ON THE LIMIT POINTS OF THE FRACTIONAL PARTS OF POWERS OF PISOT NUMBERS

ARTŪRAS DUBICKAS

Abstract

We consider the sequence of fractional parts $\left\{\xi \alpha^{n}\right\}, n=1,2,3, \ldots$, where $\alpha>1$ is a Pisot number and $\xi \in \mathbb{Q}(\alpha)$ is a positive number. We find the set of limit points of this sequence and describe all cases when it has a unique limit point. The case, where $\xi=1$ and the unique limit point is zero, was earlier described by the author and Luca, independently.

1. Introduction

Suppose that $\alpha>1$ is an arbitrary algebraic number, and suppose that ξ is an arbitrary positive number that lies outside the field $\mathbb{Q}(\alpha)$ if α is a Pisot number or a Salem number. For such pairs ξ, α, in [6] we proved a lower bound (in terms of α only) for the distance between the largest and the smallest limit points of the sequence of fractional parts $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$. More precisely, we showed that the distance between the largest and the smallest limit points of this sequence is at least $1 / \inf L(P G)$, where $P(z)=a_{d} z^{d}+\cdots+a_{1} z+a_{0} \in \mathbb{Z}[z]$ is the minimal polynomial of α and where G runs through polynomials with real coefficients having either leading or constant coefficient 1. (Here, L stands for the length of a polynomial.) For this result, we showed first that with the above conditions the sequence

$$
\begin{aligned}
s_{n}: & =a_{d}\left[\xi \alpha^{n+d}\right]+\cdots+a_{1}\left[\xi \alpha^{n+1}\right]+a_{0}\left[\xi \alpha^{n}\right] \\
& =-a_{d}\left\{\xi \alpha^{n+d}\right\}-\cdots-a_{1}\left\{\xi \alpha^{n+1}\right\}-a_{0}\left\{\xi \alpha^{n}\right\}
\end{aligned}
$$

is not ultimately periodic. Recall that $s_{n}, n=0,1,2, \ldots$, is called ultimately periodic if there is $t \in \mathbb{N}$ such that $s_{n+t}=s_{n}$ for all sufficiently large n. (In contrast, $s_{n}, n=0,1,2, \ldots$, is called purely periodic if there is $t \in \mathbb{N}$ such that $s_{n+t}=s_{n}$ for all $n \geqslant 0$.) For rational $\alpha=p / q>1$, our result in [6] recovers the result of Flatto, Lagarias and Pollington [7]: the difference between the largest and the smallest limit points of the sequence $\left\{\xi(p / q)^{n}\right\}_{n=1,2,3, \ldots}$ is at least $1 / p$. (See also [1].)

[^0]Moreover, the results of [6] imply that we always have

$$
\lim \sup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}-\lim \inf _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \geqslant 1 / L(P)
$$

unless $s_{n}, n=1,2, \ldots$, is ultimately periodic with period of length 1 . However, for some Pisot and Salem numbers α and for some $\xi \in \mathbb{Q}(\alpha)$, this can happen. As a result, no bound for the difference between the largest and the smallest limit points of the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$ can be obtained in terms of α only. More precisely, for Salem numbers α such that $\alpha-1$ is not a unit, Zaimi [11] showed that for every $\varepsilon>0$ there exist positive numbers $\xi \in \mathbb{Q}(\alpha)$ such that all fractional parts $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$ belong to an interval of length ε. In this context, the only pairs that remain to be considered are of the form ξ, α, where α is a Pisot number and $\xi \in \mathbb{Q}(\alpha)$. The aim of this paper is to consider such pairs.

Recall that $\alpha>1$ is a Pisot number if it is an algebraic integer (i.e. $a_{d}=1$) and if all its conjugates over \mathbb{Q} different from α itself lie in the open unit disc. The problem of finding all such pairs $\xi>0, \alpha>1$, where α is a Pisot number and $\xi \in \mathbb{Q}(\alpha)$, for which the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$ has a unique limit point is also of interest in connection with the papers [3], [8] and [9]. In [8] Kuba asked whether there are algebraic numbers $\alpha>1$ other than integers satisfying $\lim _{n \rightarrow \infty}\left\{\alpha^{n}\right\}=0$. This was answered by the author [3] and by Luca [9] independently: the answer is 'no'.

2. Results

From now on, suppose that $\alpha=\alpha_{1}>1$ is a Pisot number with minimal polynomial

$$
P(z)=z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{d}\right) \in \mathbb{Z}[z] .
$$

Since $\xi \in \mathbb{Q}(\alpha)$, we can write $\xi=f(\alpha)>0$, where f is a non-zero polynomial of degree at most $d-1$ with rational coefficients

$$
\begin{equation*}
f(z)=\left(b_{0}+b_{1} z+\cdots+b_{d-1} z^{d-1}\right) / b \tag{1}
\end{equation*}
$$

Here $b_{0}, b_{1}, \ldots, b_{d-1} \in \mathbb{Z}$ and b is the smallest positive integer for which $b f(z) \in$ $\mathbb{Z}[z]$. Set $S_{n}:=\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{d}^{n}$ (which is a rational integer for each non-negative integer n) and

$$
Y_{n}:=b_{0} S_{n}+b_{1} S_{n+1}+\cdots+b_{d-1} S_{n+d-1} .
$$

Then $Y_{n}=b \operatorname{Trace}\left(f(\alpha) \alpha^{n}\right)$. By Newton's formulae, we have $S_{n+d}+a_{d-1} S_{n+d-1}+$ $\cdots+a_{0} S_{n}=0$ for every $n \geqslant 0$. It is easy to see that the sequence $Y_{0}, Y_{1}, Y_{2}, \ldots$ satisfies the same linear recurrence

$$
\begin{equation*}
Y_{n+d}+a_{d-1} Y_{n+d-1}+\cdots+a_{0} Y_{n}=0 \tag{2}
\end{equation*}
$$

for every non-negative integer n. By Lemma 2 of [4], the sequence $Y_{n}, n=$ $0,1,2, \ldots$, modulo b is ultimately periodic. Moreover, in case if $\operatorname{gcd}\left(b, a_{0}\right)=1$, by Lemma 2 of [5], the sequence $Y_{n}, n=0,1,2, \ldots$, modulo b is purely periodic. (These statements both can be proved directly. Firstly, there are at most b^{d} different vectors for $\left(Y_{n+d-1}, \ldots, Y_{n}\right)$ modulo b to occur, which implies the first
statement by (2). Secondly, if $\operatorname{gcd}\left(b, a_{0}\right)=1$, then Y_{n} modulo b is uniquely determined by Y_{n+d}, \ldots, Y_{n+1} modulo b. This shows that a respective sequence is purely periodic.)

Suppose that $\overline{B_{1} B_{2} \ldots B_{k}}$, where $0 \leqslant B_{j} \leqslant b-1$, is the period of $Y_{0}, Y_{1}, Y_{2}, \ldots$ modulo b. Some of B_{j} may be equal. Let \mathcal{B} be the set $\left\{B_{1}, \ldots, B_{k}\right\}$. In other words, $\mathcal{B}=\mathcal{B}_{\xi, \alpha}$ is the set of residues of the sequence $Y_{n}, n=0,1,2, \ldots$, modulo b which occur infinitely often. We can now state our results.

Theorem 1. Let $\alpha>1$ be a Pisot number and let $f(z)$ be a polynomial given in (1). Then $t \in(0,1)$ is a limit point of the sequence $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2,3, \ldots}$ if and only if there is $c \in \mathcal{B}$ such that $t=c / b$. Furthermore, at least one of the numbers 0 and 1 is a limit point of $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2,3, \ldots}$ if and only if $0 \in \mathcal{B}$.

Without loss of generality we can assume that the conjugates of α are labelled so that $\alpha=\alpha_{1}>1>\left|\alpha_{2}\right| \geqslant\left|\alpha_{3}\right| \geqslant \cdots \geqslant\left|\alpha_{d}\right|$. Then α is called a strong Pisot number if $d \geqslant 2$ and α_{2} is positive [3]. By a result of Smyth [10] claiming that each circle $|z|=r$ contains at most two conjugates of a Pisot number α, the inequality $\alpha_{2}>\left|\alpha_{3}\right|$ holds for every strong Pisot number α. Recall that a result of Pisot and Vijayaraghavan (see, e.g., [2]) implies that if the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$, where $\alpha>1$ is algebraic and $\xi>0$ is real, has a unique limit point, then α is a Pisot number and $\xi \in \mathbb{Q}(\alpha)$. So our next result characterizes all possible cases when the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2, \ldots}$ has a unique limit point and completes the results of the author [3] and of Luca [9].
Theorem 2. Let $\alpha>1$ be a Pisot number and let $f(z)$ be a polynomial given in (1). Then
(i) $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=t$, where $t \neq 0,1$, if and only if $\mathcal{B}=\{c\}, c>0$, $t=c / b$.
(ii) $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=0$ if and only if $\mathcal{B}=\{0\}$ and α is either an integer or a strong Pisot number and $f\left(\alpha_{2}\right)<0$.
(iii) $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=1$ if and only if $\mathcal{B}=\{0\}, \alpha$ is a strong Pisot number and $f\left(\alpha_{2}\right)>0$.

The following theorem gives a simple practical criterion of determining whether the sequence $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2, \ldots}$ has one or more than one limit point.

Theorem 3. If $\mathcal{B}=\{c\}, c>0$, then there is an integer r, where $1 \leqslant r \leqslant|P(1)|-1$, such that $c / b=r /|P(1)|$. Furthermore, if $\operatorname{gcd}\left(b, a_{0}\right)=1$ then $\mathcal{B}=\{c\}$ is equivalent to $b \mid c P(1)$ and $b \mid\left(Y_{n}-c\right)$ for every $n=0,1, \ldots, d-1$.

Theorems 2 and 3 imply the following corollary.
Corollary. Let ξ be an arbitrary positive number, and let α be a Pisot number which is not an integer or a strong Pisot number. If $P(1)=-1$, then $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$. has more than one limit point.

Since $P(z)$ is the minimal polynomial of a Pisot number α, we have $P(1)<0$ and $P^{\prime}(\alpha)>0$. Note that the condition $P(1)=-1$ is equivalent to the fact that
$\alpha-1$ is a unit. Our final theorem describes all algebraic numbers $\alpha>1$ for which there is a positive number ξ such that the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2, \ldots}$ tends to a limit.
Theorem 4. Suppose that $\alpha>1$ is an algebraic number. Then there is a real number $\xi>0$ such that the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2,3, \ldots}$ tends to a limit if and only if α is either a strong Pisot number, or $\alpha=2$, or α is a Pisot number whose minimal polynomial P satisfies $P(1) \leqslant-2$.

In fact, we will show that if α is strong Pisot number or $\alpha=2$ we can take $\xi=1$, whereas in the third case of Theorem 4 we can take $\xi=1 /\left(P^{\prime}(\alpha)(\alpha-1)\right)$.

Some examples will be given in Section 4.

3. Proofs of the theorems

Proof of Theorem 1. Consider the trace of $f(\alpha) \alpha^{n}$:

$$
f\left(\alpha_{1}\right) \alpha_{1}^{n}+f\left(\alpha_{2}\right) \alpha_{2}^{n}+\cdots+f\left(\alpha_{d}\right) \alpha_{d}^{n}=Y_{n} / b .
$$

Setting

$$
\begin{equation*}
L_{n}:=f\left(\alpha_{2}\right) \alpha_{2}^{n}+\cdots+f\left(\alpha_{d}\right) \alpha_{d}^{n} \tag{3}
\end{equation*}
$$

(which is a real number), we have

$$
\begin{equation*}
\left\{f(\alpha) \alpha^{n}\right\}=Y_{n} / b-L_{n}-\left[f(\alpha) \alpha^{n}\right] \tag{4}
\end{equation*}
$$

Assume that \mathcal{B} contains a non-zero integer c. Then $b \geqslant 2$. Since $1 \leqslant c \leqslant b-1$ and all $f\left(\alpha_{j}\right) \alpha_{j}^{n}$, where $j \geqslant 2$, tend to zero as $n \rightarrow \infty$, we get that $L_{n} \rightarrow 0$ as $n \rightarrow \infty$ and so $\left\{f(\alpha) \alpha^{n}\right\}=c / b-L_{n}$ for infinitely many n. Hence c / b is the limit point of $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2, \ldots}$ for each non-zero $c \in \mathcal{B}$. Suppose now that $t \in(0,1)$ is a limit point of $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2, \ldots}$. Since $L_{n} \rightarrow 0$ as $n \rightarrow \infty$, equality (4) implies that t is a limit point of $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2, \ldots}$ only if $t=c / b$, where $c \in \mathcal{B}$. This proves the first part of Theorem 1. The second part follows from (3) and (4) by a similar argument.

Proof of Theorem 2. We begin with (i). As above, since $L_{n} \rightarrow 0$ as $n \rightarrow \infty$, (4) shows that the sequence $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2, \ldots}$ has a unique limit point only if Y_{n} modulo b is ultimately periodic with period of length 1 . Since the unique limit point is neither 0 nor 1 , it follows that $\mathcal{B}=\{c\}$, where $c>0$. For the converse, suppose that $\mathcal{B}=\{c\}$, where c is non-zero. Then $b \geqslant 2$ and $1 \leqslant c \leqslant b-1$. Furthermore, Y_{n} modulo b is c for each sufficiently large n. With these conditions, (4) implies that $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=c / b$. This proves (i).

If α is an integer, say $\alpha=g$, then $\left\{\left(b_{0} / b\right) g^{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$ precisely when each prime divisor of b divides g, i.e. $\mathcal{B}=\{0\}$, because $Y_{n}=b_{0} g^{n}$. This proves the subcase of (ii) corresponding to integer α. Suppose now that α is irrational. If $\mathcal{B}=\{0\}, \alpha$ is a strong Pisot number and $f\left(\alpha_{2}\right)<0$, then L_{n} defined by (3) is negative for all sufficiently large n. So (4) implies that $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=0$.

For the converse, suppose that $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=0$. Then (4) shows immediately that $\mathcal{B}=\{0\}$, as otherwise the sequence of fractional parts has other limit points. We already know that one case when $\mathcal{B}=\{0\}$ and $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=0$
both occur is when α is an integer. Suppose it is not. Then, since 1 is not the limit point of $\left\{f(\alpha) \alpha^{n}\right\}_{n=1,2, \ldots}$, the sum L_{n} defined by (3) must be negative for all sufficiently large n. Recall that $\alpha_{1}>\left|\alpha_{2}\right| \geqslant \cdots \geqslant\left|\alpha_{d}\right|$.

We will consider three cases corresponding to α_{2} being complex, negative and positive. By the above mentioned result of Smyth [10], if α_{2} is complex, then α_{2} and α_{3} is the only complex conjugate pair on the circle $|z|=\left|\alpha_{2}\right|$. Since $\alpha_{3}=\overline{\alpha_{2}}$, for each n sufficiently large, the sign of L_{n} is determined by the sign of $f\left(\alpha_{2}\right) \alpha_{2}^{n}+f\left(\alpha_{3}\right) \alpha_{3}^{n}$. Clearly, $f\left(\alpha_{2}\right) \neq 0$, because $\operatorname{deg} f<d$. Writing $\alpha_{2}=\varrho e^{i \varphi}$ and $f\left(\alpha_{2}\right)=\varrho^{\prime} e^{i \phi}$, where $\varrho, \varrho^{\prime}>0$ and $i=\sqrt{-1}$, we see that $\alpha_{3}=\varrho e^{-i \varphi}, f\left(\alpha_{3}\right)=$ $\varrho^{\prime} e^{-i \phi}$. Hence $L_{n}<0$ (for n sufficiently large) precisely when $\cos (n \varphi+\phi)<0$. Note that φ / π is irrational, as otherwise there is a positive integer v such that $\alpha_{2}^{v}=\alpha_{3}^{v}$. Mapping α_{2} to α_{1} we get a contradiction, because α_{1} is the only conjugate of α lying outside the unit circle. Hence, as the sequence $n \varphi / \pi+\phi / \pi$ modulo 1 has each point in $[0,1]$ as its limit point, $\cos (n \varphi+\phi)$ will be both positive and negative for infinitely many n. This rules out the case of α_{2} being complex. Similarly, if α_{2} is negative then L_{n} is both positive and negative infinitely often, because so is $f\left(\alpha_{2}\right) \alpha_{2}^{n}$. This implies that α_{2} must be positive, namely, α must be a strong Pisot number. Then $L_{n}<0$ implies that $f\left(\alpha_{2}\right)<0$. This proves (ii).

The case (iii) can be proved by the same argument as (ii). Indeed, if α is a strong Pisot number, $f\left(\alpha_{2}\right)>0$, and $\mathcal{B}=\{0\}$, then (4) implies that $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=$ 1. For the converse, assume that $\lim _{n \rightarrow \infty}\left\{f(\alpha) \alpha^{n}\right\}=1$. It is easy to see that then $\mathcal{B}=\{0\}$. Furthermore, α cannot be a rational integer. Now, (4) shows that L_{n} must be positive for all sufficiently large n. We already proved that this is impossible, unless α is a strong Pisot number. In case it is, (3) shows that $f\left(\alpha_{2}\right)$ must be positive too. This completes the proof of Theorem 2.

Proof of Theorem 3. Suppose that $\mathcal{B}=\{c\}, c>0$. Then (2) shows that b divides $c\left(1+a_{d-1}+\cdots+a_{0}\right)=c P(1)$, where $P(1)<0$. It follows that there is $r \in \mathbb{N}$ such that $b r=c|P(1)|$, giving $c / b=r /|P(1)|$. This proves the first statement of Theorem 3.

Now, let $\operatorname{gcd}\left(b, a_{0}\right)=1$ and suppose again that $\mathcal{B}=\{c\}$, where c can be equal to zero. The above argument implies that $b \mid c P(1)$. Evidently, $\mathcal{B}=\{c\}$ is equivalent to the fact that Y_{n} modulo b is equal to c for every sufficiently large n. Suppose that there are $k \geqslant 0$ for which Y_{k} modulo b is different from c. Take the largest such k. Let Y_{k} modulo b be c^{\prime}, where $c^{\prime} \neq c$. Then (2) with $n=k$ shows that $Y_{k+d}+\cdots+a_{1} Y_{k+1}+a_{0} Y_{k}$ modulo b is $c P(1)+a_{0}\left(c^{\prime}-c\right)$ which is divisible by b. Since $b \mid c P(1)$, we have that $b \mid a_{0}\left(c^{\prime}-c\right)$. Since $\operatorname{gcd}\left(a_{0}, b\right)=1$, we conclude that $c^{\prime}=c$, a contradiction.

For the converse, suppose that $Y_{0}, Y_{1}, \ldots, Y_{d-1}$ are all equal to c modulo b, and $b \mid c P(1)$. Evidently, (2) with $n=0$ shows that $Y_{d}+a_{d-1} Y_{d-1}+\cdots+a_{0} Y_{0}$ modulo b is zero. But it is equal to $Y_{d}+c(P(1)-1)=Y_{d}-c+c P(1)$ modulo b. Since $b \mid c P(1)$, we obtain that Y_{d} is c modulo b. In the same manner (setting $n=1$ into (2) and so on) we can see that Y_{n} is equal to c modulo b for every $n \geqslant 0$. Therefore, $\mathcal{B}=\{c\}$. Note that we were not using the condition $\operatorname{gcd}\left(a_{0}, b\right)=1$ for this part of the proof.

Proof of the Corollary. For $\xi \notin \mathbb{Q}(\alpha)$, the sequence $\left\{\xi \alpha^{n}\right\}_{n=1,2, \ldots}$ has more than one limit point by the above mentioned result of Pisot and Vijayaraghavan (and by the results of [6] mentioned in Section 1 too). So suppose that $\xi \in \mathbb{Q}(\alpha)$, where α satisfies the conditions of the corollary. If $\left\{\xi \alpha^{n}\right\}_{n=1,2, \ldots}$ has a unique limit point, then Theorem 2 implies that $\mathcal{B}=\{c\}$. Clearly, by the first part of Theorem $3,|P(1)|=1$ yields $c=0$. Now, parts (ii) and (iii) of Theorem 2 show that α is either a rational integer or a strong Pisot number, a contradiction.
Proof of Theorem 4. Suppose that $\xi>0$ and an algebraic number $\alpha>1$ are such that $\left\{\xi \alpha^{n}\right\}_{n=1,2, \ldots}$ has a unique limit point. Then (again by the theorem of Pisot and Vijayaraghavan) α is a Pisot number. The corollary shows that α must be either an integer, or a strong Pisot number, or a Pisot number whose minimal polynomial P satisfies $P(1) \leqslant-2$. Since all rational integers, except for $\alpha=2$, are covered by the case $P(1) \leqslant-2$, the theorem is proved in one direction.

Now, if α is a strong Pisot number, then, with $\xi=1$, we have $\lim _{n \rightarrow \infty}\left\{\alpha^{n}\right\}=1$. (See, for instance, Theorem 2 (iii) with $b=1$ and $f(z)=1$.) If α is a rational integer, greater than or equal to 2 , then, with $\xi=1, \lim _{n \rightarrow \infty}\left\{\alpha^{n}\right\}=0$.

Finally, suppose that α is a Pisot number of degree $d \geqslant 2$ whose minimal polynomial P satisfies $P(1) \leqslant-2$. Let us take $\xi=1 /\left(P^{\prime}(\alpha)(\alpha-1)\right)>0$. We will show that then $\lim _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}=1 /|P(1)|$. Note that, for each $k=0,1, \ldots, d-1$,

$$
\begin{equation*}
\frac{z^{k}}{P(z)}=\sum_{j=1}^{d} \frac{\alpha_{j}^{k}}{P^{\prime}\left(\alpha_{j}\right)\left(z-\alpha_{j}\right)} \tag{5}
\end{equation*}
$$

Indeed, for each non-negative integer $k<d$, (5) is the identity, because multiplying both sides of (5) by $P(z)$ we obtain two polynomials, both of degree smaller than d, which are equal at d distinct points $z=\alpha_{j}, j=1,2, \ldots, d$. Setting $z=1$ into (5)), we deduce that the trace of $\alpha^{k} /\left(P^{\prime}(\alpha)(\alpha-1)\right)$ is equal to $-1 / P(1)=1 /|P(1)|<1$ for every $k=0,1, \ldots, d-1$. Of course, we can write $\xi=1 /\left(P^{\prime}(\alpha)(\alpha-1)\right)=f(\alpha)$ for some polynomial f of the form (1). Then, as in the proof of Theorem 3, we will get that $Y_{n}, n=0,1, \ldots, d-1$, modulo b are all equal to c, where $b=c|P(1)|$. Hence, as in the second part of the proof of Theorem 3 we obtain that Y_{n} modulo b is equal to c for every non-negative integer n. Consequently, $\mathcal{B}=\{c\}$, where $c / b=1 /|P(1)|$. Now, Theorem 2 (i) implies that

$$
\lim _{n \rightarrow \infty}\left\{\alpha^{n} /\left(P^{\prime}(\alpha)(\alpha-1)\right)\right\}=1 /|P(1)|
$$

provided that α is a Pisot number whose minimal polynomial P satisfies $P(1) \leqslant$ -2 . (This result trivially holds for integer $\alpha \geqslant 3$ too.) The proof of Theorem 4 is completed.

4. Examples

We remark that the condition $\operatorname{gcd}\left(b, a_{0}\right)=1$ of Theorem 3 cannot be removed. Take, for example, $\alpha=3+\sqrt{5}$. It is a strong Pisot number with other conjugate being $\alpha_{2}=3-\sqrt{5}$. Its minimal polynomial is $P(z)=z^{2}-6 z+4$. Set $f(z)=$ $(1+z) / 4$. Here, $b=4$ and $a_{0}=4$. Note that $S_{0}=2, S_{1}=6, S_{2}=28, S_{3}=144$,
and so on. All $S_{n}, n=2,3, \ldots$, are divisible by 4 . Hence $Y_{n}=S_{n}+S_{n+1}$ modulo 4 is equal to 2 for $n=1$ and to zero for all non-negative $n \neq 1$.

Suppose that $\theta>1$ solves $z^{3}-z-1=0$. Then θ is a Pisot number having a pair complex conjugates inside the unit circle. Clearly, $P(1)=-1$. The corollary implies that there are no $\xi>0$ (algebraic or transcendental) such that the sequence $\left\{\xi \theta^{n}\right\}_{n=1,2, \ldots}$ tends to a limit with n tending to infinity.

Set, for instance, $f(z)=(2+z) / 3$. Let us find the set of limit points of $\{(2 / 3+$ $\left.\theta / 3) \theta^{n}\right\}_{n=1,2, \ldots}$. Then $Y_{n}=2 S_{n}+S_{n+1}, b=3$. We find that $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, \ldots$ modulo 3 is purely periodic with period $\overline{0020222110212}$, so that $Y_{0}, Y_{1}, Y_{2}, Y_{3}, \ldots$ modulo 3 is purely periodic with period $\overline{0212002022211}$. It follows that $\mathcal{B}=$ $\{0,1,2\}$. Since θ has a pair of complex conjugates, on the arithmetical progression $n=13 m, m=0,1,2, \ldots$, the values of L_{n}, defined by (3) are positive and negative infinitely often. Hence the set of limit points of the sequence $\left\{(2 / 3+\theta / 3) \theta^{n}\right\}_{n=1,2, \ldots}$ is $\{0,1 / 3,2 / 3,1\}$.

Finally, if, say, $\alpha>1$ solves $z^{2}-7 z+2=0$ then $S_{0}, S_{1}, S_{2}, S_{3}, \ldots$ modulo $b=4$ is $2,3,1,1,1, \ldots$. Taking, for example, $f(z)=(2+3 z) / 4$, we deduce that $Y_{n}=2 S_{n}+3 S_{n+1}$ modulo 4 is ultimately periodic, with $\mathcal{B}=\{1\}$. Consequently, $\lim _{n \rightarrow \infty}\left\{\frac{2+3 \alpha}{4} \alpha^{n}\right\}=1 / 4$.

This research was partially supported by the Lithuanian State Science and Studies Foundation and by INTAS grant no. 03-51-5070.

References

[1] Bugeaud, Y., Linear mod one transformations and the distribution of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 114 (2004), 301-311.
[2] Cassels, J. W. S., An introduction to Diophantine approximation, Cambridge University Press, 1957.
[3] Dubickas, A., A note on powers of Pisot numbers, Publ. Math. Debrecen 56 (2000), 141-144.
[4] Dubickas, A., Integer parts of powers of Pisot and Salem numbers, Arch. Math. (Basel) 79 (2002), 252-257.
[5] Dubickas, A., Sequences with infinitely many composite numbers, Analytic and Probabilistic Methods in Number Theory, Palanga 2001 (eds. A. Dubickas, A. Laurinčikas and E. Manstavičius), TEV, Vilnius (2002), 57-60.
[6] Dubickas, A., Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
[7] Flatto, L., Lagarias, J. C. and Pollington, A. D., On the range of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 70 (1995), 125-147.
[8] Kuba, G., The number of lattice points below a logarithmic curve, Arch. Math. (Basel) 69 (1997), 156-163.
[9] Luca, F., On a question of G. Kuba, Arch. Math. (Basel) 74 (2000), 269-275.
[10] Smyth, C. J., The conjugates of algebraic integers, Amer. Math. Monthly 82 (1975), 86.
[11] Zaimi, T., An arithmetical property of powers of Salem numbers, J. Number Theory (to appear).

Department of Mathematics and Informatics
Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania
E-mail: arturas.dubickas@maf.vu.lt
Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania

[^0]: 2000 Mathematics Subject Classification: 11J71, 11R06.
 Key words and phrases: Pisot numbers, fractional parts, limit points.
 Received November 23, 2004, revised October 2005.

