ARCHIVUM MATHEMATICUM (BRNO) Tomus 42 (2006), 135 - 140

SPACES WITH σ -LOCALLY COUNTABLE WEAK-BASES

ZHAOWEN LI

ABSTRACT. In this paper, spaces with σ -locally countable weak-bases are characterized as the weakly open msss-images of metric spaces (or g-first countable spaces with σ -locally countable *cs*-networks).

To find the internal characterizations of certain images of metric spaces is an interesting research topic on general topology. Recently, S. Xia^[12] introduced the concept of weakly open mappings, by using it, certain g-first countable spaces are characterized as images of metric spaces under various weakly open mappings. The present paper establish the relationships spaces with σ -locally countable weakbases and metric spaces by means of weakly pen mappings and msss-mappings, and give a characterization of spaces with σ -locally countable weak-bases.

In this paper, all spaces are regular and T_1 , all mappings are continuous and surjective. N denotes the set of all natural numbers. ω denotes $N \cup \{0\}$. For a family \mathcal{P} of subsets of a space X and a mapping $f: X \to Y$, denote $f(\mathcal{P}) =$ $\{f(P): P \in \mathcal{P}\}$. For the usual product space $\prod_{i \in \mathcal{N}} X_i, p_i$ denotes the projection

from $\prod_{i \in N} X_i$ onto X_i .

Definition 1. Let $\mathcal{P} = \bigcup \{ \mathcal{P}_x : x \in X \}$ be a family of subsets of a space X satisfying that for each $x \in X$,

(1) \mathcal{P}_x is a network of x in X, (2) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

 \mathcal{P} is called a weak-base for $X^{[1]}$ if $G \subset X$ is open in X if and only if for each $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$.

A space X is called g-first countable^[1] if X has a weak-base \mathcal{P} such that each \mathcal{P}_x is countable.

A space X is called a g-metrizable space^[4] if X has a σ -locally finite weak-base.

Definition 2. Let \mathcal{P} be a cover of a space X.

Received September 21, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 54E99, 54C10.

Key words and phrases: weak-bases, cs-networks, k-networks, g-first countable spaces, weakly open mappings, msss-mappings,

This work is supported by the NNSF of China (No.10471020, 10471035) and the NSF of of Hunan Province in China (No. 04JJ6028).

ZHAOWEN LI

(1) \mathcal{P} is called a k-network for X if for each compact subset K of X and its open neighbourhood V, there exists a finite subfamily \mathcal{P}' of \mathcal{P} such that $K \subset \cup \mathcal{P}' \subset V$.

(2) \mathcal{P} is called a *cs*-network for X if for each $x \in X$, its open neighbourhood V and a sequence $\{x_n\}$ converging to x, there exists $P \in \mathcal{P}$ such that $\{x_n : n \ge m\} \cup \{x\} \subset P \subset V$ for some $m \in N$.

A space X is called an \aleph -space if X has a σ -locally finite k-network.

Definition 3. Let $f: X \to Y$ be a mapping.

(1) f is called a weakly open mapping^[12] if there exists a weak-base $\mathcal{B} = \bigcup \{\mathcal{B}_y : y \in Y\}$ for Y and for $y \in Y$, there exists $x(y) \in f^{-1}(y)$ satisfying condition (*): for each open neighbourhood U of x(y), $B_y \subset f(U)$ for some $B_y \in \mathcal{B}_y$.

(2) f is called a msss-mapping^[7] (i.e., metrizably stratified strong *s*-mapping) if there exists a subspace X of the usual product space $\prod_{i \in N} X_i$ of the family $\{X_i :$

 $i \in N$ of metric spaces satisfying the following condition: for each $y \in Y$, there exists an open neighbourhood sequence $\{V_i\}$ of y in Y such that each $p_i f^{-1}(V_i)$ is separable in X_i .

Theorem 4. A space Y has a σ -locally countable weak-base if and only if Y is the weakly open msss-image of a metric space.

Proof. Sufficiency. Suppose Y is the image of a metric space X under a weakly open msss-mapping f. Since f is a msss-mapping, then exists a family $\{X_i : i \in N\}$ of metric spaces satisfying the condition of Definition 3 (2).

For each $i \in N$, let \mathcal{P}_i be a σ -locally finite base for X_i , put

$$\mathcal{B}_i = \left\{ X \cap \left(\bigcap_{j \le i} p_j^{-1}(P_j)\right) : P_j \in \mathcal{P}_j \text{ and } j \le i \right\},\$$
$$\mathcal{B} = \bigcup \{\mathcal{B}_i : i \in N\}.$$

Then \mathcal{B} is a base for X. For each $n \in N$, put

$$V = \bigcap_{j \le i} V_i \,,$$

then $\{Q \in f(\mathcal{B}_i) : V \cap Q \neq \Phi\}$ is countable. Thus $f(\mathcal{B}_i)$ is locally countable in Y. Hence $f(\mathcal{B})$ is σ -locally countable in Y.

Since f is a weakly open mapping, then exists a weak-base $\mathcal{P} = \bigcup \{\mathcal{P}_y : y \in Y\}$ for Y such that for each $y \in Y$, there exists $x(y) \in f^{-1}(y)$ satisfying the condition (*) of Definition 3 (1). For each $y \in Y$, put

$$\begin{split} \mathcal{F}_{i,y} &= \{f(B) : x(y) \in B \in \mathcal{B}_i\} \\ \mathcal{F}_y &= \cup \{\mathcal{F}_{i,y} : i \in N\}, \\ \mathcal{F}_i &= \cup \{\mathcal{F}_{i,y} : y \in Y\}, \\ \mathcal{F} &= \cup \{\mathcal{F}_y : y \in Y\}. \end{split}$$

Obviously, $\mathcal{F}_i \in f(\mathcal{B}_i)$ for each $i \in N$, then \mathcal{F}_i is locally countable in Y. Thus $\mathcal{F} = \bigcup \{\mathcal{F}_i : i \in N\}$ is σ -locally countable in Y. We will prove that \mathcal{F} is a weak-base for Y.

It is obvious that \mathcal{F} satisfies the condition (1) of Definition 1. For each $y \in Y$, suppose $U, V \in \mathcal{F}_y$, then $U \in \mathcal{F}_{m,y}, V \in \mathcal{F}_{n,y}$ for some $m, n \in N$. Thus there exist $B_1 \in \mathcal{B}_m$ and $B_2 \in \mathcal{B}_n$ such that $x(y) \in B_1 \cap B_2$, $f(B_1) = U$ and $f(B_2) = V$. Since $B_1, B_2 \in \mathcal{B}$ and \mathcal{B} is a base for X, then there exist $l \in N$ and $B \in \mathcal{B}_l$ such that $x(y) \in B \subset B_1 \cap B_2$. Thus $f(B) \in \mathcal{F}_{l,y} \subset \mathcal{F}_y$ and $f(B) \subset f(B_1 \cap B_2) \subset U \cap V$. Hence \mathcal{F} satisfies the condition (2) of Definition 1.

Suppose $G \subset Y$ and for $y \in G$, there exists $F \in \mathcal{F}_y$ such that $F \subset G$, then there exists $B \in \mathcal{B}$ such that $x(y) \in B$ and F = f(B). Since B is an open neighbourhood of x(y) and f is a weakly open mapping, then exists $P_y \in \mathcal{P}_y$ such that $P_y \subset f(B)$. Thus for each $y \in G$, there exists $P_y \in \mathcal{P}_y$ such that $P_y \subset G$. Hence G is open in Y because \mathcal{P} is a weak-base for Y. On the other hard. Suppose $G \subset Y$ is open in Y, then for each $y \in G$, $x(y) \in f^{-1}(G)$. Since \mathcal{B} is a base for X, then $x(y) \in B \subset f^{-1}(G)$ for some $B \in \mathcal{B}$. Thus $f(B) \in \mathcal{F}_y$ and $f(B) \subset G$.

Therefore \mathcal{F} is a weak-base for Y.

Necessity. Suppose Y has a σ -locally countable weak-base. Let $\mathcal{P} = \bigcup \{\mathcal{P}_i : i \in N\}$ be a σ -locally countable weak-base for Y, where each $\mathcal{P}_i = \{P_\alpha : \alpha \in A_i\}$ is a locally countable of subsets of Y which is closed under finite intersections and $Y \in \mathcal{P}_i \subset \mathcal{P}_{i+1}$. For each $i \in N$, endow A_i with discrete topology, then A_i is a metric space. Put

$$X = \left\{ \alpha = (\alpha_i) \in \prod_{i \in N} A_i : \{ P_{\alpha_i} : i \in N \} \subset P \right\}$$

forms a network at some point $x(\alpha) \in X$,

and endow X with the subspace topology induced from the usual product topology of the family $\{A_i : i \in N\}$ of metric spaces, then X is a metric space. Since Y is Hausdroff, $x(\alpha)$ is unique in Y for each $\alpha \in X$. We define $f : X \to Y$ by $f(\alpha) = x(\alpha)$ for each $\alpha \in X$. Because \mathcal{P} is a σ -locally countable weak-base for Y, then f is surjective. For each $\alpha = (\alpha_i) \in M$, $f(\alpha) = x(\alpha)$. Suppose V is an open neighbourhood of $x(\alpha)$ in Y, there exists $n \in N$ such that $x(\alpha) \in P_{\alpha_n} \subset V$, set $W = \{c \in X :$ the n-the coordinate of c is $\alpha_n\}$, then W is an open neighbourhood of α in X, and $f(W) \subset P_{\alpha_n} \subset V$. Hence f is continuous. We will show that f is a weakly open msss-mapping.

(i) f is a msss-mapping. For each $x \in X$ and each $i \in N$, there exists an open neighbourhood V_i of x in X such that $\{\alpha \in A_i : P_\alpha \cap V_i \neq \Phi\}$ is countable. Put

$$B_i = \{ \alpha \in A_i : P_\alpha \cap V_i \neq \Phi \}$$

then $p_i f^{-1}(V_i) \subset B_i$. Thus $p_i f^{-1}(V_i)$ is separable in A_i , Hence f is a msss-mapping.

(ii) f is a weakly open mapping

For each $n \in N$ and $\alpha_n \in A_n$, put

 $V(\alpha_1, \cdots, \alpha_n) = \left\{ \beta \in X : \text{ for each } i \leq n, \text{ the i-th coordinate of } \beta \text{ is } \alpha_i \right\}.$

It is easy to check that $\{V(\alpha_1, \dots, \alpha_n) : n \in N\}$ is a locally neighbourhood base of α in X.

ZHAOWEN LI

Claim. $f(V(\alpha_1, \dots, \alpha_n)) = \bigcap_{i \le n} P_{\alpha_i}$ for each $n \in N$. For each $i \le n$, $f(V(\alpha_1, \dots, \alpha_n)) \subset P_{\alpha_i}$, then $f(V(\alpha_1, \dots, \alpha_n)) \subset \bigcap_{i \le n} P_{\alpha_i}$. On the other hand. For each $x \in \bigcap_{i \geq n} P_{\alpha_i}$, there is $\beta = (\beta_j) \in X$ such that $f(\beta) = x$. For each $j \in N$, $P_{\beta_j} \in \mathcal{P}_j \subset \mathcal{P}_{j+n}$, then there is $\alpha_{j+n} \in A_{j+n}$ such that $P_{\alpha_{j+n}} = P_{\beta_j}$. Set $\alpha = (\alpha_j)$, then $\alpha \in V(\alpha_1, \cdots, \alpha_n)$ and $f(\alpha) = x$. Thus $\bigcap_{i \leq n} P_{\alpha_i} \subset f(V(\alpha_1, \cdots, \alpha_n))$. Hence $f(V(\alpha_1, \cdots, \alpha_n)) = \bigcap_{i \leq n} P_{\alpha_i}$.

Denote $\mathcal{P}_y = \{P \in \mathcal{P} : y \in P\}$, then $\mathcal{P} = \bigcup \{P_y : y \in Y\}$. For each $y \in Y$, by the idea \mathcal{P} , there exists $(\alpha_i) \in \prod_{i \in N} A_i$ such that $\{P_{\alpha_i} : i \in \mathcal{P}_i\}$.

 $N \subset \mathcal{P}$ is a network of y in Y, then $\alpha = (\alpha_i) \in f^{-1}(y)$.

Suppose G is an open neighbourhood of α in X, then there exists $j \in N$ such that $V(\alpha_1, \dots, \alpha_j) \subset G$. Thus $f(V(\alpha_1, \dots, \alpha_j)) \subset f(G)$. By the Claim, $f(V(\alpha_1, \cdots, \alpha_j)) = \bigcap_{i \leq j} P_{\alpha_i}$. Since $P_y \subset \bigcap_{i \leq j} P_{\alpha_i}$ for some $P_y \in \mathcal{P}_y$. Hence $P_y \subset \mathcal{P}_y$. f(G).

Therefore there exists a weak-base \mathcal{P} for Y and $\alpha \in f^{-1}(y)$ satisfying the condition (*) of Definition 3 (1), and so f is a weakly open mapping.

Theorem 5. For a space X, (1) \iff (2) \Rightarrow (3) below hold.

(1) X has a σ -locally countable weak-base.

(2) X is a g-first countable space with a σ -locally countable cs-network.

(3) X is a g-first countable space with a σ -locally countable k-network.

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (3)$. Suppose X is a g-first countable space with a σ -locally countable cs-network. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$ be a σ -locally countable cs-network for X, where each \mathcal{P}_n is locally countable in X. We will show that \mathcal{P} is a k-network for X. Suppose $K \subset V$ with K non-empty compact and V open in X. For each $n \in N$, put

$$\mathcal{A}_n = \{ P \in \mathcal{P}_n : P \cap K \neq \Phi \text{ and } P \subset V \},\$$

then \mathcal{A}_n is countable, and so $\mathcal{A} = \bigcup \{\mathcal{A}_n : n \in N\}$ is countable. Denote $\mathcal{A} = \{P_i : i \in N\}$, then $K \subset \bigcup_{i \leq n} P_i$ for some $n \in N$. Otherwise, $K \not\subset \bigcup_{i \leq n} P_i$ for each $n \in N$, so choose $x_n \in K \setminus \bigcup_{i \leq n} P_i$. Because $\{P \cap K : P \in \mathcal{P}\}$ is a countable *cs*-network for a subspace K and a compact space with a countable network is metrizable, then

K is a compact metrizable space. Thus $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$, where $x_{n_k} \to x$. Obviously $x \in K$. Since \mathcal{P} is a *cs*-network for X, then there exist $m \in N$ and $P \in \mathcal{P}$ such that $\{x_{n_k} : k \geq m\} \cup \{x\} \subset P \subset V$. Now, $P = P_j$ for some $j \in N$. Take $l \ge m$ such that $n_l \ge j$, then $x_{n_l} \in P_j$. This is a contradiction. Therefore, $(2) \Rightarrow (3)$ holds.

(2) \Rightarrow (1). Suppose X is a g-first countable space with σ -locally countable cs-network. Let $\mathcal{P} = \bigcup \{\mathcal{P}_m : m \in N\}$ be a σ -locally countable cs-network for X, where each \mathcal{P}_m is locally countable in X which is closed under finite intersections

and $X \in \mathcal{P}_m \subset \mathcal{P}_{m+1}$, and for each $x \in X$, let $\{B(n, x) : n \in N\}$ be a decreasing weak neighbourhood sequence of x in X. Put

$$\mathcal{F}_{m,x} = \{ P \in \mathcal{P}_m : B(n,x) \subset P \text{ for some } n \in N \},\$$
$$\mathcal{F}_x = \cup \{ \mathcal{F}_{m,x} : m \in N \},\$$
$$\mathcal{F}_m = \cup \{ \mathcal{F}_{m,x} : x \in X \},\$$
$$\mathcal{F} = \cup \{ \mathcal{F}_x : x \in X \}.$$

we will show that \mathcal{F} is a σ -locally countable weak-base for X.

It is easy to check that \mathcal{F} satisfies the condition (1), (2) of Definition 1. Suppose G be an open subset of X, then for each $x \in G$, there exists $P \in \mathcal{F}_x$ with $P \subset G$. Otherwise, denote $\{P \in \mathcal{P} : x \in P \subset G\} = \{P(m, x) : m \in N\}$. Then $B(n, x) \not\subset P(m, x)$ for each $n, m \in N$, so choose $x_{n,m} \in B(n, x) \setminus P(m, x)$. For $n \geq m$, let $x_{n,m} = y_k$, where $k = m + \frac{n(n-1)}{2}$. The the sequence $\{y_k : k \in N\}$ converges to the point x. Thus, there exist $m, i \in N$ such that $\{y_k : k \geq i\} \cup \{x\} \subset P(m, x) \subset G$ because \mathcal{P} is a cs-network for X. Take $j \geq i$ with $y_j = x_{n,m}$ for some $n \geq m$. Then $x_{n,m} \in P(m, x)$. This is a contradiction. On the other hand. If $G \subset X$ satisfies that for each $x \in G$ there exists $P \in \mathcal{F}_x$ with $P \subset G$, then $B(n, x) \subset G$ for some $n \in N$. Thus G is open in X.

Hence \mathcal{F} is a weak-base for X.

For each $m \in N$, $\mathcal{F}_m \subset \mathcal{P}_m$, then \mathcal{F}_m is locally countable in X. Thus $\mathcal{F} = \bigcup \{\mathcal{F}_m : m \in N\}$ is σ -locally countable in X. Therefore, $(2) \Rightarrow (1)$ holds. \Box

Corollary 6. A paracompact space with a σ -locally countable weak-base is gmetrizable.

Proof. Suppose X is a paracompact space with a σ -locally countable weak-base. By Theorem 5, X is a g-first countable space with a σ -locally countable k-network. Since a paracompact space with a σ -locally countable k-network is an \aleph -space ([9, Lemma 1]), then X is an \aleph -space. Thus X is g-metrizable by Theorem 2.4 in [6].

In conclusion of this paper, we pose the following question in view of Theorem 5. Question 7. Does $(3) \Rightarrow (1)$ in Theorem 6 hold?

Acknowledgment. The author would like to thank the referee for his valuable suggestions.

References

- [1] Arhangel'skii, A., Mappings and spaces, Russian Math. Surveys 21 (1966), 115–162.
- [2] Liu, C., Dai, M., g-metrizability and S_ω, Topology Appl. 60 (1994), 185–189.
- [3] Michael, E., σ -locally finite mappings, Proc. Amer. Math. Soc. 65 (1977), 159–164.
- [4] Siwiec, F., On defining a space by a weak-base, Pacific J. Math. 52 (1974), 233-245.
- [5] Nagata, J., General metric spaces I, in Topics in General Topology, North-Holland, Amsterdam, 1989.
- [6] Foged, L., On g-metrizability, Pacific J. Math. 98 (1982), 327-332.

ZHAOWEN LI

- [7] Lin, S., Locally countable families, locally finite families and Alexandroff's problems, Acta Math. Sinica 37 (1994), 491–496.
- [8] Lin, S., Generalized metric spaces and mappings, Chinese Sci. Bull., Beijing, 1995.
- [9] Lin, S., On Lašnev spaces, Acta Math. Sinica 34 (1991), 222-225.
- [10] Lin, S., Tanaka, Y., Point-countable k-networks, closed maps, and related results, Topology Appl. 59 (1994), 79–86.
- [11] Lin, S., Li, Z., Li, J., Liu, C., On ss-mappings, Northeast. Math. J. 9 (1993), 521–524.
- [12] Xia, S., Characterizations of certain g-first countable spaces, Adv. Math. 29 (2000), 61–64.
- [13] Tanaka, Y., Xia, S., Certain s-images of locally separable metric spaces, Questions Answers Gen. Topology 14 (1996), 217–231.
- [14] Tanaka, Y., Li, Z., Certain covering-maps and k-networks, and related matters, Topology Proc. 27 (2003), 317–334.
- [15] Li, Z., Lin, S., On the weak-open images of metric spaces, Czechoslovak Math. J. 54 (2004), 393–400.
- [16] Li, Z., Spaces with a σ -locally countable base, Far East J. Math. Sci. 13 (2004), 101–108.

College of Mathematics and Econometrics, Hunan University Changsha, Hunan 410082, P. R. China *E-mail*: Lizhaowen8846@163.com

Current address: Department of Information, Hunan Business College Changsha, Hunan 410205, P. R. China