of A containing M and N) generated by all elements

v(m1n1, . . . , mnnn)v(n1, . . . , nn)−1v(m1, . . . , mn)−1

and

v(p1, . . . , pn) ,

where the mi are in M , the ni in N , the pi in M ∩N , and v(x1, . . . , xn) is in WB.
Let us mention the following properties of the relative commutator:

Proposition 2.1 ([1]). For any Ω-group A ∈ A and normal Ω-subgroups M, N, N ′

of A, one has:

(1) [A, A]B = {1} ⇔ A ∈ B;

(2) [M, N ]B = [N, M ]B;
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(3) [M, N ]B ⊂ M ∩ N ;

(4) universal property:
[ M

[M, N ]B
,

N

[M, N ]B

]

B
= {1};

moreover, [M, N ]B is the smallest normal Ω-subgroup I of M ·N such that

[M
I

, N
I

]B = {1}.

From now on, A will always be Gp, the variety of groups. Thanks to the
universal property above, it is now easy to show that the relative commutator
with respect to the subvariety Ab of abelian groups coincides with the classical
commutator of groups: it suffices to prove that

[M, N ] = {1} ⇔ [M, N ]Ab = {1} ,

for any group A and normal subgroups M and N of A. Indeed, when the equiva-
lence between these two conditions holds, we have, for all A, M and N , that

[ M

[M, N ]
,

N

[M, N ]

]

Ab

= {1}

hence, by the universal property of the relative commutator,

[M, N ]Ab ⊂ [M, N ] .

Similarly, thanks to the universal property of the classical commutator of groups,
we get that

[M, N ] ⊂ [M, N ]Ab ,

hence [M, N ]Ab = [M, N ].
So let us first assume that [M, N ] = {1}. Since, obviously,

[M ∩ N, M ∩ N ] = {1} ,

we only have to prove that

v(m1n1, . . . , mnnn) = v(m1, . . . , mn)v(n1, . . . , nn)

for all v ∈ WAb, mi ∈ M and ni ∈ N . It suffices to show this for v = v0(x1, x2) =
[x1, x2] = x1x2x

−1
1 x−1

2 . Indeed, every v ∈ WAb is a product w1(x
1
1, x

1
2) . . . wn(xn

1 , xn
2 ),

with the wi either v0 or v−1
0 . Furthermore, by the assumption,

v0(m1, m2)v0(n1, n2) = v0(n1, n2)v0(m1, m2)

for all mi ∈ M and ni ∈ N .
Clearly, under the assumption [M, N ] = {1},

[m1n1, m2n2] = m1n1m2n2n
−1
1 m−1

1 n−1
2 m−1

2

= [m1, m2][n1, n2] .

Conversely, whenever [M, N ]Ab = {1}, the identity

[m1n1, m2n2] = [m1, m2][n1, n2]

holds for all mi ∈ M and ni ∈ N . In particular, by choosing n1 = m2 = 1, we see
that the word [m1, n2] = 1 for all m1 in M and n2 in N, thus [M, N ] = {1}.
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3. The case of n-nilpotent groups

Recall that a group A is n-nilpotent (=nilpotent of class at most n) if and only
if Zn(A) = {1}, where Zn(A) is the n-th term in the descending central series of
A defined by

Z1(A) = [A, A] ,

Z2(A) =
[

[A, A], A
]

,

...

Zn(A) = [Zn−1(A), A] .

We write Niln for the variety of n-nilpotent groups (for some positive integer n),
which we consider as a subvariety of the variety Gp of groups. We are first going
to characterize the commutator relative to the subvariety of 2-nilpotent groups.
For this, the following remark will be useful:

Lemma 3.1. For normal subgroups M and N of a group A, we have the following

inclusion:
[

[M, M ], N
]

⊆
[

[M, N ], M
]

Proof. By the universal property of the commutator of normal subgroups, it
suffices to show that

[

[M, N ], M
]

= {1} implies
[

[M, M ], N
]

= {1}, for every
group A and normal subgroups M and N of A. Indeed, the right hand side in the
identity

[ [M, M ]

[[M, N ], M ]
,

N

[[M, N ], M ]

]

=
[[ M

[[M, N ], M ]
,

M

[[M, N ], M ]

]

,
N

[[M, N ], M ]

]

equals {1} under this assumption.
Now, suppose that

[

[M, N ], M
]

= {1}. We have, for any m1, m2 ∈ M and
n ∈ N :

m1m2m
−1
1 m−1

2 nm2m1m
−1
2 m−1

1 n−1

= m1m2(m
−1
1 )(m−1

2 nm2n
−1)nm1m

−1
2 m−1

1 n−1

= m1m2(m
−1
2 nm2n

−1)(m−1
1 )nm1m

−1
2 m−1

1 n−1

= m1nm2n
−1m−1

1 nm1m
−1
2 m−1

1 n−1

= m1(nm2n
−1)(m−1

1 nm1n
−1)nm−1

2 m−1
1 n−1

= m1(m
−1
1 nm1n

−1)(nm2n
−1)nm−1

2 m−1
1 n−1

= 1 .

�

The following simple Lemma will prove extremely useful. Roughly speaking, it
says that the commutator commutes with the group multiplication, up to conju-
gation of one of the terms and up to the order of the terms (which may have to
be reversed).
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Lemma 3.2. For the ordinary group commutator, the following Witt-Hall identi-

ties hold (xyx−1 is denoted by xy):

[a, b1b2] = [a, b1]
b1 [a, b2](A)

= [a, b2] [b2a, b1](B)

[a1a2, b] = a1 [a2, b] [a1, b](C)

= [a1,
a2b] [a2, b](D)

We are now ready to characterize the relative commutator with respect to the
subvariety of 2-nilpotent groups.

Theorem 3.3. If A = Gp is the variety of groups and Nil2 its subvariety of 2-
nilpotent groups, then, for any group A and normal subgroups M and N of A, one

has

[M, N ]Nil2 = [[M, N ], M · N ]

Proof. Recall that
[

[M, N ], M · N
]

is the smallest normal subgroup I of M · N
such that

[[M

I
,
N

I

]

,
M · N

I

]

= {1} .

Thanks to this observation, together with the universal property of the relative
commutator [·, ·]Nil2 , it suffices to prove, for any group A and any normal subgroups
M and N of A, that

[

[M, N ], M · N
]

= {1} ⇔ [M, N ]Nil2 = {1} .

Suppose first that [M, N ]Nil2 = {1}. Then, in particular,
[

[m1n1, m2n2], m3n3

]

=
[

[m1, m2], m3

] [

[n1, n2], n3

]

for all mi ∈ M and ni ∈ N . In particular (choose n1 = m2 = n3 = 1),
[

[m1, n2], m3

]

= 1

for all m1, m3 ∈ M and n2 ∈ N , hence
[

[M, N ], M
]

= {1}. Similarly, one has
[

[M, N ], N
]

= {1}.

Conversely, suppose
[

[M, N ], M ·N
]

= {1}. Note that in this case also
[

[M, M ], N
]

=

{1} =
[

[N, N ], M
]

, by Lemma 3.1.
Clearly, we have

[

[M ∩ N, M ∩ N ], M ∩ N
]

= {1} .

It remains to be shown that

v(m1n1, . . . , mnnn) = v(m1, . . . , mn)v(n1, . . . , nn)

for all v ∈ WNil2 , mi ∈ M and ni ∈ N .
It suffices to show this for v = v0(x1, x2, x3) =

[

[x1, x2], x3

]

. Indeed, every

v ∈ WNil2 is a product w1(x
1
1, x

1
2, x

1
3) . . . wn(xn

1 , xn
2 , xn

3 ), with the wi either v0 or
v−1
0 . Furthermore, by the assumptions and Lemma 3.1,

v0(m1, m2, m3)v0(n1, n2, n3) = v0(n1, n2, n3)v0(m1, m2, m3)
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for all mi ∈ M and ni ∈ N . Let us therefore prove that
[

[m1n1, m2n2], m3n3

]

=
[

[m1, m2], m3

] [

[n1, n2], n3

]

for all mi ∈ M and ni ∈ N . From the commutator identity (A), it follows that
[

[m1n1, m2n2], m3n3

]

=
[

[m1n1, m2n2], m3

]

m3
[

[m1n1, m2n2], n3

]

Now, consider the following identities (that follow from (A) and (C)):
[

[m1n1, m2n2], m3

]

=
[

[m1n1, m2]
m2 [m1n1, n2], m3

]

= [m1n1,m2]
[

m2 [m1n1, n2], m3

] [

[m1n1, m2], m3

]

.

Then, by using the conditions [[M, N ], M ] = {1} and [[N, N ], M ] = {1}, it suffices
to apply (C) or (D) to see that [ m2 [m1n1, n2], m3] = {1}. On the other hand, the
term [[m1n1, m2], m3] can be developed as follows (by (C) and (D)):

[

[m1n1, m2], m3

]

=
[

m1 [n1, m2] [m1, m2], m3

]

=
[

m1 [n1, m2],
[m1,m2]m3

] [

[m1, m2], m3

]

.

By the condition
[

[N, M ], M ]
]

= {1}, one has that

[m1 [n1, m2],
[m1,m2]m3] = {1} ,

and we can conclude that
[

[m1n1, m2n2], m3

]

=
[

[m1, m2], m3

]

.

Similarly one shows that
[

[m1n1, m2n2], n3

]

=
[

[n1, n2], n3

]

.

Finally, since
[

[N, N ], M
]

= {1}, it follows that

m3
[

[n1, n2], n3

]

=
[

[n1, n2], n3

]

,

as desired. �

Let A = Gp be the variety of groups and let Niln be the subvariety of n-nilpotent
groups (for some positive integer n). For any group A and normal subgroups M

and N of A we write

Z1(M, N) = [M, N ] ,

Z2(M, N) =
[

[M, N ], M · N
]

,

...

Zn(M, N) = [Zn−1(M, N), M · N ] .

As recalled in Section 2, [M, N ] = Z1(M, N) = [M, N ]Nil1=Ab, while the previous
Theorem says that Z2(M, N) = [M, N ]Nil2 . By using similar arguments to the
ones above, one proves that the following more general result holds:
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Proposition 3.4. If A = Gp, the variety of groups and Niln is the subvariety of

n-nilpotent groups, then,

[M, N ]Niln = Zn(M, N) =
[

. . . [[[M, N ], M · N ], M · N ], . . . , M · N
]

where the right hand side expression involves n group commutators.

From this, an explicit description of central extensions of groups relative to the
subvariety Niln can be deduced (see Section 2.2 in [1]):

Corollary 3.5. Let Niln be the subvariety of Gp consisting of all n-nilpotent groups

(for some positive integer n). An extension of groups

{1} // N // A // B // {1}

is central with respect to the subvariety Niln if and only if

[N, A]Niln =
[

. . . [[[N, A], A], A], . . . , A
]

= {1} ,

where the right hand side expression involves n group commutators.

4. The case of n-solvable groups

Recall that a group A is n-solvable (= solvable of class at most n) if and only if
Dn(A) = {1}, where Dn(A) is the n-th term in the derived series of A defined by

D1(A) = [A, A] ,

D2(A) =
[

[A, A], [A, A]
]

,

...

Dn(A) = [Dn−1(A), Dn−1(A)] .

Theorem 4.1. Let Gp be the variety of groups and Sol2 its subvariety of 2-solvable
groups. Then, for any group A and normal subgroups M and N of A one has that

[M, N ]Sol2 equals
[

[M, N ], [M, N ]
]

·
[

[M, M ], [N, N ]
]

·
[

[M, N ], [N, N ]
]

·
[

[M, N ], [M, M ]
]

.

Proof. The structure of the proof is similar to the one of Theorem 3.3. Again, it
suffices to prove that [M, N ]Sol2 = {1} if and only if the following conditions are
satisfied:

(1)
[

[M, N ], [M, N ]
]

= {1},

(2)
[

[M, M ], [N, N ]
]

= {1},

(3)
[

[M, N ], [N, N ]
]

= {1},

(4)
[

[M, N ], [M, M ]
]

= {1}.

Suppose [M, N ]Sol2 = {1}. Then, in particular,
[

[m1n1, m2n2], [m3n3, m4n4]
]

=
[

[m1, m2], [m3, m4]
]

·
[

[n1, n2], [n3, n4]
]

for all mi ∈ M and ni ∈ N . By choosing n1 = m2 = n3 = m4 = 1 one obtains
that

[

[m1, n2], [m3, n4]
]

= 1
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for all m1, m3 ∈ M and n2, n4 ∈ N , hence
[

[M, N ], [M, N ]
]

= {1}. The other
three conditions are proved similarly.

Conversely, let us assume that the four above mentioned identities hold. This
immediately implies that

[

[M ∩ N, M ∩ N ], [M ∩ N, M ∩ N ]
]

= {1} .

We have now to prove that

v(m1n1, . . . , mnnn) = v(m1, . . . , mn)v(n1, . . . , nn)

for all v ∈ WSol2 , mi ∈ M and ni ∈ N . Similar to the case of Nil2, it suffices to
show this for v = v0(x1, x2, x3, x4) = [[x1, x2], [x3, x4]]. Hence, we are to prove
that

[

[m1n1, m2n2], [m3n3, m4n4]
]

=
[

[m1, m2], [m3, m4]
]

·
[

[n1, n2], [n3, n4]
]

for all mi ∈ M and ni ∈ N . By applying identity (A) twice to the left hand side
of this expression, one obtains

[

[m1n1, m2n2], [m3n3, m4]
]

[m3n3,m4]
[

[m1n1, m2n2],
m4 [m3n3, n4]

]

.

By using the identities (A), (B), (C), (D) as in the proof of Theorem 3.3, from the
conditions 1, 2, 3, 4 it follows that

[

[m1n1, m2n2], [m3n3, m4]
]

=
[

[m1, m2], [m3, m4]
]

.

On the other hand,

[

[m1n1, m2n2],
m4 [m3n3, n4]

]

=
[

[m1n1, m2n2], [m4mm4
3 n3,

m4n4]
]

,

hence, with similar calculations to the ones above, we obtain the identity

[

[m1n1, m2n2],
m4 [m3n3, n4]

]

=
[

[n1, n2],
m4 [n3, n4]

]

.

Since [m3n3, m4] = m3 [n3, m4][m3, m4], this element commutes with the element
[

[n1, n2],
m4 [n3, n4]

]

(by conditions [[M, M ], [N, N ]
]

= {1} and
[

[N, M ], [N, N ]
]

=
{1}), so that

[m3n3,m4]
[

[m1n1, m2n2],
m4 [m3n3, n4]

]

=
[

[n1, n2],
m4 [n3, n4]

]

.

Finally,

[

[n1, n2],
m4 [n3, n4]

]

=
[

[n1, n2],
[

m4, [n3, n4]
]

[n3, n4]
]

=
[

[n1, n2], [n3, n4]
]

.

�

In order to state the next Proposition it is useful to introduce the following
notation.
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Given normal subgroups X1, X2, X3, . . . of a group A, one defines inductively

D1(X1, X2) = [X1, X2] ,

D2(X1, X2, X3, X4) =
[

[X1, X2], [X3, X4]
]

,

...

Dn(X1, . . . , X2n) =
[

Dn−1(X1, . . . , X2n−1), Dn−1(X2n−1+1, . . . , X2n)
]

.

Similarly to the above Theorem and Proposition 3.4, one can prove the follow-
ing:

Proposition 4.2. Let Gp be the variety of groups and Soln its subvariety of n-

solvable groups (for some positive integer n). Then, for any group A and normal

subgroups M and N of A:

[M, N ]Soln =
∏

(Xi)i∈[2n]∈{M,N}2n\({M}2n∪{N}2n )

Dn(X1, . . . , X2n)

where
∏

denotes the product of normal subgroups.

In particular, the previous Proposition gives a description of central extensions:

Corollary 4.3. Let Soln be the subvariety of Gp consisting of n-solvable groups

(for some positive integer n). An extension of groups

{1} // N // A // B // {1}

is central with respect to the subvariety Soln if and only if

[N, A]Soln = Dn(N, A, . . . , A) = {1} .
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[2] Fröhlich, A., Baer-invariants of algebras, Trans. Amer. Math. Soc. 109 (1963), 221–244.

[3] Furtado-Coelho, J., Homology and generalized Baer invariants, J. Algebra 40 (1976), 596–
609.

[4] Higgins, P. J., Groups with multiple operators, Proc. London Math. Soc. (1956), 366–416.

[5] Janelidze, G. and Kelly, G. M., Galois theory and a general notion of central extension, J.
Pure Appl. Algebra 97 (1994), 135–161.

[6] Lue, A. S.-T., Baer-invariants and extensions relative to a variety, Proc. Camb. Phil. Soc.
63 (1967), 569–578.

Lab. Math. Pures et Appliquées
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