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GEOMETRIC STRUCTURES ON THE TANGENT BUNDLE

OF THE EINSTEIN SPACETIME

JOSEF JANYŠKA

Abstract. We describe conditions under which a spacetime connection and
a scaled Lorentzian metric define natural symplectic and Poisson structures
on the tangent bundle of the Einstein spacetime.

Introduction

Geometrical structures induced on the tangent bundle of the Einstein spacetime
play a fundamental role in the covariant classical and quantum mechanics. The
covariant classical and quantum mechanics over the Einstein spacetime proposed
in [3, 4] is natural in the sense of [7, 8, 10] and independent of the base of scales,
so the “spaces of scales” are systematically used. Roughly speaking, a space of
scales has the algebraic structure of IR+ but has no distinguished ‘basis’. The basic
objects of the theory (metric, 2-forms, 2-vectors, etc.) are valued into scaled vector
bundles, that is into vector bundles multiplied tensorially with spaces of scales.
In this way, each tensor field carries explicit information on its “scale dimension”.
Actually, in this paper, we assume the space of lengths L. Moreover, L

p denotes
⊗p

L.
In [1, 5] the classification of symplectic and Poisson structures on the tangent

bundle of a pseudo-Riemannian manifold was given for a non-scaled metric g and
a torsion free linear connection K. In this case the metric g and the connection
K admit a family of symplectic 2-forms Υ[g, K] or Poisson 2-vectors Λ[g, K] on
the tangent bundle parametrized by a function µ(g(u, u)) satisfying certain con-
ditions. Moreover, g and K are related by the condition that ∇g is a symmetric
(0,3)-tensor field. For a scaled metric g and a general spacetime connections the
constructions of the 2-form Υ[g, K] and the 2-vector Λ[g, K] are the same but
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from the independence on the base of scales it follows that Υ[g, K] and Λ[g, K]
are unique, up to a multiplicative real constant. In this paper we generalize the
results of [1, 5] for a scaled metric and a general spacetime connection. Namely,
we shall describe the condition under which the 2-form Υ[g, K] and the 2-vector
Λ[g, K] give symplectic and Poisson structures, respectively.

If E is a manifold, then the tangent bundle will be denoted by τ [E] : TE → E

and local coordinates (xλ) on E induce the fibered local coordinates (xλ, ẋλ) on
TE. By map(E, E′) we denote the sheaf of smooth maps.

1. Geometry of the spacetime

We recall basic properties of the Einstein spacetime and its tangent bundle.

1.1. Spacetime. We assume spacetime to be an oriented and time oriented 4–
dimensional manifold E equipped with a scaled Lorentzian metric g : E → L

2 ⊗

(T ∗
E ⊗ T ∗

E) with signature (− + ++) . The dual metric will be denoted by
ḡ : E → L

∗2 ⊗ (TE ⊗ TE). Let us note that the dimension is not relevant. Our
results are valid for any dimension n ≥ 3 and a pseudo-Riemannian metric of the
signature (1, n − 1).

A spacetime chart is defined to be an ordered chart (x0, xi) ∈ map(E, IR× IR3)
of E , which fits the orientation of spacetime and such that the vector ∂0 is timelike
and time oriented and the vectors ∂1, ∂2, ∂3 are spacelike. In the following we
shall always refer to spacetime charts. Latin indices i, j, . . . will span spacelike
coordinates, while Greek indices λ, µ, . . . will span spacetime coordinates.

We have the coordinate expressions

g = gλµ dλ ⊗ dµ , with gλµ ∈ map(E, L
2 ⊗ IR)

ḡ = gλµ ∂λ ⊗ ∂µ , with gλµ ∈ map(E, L
∗2 ⊗ IR) .

1.2. Spacetime connections. We define a (general) spacetime connection to be
a connection K of the bundle τ [E] : TE → E . We recall that a connection K

of the bundle TE → E can be expressed, equivalently, by a tangent valued form
K : TE → T ∗

E ⊗TTE , which is projectable over 1 : E → T ∗
E ⊗TE , or by the

vertical valued form ν[K] : TE → T ∗TE ⊗ V TE . Their coordinate expressions
are of the type

K = dλ ⊗ (∂λ + Kλ
ν ∂̇ν) , ν[K] = (ḋν − Kλ

ν dλ) ⊗ ∂̇ν ,(1.1)

where Kλ
ν ∈ map(TE, IR) and (∂λ, ∂̇λ) or (dλ, ḋλ) are the induced bases of local

sections of TTE → TE or T ∗TE → TE, respectively.

The connection K is said to be linear if it is a linear fibred morphism over
1 : E → T ∗

E ⊗ TE . Moreover, the connection K is linear if and only if its
coordinate expression is of the type

Kλ
ν = Kλ

ν
µ ẋµ , with Kλ

ν
µ ∈ map(E, IR) .

The torsion of the connection K is defined to be the vertical valued 2–form

τ [K] =: −[ϑ, K] : TE → Λ2T ∗
E ⊗ V TE ,
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where [ , ] is the Frölicher-Nijenhuis bracket and ϑ : TE → T ∗
E ⊗ V TE is the

natural vertical valued 1–form with the coordinate expression ϑ = dλ ⊗ ∂̇λ . We
have the coordinate expression

τ [K] = ∂̇µKλ
ν dλ ∧ dµ ⊗ ∂̇ν .(1.2)

In the linear case, the torsion can be identified with a section τ [K] : E →

Λ2T ∗
E ⊗ TE and its coordinate expression turns out to be the usual formula

τ [K] = Kλ
ν

µ dλ ∧ dµ ⊗ ∂ν . Thus, the connection K is linear and torsion free if
and only if its coordinate expression is of the type

Kλ
ν = Kλ

ν
µ ẋµ , with Kλ

ν
µ = Kµ

ν
λ ∈ map(E, IR) .

We shall denote by K[g] the canonical torsion free linear spacetime metric
connection given by ∇g = 0. We have

K[g]µ
λ

ν = −
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) .(1.3)

The curvature of the connection K is defined to be the vertical valued 2–form

R[K] =: −[K, K] : TE → Λ2T ∗
E ⊗ V TE ,(1.4)

where [ , ] is the Frölicher-Nijenhuis bracket. We have the coordinate expression

R[K] = R[K]λµ
ν dλ ∧ dµ ⊗ ∂̇ν(1.5)

= −2 (∂λKµ
ν + Kλ

ρ ∂̇ρKµ
ν) dλ ∧ dµ ⊗ ∂̇ν .

In the linear case, the coordinate expression turns out to be the usual formula

R[K] = R[K]λµ
ν

σ ẋσdλ
∧ dµ

⊗ ∂̇ν(1.6)

= −2 (∂λKµ
ν

σ + Kλ
ρ

σ Kµ
ν

ρ) ẋσdλ ∧ dµ ⊗ ∂̇ν .

Hence, in the linear case, the curvature can be identified with a section

R[K] : E → Λ2T ∗
E ⊗ TE ⊗ T ∗

E ,

with the usual coordinate expression

R[K] = R[K]λµ
ν

σ dλ ∧ dµ ⊗ ∂ν ⊗ dσ(1.7)

= −2 (∂λKµ
ν

σ + Kλ
ρ
σ Kµ

ν
ρ) dλ

∧ dµ
⊗ ∂ν ⊗ dσ .

1.3. The Lie derivative and the exterior covariant differential with re-

spect to a spacetime connection. A (general) spacetime connection K con-
sidered as a tangent valued 1-form on TE admits as usual, [8], the Lie derivative
of forms on TE. Namely,

L[K] φ =
(

i(K) d − d i(K)
)

φ : TE → Λr+1T ∗TE

for any r-form φ : TE → ΛrT ∗TE. Similarly we can define the Lie derivative

L
[

R[K]
]

φ =
(

i(R[K]) d + d i(R[K])
)

φ : TE → Λr+2T ∗TE .

On the other hand a linear spacetime connection K admits covariant exterior
differential, [8], of vector-valued forms on E. We apply this operation on T ∗

E-
valued forms on E and compare it with the Lie derivative.
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Let φ be an T ∗
E-valued r-form on E, or equivalently φ : E → ΛrT ∗

E⊗E T ∗
E

be a section. The covariant exterior differential of φ with respect to K is then
defined to be the T ∗

E-valued (r + 1)-form dKφ on E given by

dKφ(X1, · · · , Xr+1)(Y ) =

r+1
∑

i=1

(−1)i+1∇Xi
(φ(X1, · · · , X̂i, · · · , Xr+1))(Y )(1.8)

+
∑

i<j

(−1)i+jφ([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xr+1)(Y ),

for any vector fields Y, X1, · · · , Xr+1 on E, the vector fields X̂i being omitted.

Any T ∗
E-valued r-form on E can be considered to be a linear horizontal r-form

on TE. Then we have

Lemma 1.1. Let φ be a linear horizontal r-form on TE and K be a spacetime
connection. Then the Lie derivative L[K] φ is a linear horizontal (r + 1)-form on
TE if and only if K is linear. Moreover, (r + 1)L[K] φ and dKφ coincides.

Proof. Let φ = φρλ1...λr
ẋρ dλ1 ∧ . . . ∧ dλr , φρλ1...λr

∈ map(E, IR), be a linear
horizontal r-form on TE. Then we have

L[K] φ = (∂µφρλ1...λr
ẋρ + φσλ1...λr

Kµ
σ) dµ ∧ dλ1 ∧ . . . ∧ dλr ,

i.e., in the linear spacetime connection case,

L[K] φ = (∂µφρλ1...λr
+ φσλ1...λr

Kµ
σ

ρ) ẋρ dµ
∧ dλ1 ∧ . . . ∧ dλr ,

which implies that L[K] φ is a linear horizontal (r + 1)-form.
On the other hand φ can be considered to be a T ∗

E-valued r-form on E with
coordinate expression φ = φρλ1...λr

dρ ⊗ (dλ1 ∧ . . . ∧ dλr ). Then

dKφ = (r + 1) (∂µφρλ1...λr
+ φσλ1...λr

Kµ
σ

ρ) dρ
⊗ (dµ

∧ dλ1 ∧ . . . ∧ dλr ) . �

Remark 1.2. Now we shall apply L[K] and dK on specific situation of the scaled
metric g. The metric g can be considered to be a L

2 ⊗ T ∗
E-valued 1-form on E.

Then the covariant exterior differential dKg is a L
2 ⊗ T ∗

E-valued 2-form defined
for any vector fields X, Y, Z by

(dKg)(X, Y )(Z) =
(

∇X(Y ♭) −∇Y (X♭) − ([X, Y ]♭)
)

(Z) ,

where ♭ denotes the musical mapping g♭ : TE → L
2⊗T ∗

E. We have the coordinate
expression

dKg = 2 (∂λgρµ + gσµ Kλ
σ

ρ) dρ ⊗ (dλ ∧ dµ) .(1.9)

On the other hand the musical mapping g♭ can be considered as a linear hori-
zontal 1-form on TE with the coordinate expression g♭ = gλµ ẋλ dµ . Then we have
the coordinate expression

L[K] g♭ = (∂λgρµ ẋρ + gρµ Kλ
ρ) dλ ∧ dµ(1.10)

and, if K is linear,

L[K] g♭ = (∂λgρµ + gσµ Kλ
σ

ρ) ẋρ dλ ∧ dµ ,(1.11)



GEOMETRIC STRUCTURES 199

i.e., in the linear case, L[K] g♭ is a linear horizontal 2-form on TE which can be
considered to be a L

2 ⊗ T ∗
E valued 2-form on E which coincides with 1

2
dK g. �

1.4. Spacetime 2–forms and 2–vectors. The map Tτ [E] : TTE → TE , can
be regarded as a vector valued 1-form υ : TE → T ∗TE ⊗

TE

TE , with coordinate

expression υ = dλ ⊗ ∂λ .

We define the spacetime 2–form of TE associated with g and a spacetime con-
nection K to be the scaled 2–form

Υ[g, K] =: g y
(

ν[K] ∧ υ
)

: TE → L
2 ⊗ Λ2T ∗TE .

We have the coordinate expression

Υ[g, K] = gλµ (ḋλ − Kν
λ dν) ∧ dµ(1.12)

and, if K is linear,

Υ[g, K] = gλµ (ḋλ − Kν
λ

ρ ẋρ dν) ∧ dµ(1.13)

We define the spacetime 2–vector of TE associated with g and a spacetime
connection K to be the scaled 2–vector

Λ[g, K] =: ḡ y
(

K ∧ ϑ
)

: TE → L
∗2

⊗ Λ2TTE .

We have the coordinate expression

Λ[g, K] = gλµ (∂λ + Kλ
ν ∂̇ν) ∧ ∂̇µ(1.14)

and, if K is linear,

Λ[g, K] = gλµ (∂λ + Kλ
ν

ρ ẋρ ∂̇ν) ∧ ∂̇µ .(1.15)

Lemma 1.3. We have

i(Λ[g, K])Υ[g, K] = −4 .

Proof. We have

i(Λ[g, K])Υ[g, K] = −gλµ gλµ = −4 . �

2. Induced structures on the tangent bundle of the spacetime

We study symplectic and Poisson structures induced on the tangent bundle of
the spacetime by the metric g and a spacetime connection K.

2.1. General spacetime connection case. Let us assume a spacetime connec-
tion K given by (1.1) , the spacetime 2–form Υ[g, K] given by (1.12) and the
spacetime 2–vector Λ[g, K] given by (1.14).

Lemma 2.1. Υ[g, K] is closed if and only if the following two conditions are
satisfied

∂νgλµ + gρµ ∂̇λKν
ρ − ∂µgλν − gρν ∂̇λKµ

ρ = 0(2.1)

R[K]λµν + R[K]µνλ + R[K]νλµ = 0 ,(2.2)

where we have set R[K]λµν = gρν R[K]λµ
ρ.
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Proof. It follows immediately from the coordinate expression

dΥ[g, K] = −(∂λgρν Kµ
ρ + gρν ∂λKµ

ρ) dλ ∧ dµ ∧ dν

− (∂µgλν + gρν ∂̇λKµ
ρ) ḋλ ∧ dµ ∧ dν

=
1

2
R[K]λµν dλ ∧ dµ ∧ dν

− (∂µgρν + gσν ∂̇ρKµ
σ) (ḋρ

− Kλ
ρ dλ) ∧ dµ

∧ dν . �

Now we shall describe the geometrical interpretation of the equations (2.1) and

(2.2). Let us consider the Liouville vector field I = ẋλ ∂̇λ .

Lemma 2.2. The conditions (2.1) or (2.2) are equivalent with

L[I] L[K] g♭ = 0(2.3)

or

L[K] L[K] g♭ = 0 ,(2.4)

respectively.

Proof. We have

L[I] L[K] g♭ =
(

i(I) d + d i(I)
) (

(∂λgρµ ẋρ + gρµ Kλ
ρ) dλ ∧ dµ

)

= ẋρ (∂λgρµ + gσµ ∂̇ρKλ
σ) dλ ∧ dµ .

It is easy to see that L[I] L[K] g♭ = 0 if and only if the condition (2.1) is satisfied.
Further from (1.5) we have

L
[

R[K]
]

g♭ = gρν R[K]λµ
ρ dλ ∧ dµ ∧ dν

i.e., the condition (2.2) is equivalent with L
[

R[K]
]

g♭ = 0. But, from (1.4),

L
[

R[K]
]

g♭ = −L
[

[K, K]
]

g♭ = −2 L[K] L[K] g♭.

Hence (2.2) is equivalent with L[K] L[K] g♭ = 0. �

Lemma 2.3. The Schouten bracket
[

Λ[g, K], Λ[g, K]
]

: TE → L
∗4 ⊗ Λ3TTE

has the coordinate expression
[

Λ[g, K], Λ[g, K]
]

= 2 gρν (∂ρg
λµ

− gσλ ∂̇σKρ
µ) (∂λ + Kλ

κ ∂̇κ) ∧ ∂̇µ ∧ ∂̇ν

+ R[K]κµν ∂̇κ ∧ ∂̇µ ∧ ∂̇ν ,

where we have set R[K]λµν = gλρ gµσ R[K]ρσ
ν .

Proof. We have

i(
[

Λ[g, K], Λ[g, K]
]

)β = 2 i(Λ[g, K]) di(Λ[g, K])β

for any closed 3-form β.
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Then
[

Λ[g, K],Λ[g, K]
]

= 2 gρν (∂ρg
λµ

− gσλ ∂̇σKρ
µ) ∂λ ∧ ∂̇µ ∧ ∂̇ν

+

(

gων gρµ Rρω
κ + 2 gσν Kρ

κ (∂σgρµ − gρω ∂̇ωKσ
µ)

)

∂̇κ ∧ ∂̇µ ∧ ∂̇ν

= 2 gρν (∂ρg
λµ − gσλ ∂̇σKρ

µ) (∂λ + Kλ
κ ∂̇κ) ∧ ∂̇µ ∧ ∂̇ν

+ R[K]κµν ∂̇κ ∧ ∂̇µ ∧ ∂̇ν . �

Lemma 2.4.
[

Λ[g, K], Λ[g, K]
]

= 0 if and only if the conditions (2.1) and (2.2)
are satisfied, i.e., if and only if the conditions (2.3) and (2.4) are satisfied.

Proof. From Proposition 2.3 it follows that
[

Λ[g, K], Λ[g, K]
]

= 0 if and only if

gρν (∂ρg
λµ − gσλ ∂̇σKρ

µ) − gρµ (∂ρg
λν + gσλ ∂̇σKρ

ν) = 0(2.5)

R[K]κµν + R[K]µνκ + R[K]νκµ = 0 .(2.6)

But by lowering the indices in (2.5) we get from ∂ρg
λµ = −gλτ gµω ∂ρgτω just (2.1)

and by lowering indices in (2.6) we get just (2.2) . �

Theorem 2.5. The metric g and a general spacetime connection K induce on
TE natural symplectic and natural Poisson structures if and only if the conditions
(2.3) and (2.4) are satisfied.

Proof. The regularity of g implies that Υ[g, K] and Λ[g, K] are non degenerate.
Lemmas 2.1, 2.2 and 2.4 then imply that Υ[g, K] and Λ[g, K] define symplectic
and Poisson structures, respectively, if and only if (2.3) and (2.4) are satisfied. �

2.2. Linear spacetime connection case. We assume a linear spacetime con-
nection K.

Lemma 2.6. Let K be a linear spacetime connection. Υ[g, K] is closed if and
only if L[K] g♭ = 0.

Proof. By Lemmas 2.1 and 2.2 Υ[g, K] is closed if and only if (2.3) and (2.4) are
satisfied. But for a linear spacetime connection K the horizontal 2-form L[K] g♭

is linear. Moreover, for any linear horizontal r-form φ, we have L[I]φ = φ, i.e.,

L[I] L[K] g♭ = L[K] g♭ .

Then the condition (2.3) is equivalent with L[K] g♭ = 0 which implies (2.4). �

Remark 2.7. In [1] we have proved that the spacetime 2-form Υ[g, K] is closed
if and only if dKg = 0. By Remark 1.2 it coincides with Lemma 2.6. �

Lemma 2.8. Let K be a linear spacetime connection then
[

Λ[g, K], Λ[g, K]
]

= 0

if and only if L[K] g♭ = 0.

Proof. This follows immediately. �
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Theorem 2.9. Let K be a linear spacetime connection. Then the following iden-
tities are equivalent:

(1) L[K] g♭ = 0 .

(2) dKg = 0 .

(3) dΥ[g, K] = 0 .

(4)
[

Λ[g, K], Λ[g, K]
]

= 0 .

Proof. This follows from Remark 1.2 and Lemmas 2.6 and 2.8. �

Corollary 2.10. A linear spacetime connection K and the metric g induce on
TE natural symplectic and Poisson structures if and only if dKg = 0 = L[K] g♭ .

�

Lemma 2.11. Let K be a linear spacetime connection then the following three
identities are equivalent:

(1) dKg = 0.

(2) L[K] g♭ = 0.

(3) (∇Xg)(Y, Z) − (∇Y g)(X, Z) = 2 g(τ [K](X, Y ), Z) .

Proof. (1) ⇔ (2). This follows immediately from Remark 1.2.
(1) ⇔ (3). Let us recall that for a linear connection K we have

2 τ [K](X, Y ) = ∇Y X −∇XY + [X, Y ] .(2.7)

Then, by Remark 1.2,

(dKg)(X, Y )(Z) = (∇Xg)(Y, Z) + g(∇XY, Z) − (∇Y g)(X, Z)

− g(∇Y X, Z) − g([X, Y ], Z)

= (∇Xg)(Y, Z) − (∇Y g)(X, Z) + g(∇XY −∇Y X − [X, Y ], Z)

= (∇Xg)(Y, Z) − (∇Y g)(X, Z) − 2 g(τ [K](X, Y ), Z) . �

Corollary 2.12. If K is a torsion free connection then dKg = 0 = L[K] g♭ is
equivalent to (∇Xg)(Y, Z) = (∇Y g)(X, Z), i.e., for a torsion free linear connec-
tion, dKg = 0 = L[K] g♭ is equivalent with the symmetry of the (0,3)-tensor field
∇g. �

Theorem 2.13. Let K be a linear torsion free spacetime connection. Then the
following identities are equivalent:

(1) ∇g is a symmetric (0,3)-tensor field.

(2) dΥ[g, K] = 0 .

(3)
[

Λ[g, K], Λ[g, K]
]

= 0 .

Proof. By Corollary 2.12 for a linear torsion free connection the identity dKg =
0 = L[K] g♭ is equivalent with ∇g to be fully symmetric. �

Corollary 2.14. A linear torsion free spacetime connection K and the metric g

induce on TE natural symplectic and Poisson structures if and only if the covariant
differential ∇g is a symmetric (0,3)-tensor field. �
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Remark 2.15. Let us assume the torsion free spacetime metric connection K[g]
given by the Christtoffel symbols (1.3). Then we have ∇g = 0, i.e., ∇g is symmetric
in the canonical way, and we have the canonical natural symplectic and Poisson
structures on TE given by Υ[g] = Υ

[

g, K[g]
]

and Λ[g] = Λ
[

g, K[g]
]

. Moreover, in

the metric case, Υ[g] = dg♭. �
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Janáčkovo nám 2a, 602 00 Brno, Czech Republic

E-mail: janyska@math.muni.cz


